
Citation: Joel, M.Z.; Avesta, A.;

Yang, D.X.; Zhou, J.-G.; Omuro, A.;

Herbst, R.S.; Krumholz, H.M.;

Aneja, S. Comparing Detection

Schemes for Adversarial Images

against Deep Learning Models for

Cancer Imaging. Cancers 2023, 15,

1548. https://doi.org/10.3390/

cancers15051548

Received: 4 February 2023

Revised: 27 February 2023

Accepted: 27 February 2023

Published: 1 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Comparing Detection Schemes for Adversarial Images against
Deep Learning Models for Cancer Imaging
Marina Z. Joel 1,2, Arman Avesta 2 , Daniel X. Yang 2, Jian-Ge Zhou 3, Antonio Omuro 4, Roy S. Herbst 5,
Harlan M. Krumholz 5,6 and Sanjay Aneja 2,6,*

1 Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
2 Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06510, USA
3 Department of Chemistry, Physics and Atmospheric Science, Jackson State University,

Jackson, MS 39217, USA
4 Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
5 Department of Medicine, Yale School of Medicine, New Haven, CT 06510, USA
6 Center for Outcomes Research and Evaluation (CORE), Yale School of Medicine, New Haven, CT 06510, USA
* Correspondence: sanjay.aneja@yale.edu; Tel.: +1-475-331-2202

Simple Summary: While deep learning has become a powerful tool in analysis of cancer imaging,
deep learning models have potential vulnerabilities that pose security threats in the setting of clinical
implementation. One weakness of deep learning models is that they can be deceived by adversarial
images, which are manipulated images that have pixels intentionally perturbed to alter the output
of the deep learning model. Recent research has shown that adversarial detection models can
differentiate adversarial images from normal images to protect deep learning models from attack. We
compared the effectiveness of different adversarial detection schemes, using three cancer imaging
datasets (computed tomography, mammography, and magnetic resonance imaging). We found
that that the detection schemes demonstrate strong performance overall but exhibit limited efficacy
in detecting a subset of adversarial images. We believe our findings provide a useful basis in the
application of adversarial defenses to deep learning models for medical images in oncology.

Abstract: Deep learning (DL) models have demonstrated state-of-the-art performance in the classifica-
tion of diagnostic imaging in oncology. However, DL models for medical images can be compromised
by adversarial images, where pixel values of input images are manipulated to deceive the DL model.
To address this limitation, our study investigates the detectability of adversarial images in oncology
using multiple detection schemes. Experiments were conducted on thoracic computed tomography
(CT) scans, mammography, and brain magnetic resonance imaging (MRI). For each dataset we trained
a convolutional neural network to classify the presence or absence of malignancy. We trained five
DL and machine learning (ML)-based detection models and tested their performance in detecting
adversarial images. Adversarial images generated using projected gradient descent (PGD) with a
perturbation size of 0.004 were detected by the ResNet detection model with an accuracy of 100% for
CT, 100% for mammogram, and 90.0% for MRI. Overall, adversarial images were detected with high
accuracy in settings where adversarial perturbation was above set thresholds. Adversarial detection
should be considered alongside adversarial training as a defense technique to protect DL models for
cancer imaging classification from the threat of adversarial images.

Keywords: artificial intelligence; deep learning; cancer classification; medical imaging

1. Introduction

Diagnostic imaging is a cornerstone of clinical oncology with an increasingly im-
portant role in cancer detection, treatment planning, and response assessment. With the
increasing use of various diagnostic imaging modalities for cancer management, there has
been a growing desire to leverage machine learning (ML) methods to improve diagnostic
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image analysis [1]. Deep learning (DL) models in particular have shown significant promise
in helping interpret various diagnostic imaging modalities such as computed tomogra-
phy (CT), magnetic resonance imaging (MRI), and X-ray images across cancer types [2–5].
Recently, the US Food & Drug Administration (FDA) has approved multiple DL-based com-
puter vision algorithms for medical imaging to be used by healthcare start-ups [6–8]. Recent
examples are FDA-approved DL algorithms for breast cancer screening (e.g., Transpara and
Mammoscreen) using digital mammography and digital breast tomosynthesis [8]. As these
DL-based medical imaging systems are already approved for medical diagnosis without
clinician input, DL models for medical imaging have imminent potential to be utilized
in real-world cancer diagnostics. Some of the incentives for using DL models in clinical
diagnostics to supplement or even replace human decision making include mitigating
healthcare costs as well as human error [9].

Despite the success of DL models across various imaging tasks, there remain notable
vulnerabilities which may hinder clinical its implementation. Specifically, DL models are
vulnerable to adversarial images—images engineered with slight perturbations to cause DL
models to give false predictions. The weakness of DL models against adversarial images
stems from the fact that DL models are algorithmically unstable, producing significantly
different outputs when the given inputs are subtly modified [10,11]. Clinically, this could
lead to a misdiagnosis of non-cancerous lesions as cancerous, or worse, miss potential
cancers present in diagnostic images. Although adversarial images are often difficult to
distinguish visually from clean images, they have been shown to significantly decrease
DL model classification accuracy [12–14]. Previously, it was thought that limiting access
to training data—medical images for classification—to be publicly unavailable would
prevent the security threat of adversarial images, as generation methods for adversarial
perturbations usually require the use of original training data. However, Minagi et al.
showed that transfer learning from non-medical images can be used to generate adversarial
perturbations for medical images without using actual medical images as training data [15].
Thus, bad actors can potentially create adversarial images to deceive medical DL models
and manipulate clinical decision making even without access to the medical images used
for training, presenting opportunities for healthcare fraud and risks to patient safety [9,15].
For example, adversarial images could be used to distort patient diagnosis to generate
false referrals or inappropriate treatments or medication prescriptions [16]. In light of
these potential threats to the healthcare system from the manipulation of DL models, solely
relying on DL algorithms to automate medical imaging tasks without human intervention
can be dangerous and irresponsible despite its cost effectiveness.

Although adversarial training methods have been developed to create robust DL
models which are more successful at classifying adversarial images, they have shown
limited efficacy on oncologic images, and their improvement of model robustness against
adversarial images comes at a tradeoff of decreasing their standard accuracy against clean
images [17–19]. Furthermore, adversarial training is very computationally expensive as an
iterative fine-tuning method [20]. An alternative solution to mitigate misclassification of
adversarial images is developing methods which identify adversarial images before a DL
model makes a prediction.

In this study, we investigate the efficacy of five different methods using DL- and
ML-based detection models to classify adversarial images across three oncologic imag-
ing modalities: CT, mammography, and MRI. Additionally, we examine the utility of
combining adversarial image detection with adversarial training methods to improve DL
model robustness.
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2. Materials and Methods
2.1. Ethics Declaration

Research was conducted in accordance with the Declaration of Helsinki guidelines and
approved by the Yale University Institutional Review Board (Protocol ID: HIC#2000027592).
Informed consent was obtained from all participants in this study.

2.2. Datasets

Experiments were conducted on three datasets of different imaging modalities: CT,
mammography, and MRI. We used CT imaging data composed of 1018 thoracic CT scans
and 2600 lung nodules from the Lung Image Database Consortium and Image Database
Resource Initiative (LIDC-IDRI) collection [21]. Thoracic radiologists identified the lung
nodules used for the DL model, and associated pathologic reports were used to determine
the presence of malignancy. Radiologist consensus was used to determine malignancy for
patients without a pathologic determination.

We used mammography imaging data consisting of 1696 lesions from 1566 patients
from the Curated Breast Imaging Subset of Digital Database for Screening Mammography
(CBIS-DDSM) [22]. Regions of interest were algorithmically derived using clinical metadata
and were used to determine mammographic lesions. Verified pathologic reports were used
to determine the presence of malignancy.

We used brain MRI data from 831 patients from a single institution brain metastases
registry [1]. A multi-disciplinary team of radiation oncologists, neurosurgeons, and radiolo-
gists identified regions of interest. For 4000 brain lesions that we identified, we determined
the presence of malignancy based on pathologic confirmation or clinical consensus.

2.3. Models

The classification models had a VGG16 convolutional neural network architecture
with pretrained weights [18,23]. We used data augmentation—horizontal and vertical flips,
and random rotations—to train the classification models and optimized the models using
stochastic gradient descent. DL classification models were fixed post training and used
for adversarial detection experiments. Each model was trained to classify the presence or
absence of a malignancy in an image. Each imaging dataset was divided into a training
set and a validation set using a ratio of 2:1. For image processing, each image was center
cropped, resized, and normalized. Classes were balanced for each dataset.

For adversarial detection, we used five different detection models. Two were ImageNet-
pretrained convolutional neural networks with ResNet50 and DenseNet-121 architecture,
respectively. We also used a DenseNet-121 model to extract deep features from images and
separately used logistic regression (LR), random forest (RF), and support vector machine
(SVM) as the detection classifiers based on the extracted deep features. Each detection
model was trained on the combination of the original training set and adversarial images
generated from the training set, and tested on the combination of the original test set and
adversarial images generated from the test set.

Details regarding model architecture and hyperparameter selection for model training
are provided in the Supplementary Tables S1–S5. For both classification and detection
models, model performance was evaluated using accuracy—the percentage of images for
which the model was able to predict to correct label.

2.4. Adversarial Image Generation

We considered three first-order adversarial attack methods: Fast Gradient Sign Method
(FGSM), Projected Gradient Descent (PGD), and Basic Iterative Method (BIM). Using these
attack methods, we crafted adversarial images on the medical image datasets (Figure 1).
All the attacks considered are bounded under a predefined perturbation size ε, which
represents the maximum change to each input image pixel.
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Figure 1. Examples of clean images, adversarial perturbations, and resulting adversarial images
generated using PGD attack method. The percentage displayed represents the prediction confidence—
the probability predicted by the DL model that the image is of a certain class. Adversarial perturba-
tions cause a change in the DL model classification of the image.

The single-step FGSM attack perturbs the clean image by a fixed amount along the
direction (sign) of the gradient of adversarial loss [24]:

xadv = x + ε sign(∇x J(x, y))

where J represents the loss function, x represents the original input image, and y represents
the ground-truth label of input image.

PGD iteratively perturbs the clean image for a number of T steps with smaller step
sizes; after each iteration, the updated adversarial image is projected onto the ε-ball
of x [14]:

xt = ∏
ε

(
xt−1 + α sign

(
∇x J

(
xt, y

)))
where α represents the step size, ∏ represents the projection function, and xt is the adver-
sarial image at the t-th step.

BIM is the iterative version of FGSM, essentially performing FGSM multiple times
with a step size α. It also clips the pixel values of the updated adversarial image after each
step into a permitted range [25].

xt = Clipx, ε

{
xt−1 + α sign

(
∇x J

(
xt, y

))}
We evaluated the performance of our VGG16 classification models using FGSM, PGD,

and BIM adversarial image generation methods across different levels of pixel perturbation.



Cancers 2023, 15, 1548 5 of 13

Relative model sensitivity to adversarial images was assessed by the amount of perturbation
ε required for adversarial images to substantially decrease model accuracy.

2.5. Adversarial Detection

We used the same VGG16 classification models as for above attack experiments. Each
detector model was trained on the combination of the clean training set and corresponding
adversarial training set generated by BIM attack. Detector model training hyperparameters
are detailed in the Supplementary Table S6. For each classification task, we measure
detection performance by reporting the classification accuracy of the detector model on the
combination of the normal test set and the corresponding adversarial test set generated
through FGSM, PGD, or BIM attack. To assess the detectability of adversarial examples, we
report the detection accuracies for the detector models against all three types of attacks of
varying perturbation sizes across the datasets.

2.6. Comparison of Approaches on Improving Classification Accuracy

We compared the efficacy of adversarial detection, adversarial training, and the combi-
nation of adversarial detection and adversarial training on improving classification accuracy
of the DL model. Each scheme was evaluated on the combination of a clean test set and
the corresponding adversarial test set generated via BIM attack with a fixed perturbation
size of 0.004. We first evaluated the baseline accuracy of the original DL model on the
combined test set. We then evaluated the accuracy of the adversarially trained DL model
on the combined test set. For adversarial training, a multi-step PGD adversarial training
method was used where for each batch of training images, half were normal images and
half were adversarial images. For adversarial detection, we first used the ResNet detector to
exclude images detected as adversarial and then evaluated the accuracy of the original DL
model on the remaining dataset; we adjusted the accuracy by accounting for clean images
wrongly excluded by the detector by including that number in the denominator of accuracy
calculation. For the combined adversarial detection and adversarial training approach,
we repeated the previous scheme but used the adversarially trained model instead of the
original DL model for final accuracy evaluation.

The code was implemented in Python 2.7, with DL models using the TensorFlow
v.1.15.3 framework and ML models using the scikit-learn 1.2.0 package [26,27]. Adversarial
images were generated with the Adversarial Robustness Toolbox v.1.4.1 [28].

2.7. Code Availability

The source code for implementation of this paper is available online at Github: https:
//github.com/Aneja-Lab-Yale/Aneja-Lab-Public-Adversarial-Detection (accessed on 1
February 2023).

3. Results

All three DL models for CT, mammogram, and brain MRI datasets were highly sus-
ceptible to adversarial attacks. Before the application of adversarial attacks, our DL models
achieved baseline classification accuracies of 75.4% for CT, 76.4% for mammogram, and
92.4% for MRI. Adversarial images generated using PGD with a perturbation size of
0.004 resulted in dramatic decreases in performance: a DL model accuracy of 25.6% for CT,
23.9% for mammogram, and 7.65% for MRI.

Our adversarial detection models showed strong performance for all attacks across
all datasets for attacks of perturbation sizes larger than 0.004 (Figure 2, Table 1). In all
cases, the detection accuracy increases as the maximum perturbation (ε) of the attack is
increased. This is expected, as adversarial images with larger perturbation sizes are more
easily distinguished from normal images due to greater differences in feature distribution.
Adversarial images generated using PGD with a perturbation size of 0.004 were detected by
ResNet detection model with an accuracy of 100% for CT, 100% for mammogram, and 90.0%
for MRI, and were detected by the DenseNet detection model with an accuracy of 99.7% for

https://github.com/Aneja-Lab-Yale/Aneja-Lab-Public-Adversarial-Detection
https://github.com/Aneja-Lab-Yale/Aneja-Lab-Public-Adversarial-Detection
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CT, 99.9% for mammogram, and 80.5% for MRI. In contrast, the images were detected by
the RF model with an accuracy of 90.6% for CT, 67.1% for mammogram, and 86.9% for MRI.
Overall, our detection models showed stronger performance on the CT and mammogram
datasets than on the MRI dataset. Out of the studied adversarial detection schemes, the
DenseNet and ResNet models showed the best performance, while the Random Forest
model showed the poorest ability to identify adversarial images.
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Figure 2. Detection accuracy (%) of detector models (DenseNet, Logistic Regression, Random Forest,
ResNet, and Support Vector Machine) on the combination of normal and adversarial test samples
along with classification accuracy (%) of VGG16 classification model on adversarial samples as L∞

maximum perturbation size ε is increased. As εwas increased, detection accuracy increased while
classification model accuracy decreased for all datasets and attack types. Results are shown for
(A) lung CT, (B) mammogram, and (C) MRI. Detection accuracy is measured as the percentage of
images in the combined test set correctly classified by detection model to be normal or adversarial,
while classification accuracy is measured as the percentage of images in the normal test set correctly
classified by the VGG16 classification model as malignancy or no malignancy.

Table 1. Accuracy score (%) of DenseNet, Logistic Regression, Random Forest, ResNet, and Support
Vector Machine detector models on a combination of normal samples and adversarial samples crafted
by designated attack (FGSM, PGD, or BIM) at a set L∞ maximum perturbation of 0.004 or 0.008 for
lung CT, mammogram, and brain MRI datasets.

Detection Accuracy (%)

FGSM PGD BIM

ε = 0.004 ε = 0.008 ε = 0.004 ε = 0.008 ε = 0.004 ε = 0.008

CT

DenseNet 99.0 99.1 99.7 99.8 98.4 99.1

Logistic Regression 95.1 96.7 94.1 96.9 87.6 92.3

Random Forest 93.9 96.2 90.6 95.8 81.2 89.1

ResNet 99.3 99.3 100.0 100.0 99.2 99.3

SVM 93.5 96.0 92.6 96.2 86.9 91.4

Mammogram

DenseNet 99.7 100.0 99.9 100.0 98.7 100.0

Logistic Regression 70.4 83.8 75.6 84.2 69.8 83.0

Random Forest 58.8 67.7 67.1 78.9 61.7 75.9

ResNet 100.0 100.0 100.0 100.0 100.0 100.0

SVM 67.9 81.0 74.4 82.0 68.7 80.6

MRI

DenseNet 90.0 94.4 80.5 93.5 75.8 91.7

Logistic Regression 95.1 95.3 93.9 95.3 87.0 95.3

Random Forest 96.5 97.9 86.9 97.9 70.9 97.9

ResNet 73.3 89.1 90.0 92.2 85.8 88.4

SVM 84.1 84.1 83.9 84.1 81.3 84.1
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Overall, our detection models demonstrate strong performance against attacks with
perturbation sizes above a certain threshold. Adversarial attacks with large perturbation
sizes that dramatically decrease classification model performance were detected with high
accuracy. On the other hand, weaker adversarial attacks with small perturbations were less
likely to be detected. That being said, adversarial attacks with smaller perturbations are
less likely to cause substantial changes to model classification. The perturbation threshold
of detectability is heavily dependent on the perturbation size of adversarial images used to
train the detection model. When the detection model is trained on adversarial images with
very small perturbation sizes, the detection model is better at detecting adversarial attacks
with small perturbations. However, when the perturbation sizes of adversarial attacks
used to generate training images for the detection model become too small, the detection
model does not train well because the differences in the features of adversarial and normal
images become too miniscule for the detector to learn. Our detection schemes are strong
in detecting adversarial attacks that pose powerful threats to DL classification models, as
those attacks require a certain perturbation size to be effective.

When exploring the relationship between adversarial detection, adversarial training,
or a combination approach on classification accuracy, we found that all three approaches sig-
nificantly improved classification performance (Table 2). With adversarial images generated
with BIM with a fixed perturbation size of 0.004, adversarial detection improved the classifi-
cation accuracy from 50.58% to 75.63% for CT, from 50.18% to 76.43% for mammogram, and
from 50.00% to 74.07% for MRI. Adversarial training improved the classification accuracy to
75.76% for CT, to 66.61% for mammogram, and to 87.88% for MRI. The combined approach
improved the classification accuracy to 77.59% for CT, to 70.36% for mammogram, and to
79.99% for MRI.

Table 2. Accuracy score (%) of classification DL models after application of adversarial detection,
adversarial training, or the combination of adversarial detection and adversarial training. The
classification model was evaluated on a combination test set of normal and adversarial images.
Adversarial images were generated with BIM with a fixed perturbation size of 0.004. For adversarial
detection, the ResNet detector was used.

Classification Accuracy (%)

Baseline Adv Detection Adv Training Adv Detection + Training

LIDC 50.58 75.63 75.76 77.59

Mammogram 50.18 76.43 66.61 70.36

MRI 50.00 74.07 87.88 79.99

4. Discussion

Deep learning is a potentially powerful and inexpensive alternative or aid to human
decision making for image analysis tasks [29–31]. However, as DL models are highly
sensitive to adversarial attacks, protecting medical DL models against adversarial attacks
is necessary for the safe and effective clinical implementation of DL models. In this study,
we compared adversarial detection approaches to differentiate adversarial images from
clean images. We found that adversarial attacks with perturbation sizes above a certain
threshold can be detected with high accuracy using our detector models.

Previous studies that have found that adversarial images are highly dangerous to
DL models for medical images, dramatically decreasing model accuracy [9,16,32,33]. We
extended these findings by investigating the impact of generation methods and varying
perturbation sizes of adversarial images on their efficacy at deceiving DL models for
medical images [18]. We demonstrated that not all attacks are alike: PGD and BIM attacks
are more effective than FGSM attacks, and adversarial images with greater perturbation
sizes are more powerful than those with smaller perturbation sizes [18]. In this study,
we showed that stronger adversarial images with larger perturbation sizes and a greater
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impact on classification model performance can be detected with a higher accuracy than
adversarial images with smaller perturbation sizes across all detection schemes.

Our study supports several works which have shown that it is feasible to develop
strong approaches to detect adversarial images against DL models for medical images
[7,16,33–37]. For example, Li et al. developed an effective unsupervised learning approach
using a uni-modal multi-variate Gaussian model (MGM) to detect adversarial images
on a deep learning model for chest X-rays [7]. Ma et al. used random forest, SVM, and
logistic regression classifiers as detectors for deep features extracted by a neural network,
finding high detection accuracy for each method given fixed settings for the adversarial
images to be detected [32]. Our work extended this finding by comparing the performance
of five detection models against adversarial images, finding some of these—ResNet and
DenseNet—to be more consistently robust than others, such as the Random Forest classifier,
on DenseNet-extracted features. These results show that detection model architecture is
a key determinant of detection success. The detectability of adversarial medical images
demonstrates underlying differences between properties of adversarial and clean medical
images, as deep features of adversarial images are almost linearly separable from deep
features of clean images when 2D embeddings of deep features are visualized using t-
SNE [32]. In contrast with non-medical images, deep features for adversarial images closely
resemble those for clean images [38,39]. Thus, medical adversarial images are easier to
detect than non-medical adversarial images, even though DL models for medical images
are more vulnerable to adversarial images than DL models for non-medical images [32].

To our knowledge, our work is the first to compare the effectiveness of adversarial
detection, adversarial training, and the combination of adversarial detection and adversarial
training to improve classification accuracy. We demonstrated that adversarial training
and adversarial detection have comparable effectiveness. There are situations where one
approach is superior to the other and vice versa. Furthermore, the use of adversarial
training in addition to adversarial detection results in a classification performance that is
intermediate to that of either approach alone. Thus, it might be helpful to use a combined
approach to optimize classification performance for cases when one particular approach
may be weak. This finding can be an important consideration when deciding how to best
build robust image classification models for diagnostic use in clinical settings.

Unlike previous studies on adversarial imaging attacks on medical images, we found
that our detection schemes underperformed when attempting to identify adversarial im-
ages with very small perturbation sizes [7,16,34]. The common limitation in many previous
studies investigating adversarial detection for medical images was that they used adversar-
ial images with a constant fixed perturbation size to evaluate the efficacy of the adversarial
detector model. However, Shi et al. used an SVM classifier to detect adversarial images
using chest x-ray and color fundus datasets and determined the maximum adversarial
perturbations their model and human specialists cold detect, finding that detection models
greatly outperformed human experts [35]. In our study, we investigated the relationship
between varying adversarial perturbation sizes for adversarial images and detection perfor-
mance, finding that adversarial perturbation size is positively correlated to detector model
performance accuracy. Thus, while some adversarial images are more powerful and capable
of wreaking havoc on the DL model, they are also more easily detectable. Adversarial
images with very small perturbation sizes can fall through the cracks of standard detection
schemes, but they are also less effective at decreasing DL model performance.

Our study has several limitations. First, we only tested on one classification model
(VGG16), so our findings may not be applicable to other models. Additionally, some
evidence suggests non-convolutional network-based models such as vision transformers
maybe more robust to adversarial attacks [33]. Regardless, the VGG16 model shares
behavioral similarities with other DL models which comprises a majority of clinically-
employed models for image classification, so the findings from this work can be helpful
to future works employing other models [40–42]. Additionally, some evidence suggests
non-convolutional network-based models such as vision transformers maybe more robust
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to adversarial attacks. Second, our approach only employs white-box attacks where the
attack has prior knowledge of access to parameters. It would be helpful to extend the study
to black-box attacks, where the attacker cannot see the model parameters, as black-box
attacks may be common in real-world settings. Third, we used only first-order adversarial
attacks to generate adversarial images, when higher-order attacks exist. Thus, there is a
need to investigate the detectability of higher-order adversarial attacks on medical images.

While exciting progress has been made in the development of adversarial defenses,
there is an arms race between the generation of novel adversarial defenses and the cre-
ation of adversarial image generation methods that circumvent these defenses [9]. We
demonstrate that existing defenses against adversarial images, adversarial detection, and
adversarial training cannot fully mitigate the impact of adversarial images against DL
models for medical imaging classification. In the current state of DL models, the use of
DL-based medical imaging algorithms should be heavily supervised by human clinicians
to ensure protection against malicious interventions. Addressing the vulnerability of DL
models against adversarial images should be prioritized to fully embrace widespread
clinical implementation of DL systems in healthcare systems. Thus, further research into
adversarial defense techniques and their effectiveness against medical adversarial images
is essential.

5. Conclusions

In this work, we applied five different DL-based and ML-based adversarial detection
models to compare their effectiveness at differentiating adversarial images from normal
images in clinical oncology. We evaluated the performance of our detectors on three cancer
imaging datasets of different diagnostic imaging modalities (CT, mammography, and
MRI), finding that our detectors exhibit a high detection accuracy for adversarial images
with perturbation sizes beyond a certain threshold. Our detection models can discern the
adversarial images with larger perturbation sizes capable of dramatically decreasing DL
classification model performance. We also demonstrated that the combination of adversarial
detection and adversarial training may be a more secure method than the employment of
either approach alone. However, we show that neither adversarial detection nor adversarial
training can provide universal protection against adversarial images. Thus, future work
should focus on detection methods capable of detecting adversarial images with a wider
range of perturbation sizes. We believe that our work will facilitate the development of
more robust adversarial image detection methods to defend medical deep learning models
against adversarial images.
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