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Simple Summary: Novel antibody-drug conjugates (ADCs) show efficacy in advanced breast cancer
with low HER2 levels. Little is known about the discordance of low HER2 levels between the primary
tumor and distant metastases. The clinical relevance of discordance between the primary tumor and
metastases prompted us to investigate the differences in HER2 expression between primary tumors
and distant metastases, particularly in the HER2-negative (HER2-low and HER2-zero) primary breast
cancer cohort. Our results show a relevant discordance of HER2-low status between primary tumors
and their corresponding distant metastases.

Abstract: We examined differences in HER2 expression between primary tumors and distant metas-
tases, particularly within the HER2-negative primary breast cancer cohort (HER2-low and HER2-zero).
The retrospective study included 191 consecutive paired samples of primary breast cancer and distant
metastases diagnosed between 1995 and 2019. HER2-negative samples were divided into HER2-zero
(immunohistochemistry [IHC] score 0) and HER2-low (IHC score 1+ or 2+/in situ hybridization
[ISH]-negative). The main objective was to analyze the discordance rate between matched primary
and metastatic samples, focusing on the site of distant metastasis, molecular subtype, and de novo
metastatic breast cancer. The relationship was determined by cross-tabulation and calculation of
Cohen′s Kappa coefficient. The final study cohort included 148 paired samples. The largest proportion
in the HER2-negative cohort was HER2-low [primary tumor 61.4% (n = 78), metastatic samples 73.5%
(n = 86)]. The discordance rate between the HER2 status of primary tumors and corresponding distant
metastases was 49.6% (n = 63) (Kappa −0.003, 95%CI −0.15–0.15). Development of a HER2-low phe-
notype occurred most frequently (n = 52, 40.9%), mostly with a switch from HER2-zero to HER2-low
(n = 34, 26.8%). Relevant HER2 discordance rates were observed between different metastatic sites and
molecular subtypes. Primary metastatic breast cancer had a significantly lower HER2 discordance rate
than secondary metastatic breast cancer [30.2% (Kappa 0.48, 95%CI 0.27–0.69) versus 50.5% (Kappa
0.14, 95% CI −0.03–0.32)]. This highlights the importance of evaluating potentially therapy-relevant
discordance rates between a primary tumor and corresponding distant metastases.

Keywords: HER2-low; HER2-zero; HER2 overexpression; HER2 dynamics; de-novo metastasis;
antibody-drug conjugate

1. Introduction

Overexpression or amplification of human epidermal growth factor receptor 2 (HER2)
characterizes a molecular subtype of breast cancer that progresses rapidly and has a poor
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prognosis [1,2]. However, with the advent of targeted therapies against HER2 such as the
monoclonal antibody trastuzumab, the original prognostic disadvantage of HER2 positivity
has been transformed into a clinically relevant predictive advantage [3]. In advanced
HER2-positive breast carcinoma, survival was further prolonged by pertuzumab [4]. In
the event of progression, tyrosine kinase inhibitors such as lapatinib or tucatinib showed
efficacy in HER2-positive breast carcinoma [5,6]. In addition, antibody-drug conjugates
(ADC) provided a further improvement not only in progression-free survival (PFS) but also
in overall survival (OS) in advanced HER2-positive breast carcinoma [7,8].

Therefore, it was obvious to use anti-HER2 therapies also in early breast carcinoma.
Indeed, the use of trastuzumab resulted in a statistically significant prolongation of overall
survival [9]. Surprisingly, some of the patients who participated in the original trastuzumab
trials and were ultimately HER2-negative at central HER2 reassessment benefited from
trastuzumab [10,11]. Based on these findings, a large phase III trial was conducted in
3270 women, but it clearly showed that trastuzumab was not beneficial for patients with-
out IHC 3+ or ISH-enhanced breast cancer [12]. In HER2-positive early breast cancer, the
addition of pertuzumab led to a relevant increase in pathologic complete response rates
(pCR) and an improvement in disease-free survival (DFS) [13,14]. The prolongation of DFS
was further increased using the tyrosine kinase inhibitor neratinib after the completion of
trastuzumab-based therapy in HER2-positive patients [15]. Furthermore, the ADC T-DM1
improved DFS in early HER2-positive breast cancer with residual disease after neoadjuvant
trastuzumab-based treatment [16]. Overall, these HER2-targeted therapies represent tremen-
dous progress for the 15–20% HER2-positive patients. Meanwhile, several retrospective
studies have taken a closer look at the large group of HER2-negative breast cancer. Breast
cancer showing HER2 protein expression without HER2 gene amplification could be divided
into two separate groups (HER2-low [IHC 1+ or 2+ and ISH-negative] and HER2-zero [IHC
0]) with different prognosis or pCR after neoadjuvant chemotherapy [17–22]. However,
these results could not be confirmed in several other studies [23–36]. Nevertheless, interest
in HER2-low tumors has increased greatly due to the results of the DESTINY-Breast04 trial,
which demonstrated the superiority of trastuzumab-deruxtecan (T-DXd) over physician′s
choice chemotherapy in patients with advanced HER2-low breast cancer [37]. The pro-
longation of PFS (10.1 months vs. 5.4 months; hazard ratio [HR] 0.51; p < 0.001) and OS
(23.9 months vs. 17.5 months; HR 0.64; p = 0.003) was both statistically significant and
clinically relevant. These compelling results led to a rapid update of the American Society of
Clinical Oncology (ASCO) guideline and a positive opinion of the Committee for Medicinal
Products for Human Use (CHMP) of the European Medicines Agency (EMA) recommending
the use of T-DXd in patients with HER2-low metastatic BC [38,39].

Until now, the only question regarding HER2 status was whether the tumor was
HER2-positive or HER2-negative. However, the impressive data from T-DXd in HER2-low
breast cancer highlights the importance of dividing the large group of HER2-negative pa-
tients. In principle, the well-known ASCO/College of American Pathologists (CAP) clinical
practice guideline allows such a distinction [40]. However, potential difficulties such as
tumor heterogeneity (clustered or mosaic type) or unusual staining patterns (moderate to
intense but incomplete staining or carcinomas with limited strong HER2 overexpression)
must be considered [41]. To address difficulties in distinguishing between HER2-low and
HER2-zero, pathologists have already pointed out possible solutions for the assessment of
immunohistochemical staining such as (1) application of the “magnification rule”, (2) stain-
ing pattern-circularity of membrane staining, and (3) percentage of tumor cells with HER2
expression [42].

In addition to these briefly outlined challenges for pathologists in distinguishing be-
tween HER2-low and HER2-zero, another fundamental problem is discordance between the
primary tumor and corresponding metastases, since whenever possible, a recent metastatic
biopsy is encouraged to guide therapy in advanced breast cancer. The problem of discor-
dance between primary tumors and distant metastases arises when treating patients with
metastatic disease with targeted therapies. The discordance of traditional HER2 dichotomy
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(positive or negative) between primary breast cancer and distant metastases is well es-
tablished. Among others, Grassini et al. reviewed the phenomenon of HER2 conversion
between primary breast tumors and relapsed/distant metastatic [41]. While early studies
described a wide variability in HER2 discordance rates (0–44%), several meta-analyses
showed discordance rates ranging from 7.8% to 13.7% [43–45]. Most commonly, conversion
from HER2-positive to HER2-negative was observed, which is clinically important in both
advanced and early breast cancer. In neoadjuvant studies, a loss of HER2 expression from
a therapy-naïve primary tumor and the post-neoadjuvant residual tumor was described
with a prognostic disadvantage [46–51].

However, less is known about the discordance of HER2-low between primary tu-
mors and distant metastases. Thus, Tarantino and coworkers demonstrated a relevant
discordance in HER2 expression between PTs and their associated metastases: 44% of
HER2-zero PTs had an elevated HER2 score on biopsy, and 22% of HER2-low PTs became
HER2-zero tumors [32]. Miglietta et al. reported an overall rate of HER2 discordance of
38.0%, with most transitioning from HER2-zero to HER2-low (15%) and from HER2-low
to HER2-zero (14%) [52]. This discordance rate is clinically relevant to the use of ADCs
and prompted us to investigate the discordance rate in 148 paired samples (primary breast
tumor and distant metastasis), focusing on (i) molecular subtype, (ii) distant metastasis
site, and (iii) differences between primary metastatic breast cancer (PMBC) and secondary
metastatic breast cancer (SMBC).

2. Materials and Methods
2.1. Study Cohort

The certified breast cancer center of the University Medical Center Mainz has been
prospectively documenting clinic-pathological characteristics as well as therapies of all
treated breast cancer patients. This database was searched for patients with metastatic breast
cancer between 15.06.1995 and 10.10.2019. We studied 191 consecutive paired samples of
primary breast tumor and distant metastasis. Only solid distant metastases were considered.
Paired samples without complete HER2 status (n = 31), with HER2 status equivocal (n = 4),
or bilateral BC or secondary malignancy with different HER2 status (n = 8) were not eligible
for this study (Figure 1).

PMBC was defined as the presence of metastasis at the time of diagnosis of the
PT [53,54]. The median age at the time of initial breast cancer diagnosis was 53 years (range,
31–86 years). Table 1 provides an overview of the established clinico-pathologic prognostic
factors in the final study cohort (n = 148).

Table 1. Clinico-pathological parameters at diagnosis (n = 148).

Total Number
of Patients
(n = 148)

HER2-Negative (n = 127) HER2-Positive
(n = 21) p-Value

HER2-Zero
(n = 49)

HER2-Low
(n = 78)

Age at primary breast
surgery 0.087

Median [years] 53 48 54 52

<50 years 66 (44.6%) 28 (57.1%) 29 (37.2%) 9 (42.9%)

>50 years 82 (55.4%) 21 (42.9%) 49 (62.8%) 12 (57.1%)

Histological subtype 0.221

Invasive carcinoma of no
special type (NST) 115 (77.7%) 33 (67.3%) 63 (80.8%) 19 (90.5%)

Invasive lobular
carcinoma 24 (16.2%) 12 (24.5%) 11 (14.1%) 1 (4.8%)

other 9 (6.1%) 4 (8.2%) 4 (5.1%) 1 (4.8%)
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Table 1. Cont.

Total Number
of Patients
(n = 148)

HER2-Negative (n = 127) HER2-Positive
(n = 21) p-Value

HER2-Zero
(n = 49)

HER2-Low
(n = 78)

Tumor size 0.032

pT1 32 (22.2%) 11 (22.9%) 18 (24.0%) 3 (14.3%)

pT2 67 (46.5%) 30 (62.5%) 30 (40.0%) 7 (33.3%)

pT3/4 45 (31.3%) 7 (14.6%) 27 (36.0%) 11 (52.3%)

missing 4 (2.7%)

Nodal status 0.710

Negative 44 (29.7%) 13 (26.5%) 25 (33.3%) 6 (28.6%)

positive 101 (68.2%) 36 (73.5%) 50 (66.7%) 15 (71.4%)

missing 3 (2.0%)

Histological grade 0.049

G1 11 (7.4%) 6 (12.2%) 5 (6.7%) 0

G2 72 (48.6%) 19 (38.8%) 45 (60.0%) 8 (40.0%)

G3 61 (41.2%) 24 (49.0%) 25 (33.3%) 12 (60.0%)

missing 4 (2.7%)

Hormone receptor
status 0.252

negative 23 (15.5%) 11 (22.4%) 9 (11.5%) 3 (14.3%)

positive 125 (84.5%) 38 (77.6%) 69 (88.5%) 18 (85.7%)

HER2 status

Negative 127 (85.8%) 49 (100.0%) 78 (100.0%)

Positive 21 (14.2%) 21 (14.2%)

0 49 (33.1%) 49 (100.0%)

1+ 59 (39.9%) 59 (75.6%)

2+ 22 (14.9%) 19 (24.4%) 3 (14.3%)

2+/ISH negative 19 (12.8%)

2+/ISH positive 3 (2.0%)

3+ 18 (12.2%) 18 (85.7%)

Ki-67 0.022

<20% 19 (12.8%) 10 (35.7%) 9 (17.3%) 0

>20% 74 (50.0%) 18 (64.3%) 43 (82.7%) 13 (100.0%)

Missing 55 (37.2%)

Molecular subtype <0.001

Luminal-like 107 (72.3%) 38 (77.6%) 69 (88.5%) 0

Luminal-A-like 18 (12.2%) 9 9 0

Lumina-B-like 46 (31.1%) 10 36 0

Missing Ki-67 43 (29.1%)

HER2 positive 21 (14.2%) 21 (100.0%)

Triple-negative 20 (13.5%) 11 (22.4%) 9 (11.5%) 0
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Table 1. Cont.

Total Number
of Patients
(n = 148)

HER2-Negative (n = 127) HER2-Positive
(n = 21) p-Value

HER2-Zero
(n = 49)

HER2-Low
(n = 78)

Metastatic site 0.349

Liver 50 (33.8%) 16 (32.7%) 28 (35.9%) 6 (28.6%)

Bone 38 (25.7%) 13 (26.5%) 23 (29.5%) 2 (9.5%)

Skin/Soft tissue 18 (12.2%) 6 (12.2%) 10 (12.8%) 2 (9.5%)

Central nervous system 15 (10.1%) 6 (12.2%) 4 (5.1%) 5 (23.8%)

others 13 (8.8%) 5 (10.2%) 6 (7.7%) 2 (9.5%)

Lung/Pleura 9 (6.1%) 1 (2.0%) 5 (6.4%) 3 (14.3%)

Lymph node 5 (3.4%) 2 (4.1%) 2 (2.6%) 1 (4.8%)

Additional metastatic
biopsy

Yes 19 (12.8%) 5 (10.2%) 11 (14.1%) 3 (14.3%) 0.797

HER2 concordance with
previous biopsy 8 (42.1%) 1 (20.0%) 6 (54.5%) 1 (33.3%)

HER2 discordance with
previous biopsy 11 (57.9%) 4 (80.0%) 5 (45.4%) 2 (66.7%)

No 129 (87.2%) 44 (89.8%) 67 (85.9%) 18 (85.7%)

Treatment for early
breast cancer

Neo-/Adjuvant
chemotherapy 72 (48.6%) 35 (71.4%) 30 (38.5%) 7 (33.3%) <0.001

Neo-/Adjuvant
Anti-HER2-therapy 9 (6.1%) 0 0 9 (42.9%) <0.001

Adjuvant endocrine
therapy 79 (53.4%) 31 (63.3%) 42 (56.0%) 6 (28.6%) 0.083

Treatment for
metastatic breast

cancer

chemotherapy 45 (30.4%) 8 (16.3%) 26 (34.2%) 11 (52.4%) 0.007

Anti-HER2-therapy 13 (8.8%) 2 (4.1) 0 11 (52.4%) <0.001

Endocrine therapy 52 (35.1%) 18 (36.7%) 29 (38.2%) 5 (23.8%) 0.468

Tumor progression

Time to metastasis,
Median [month] 25 (0–150) 44 (0–150) 14 (0–121) 0 (0–111)

Time to metastasis biopsy,
Median [month] 39 (0–165) 51 (0–150) 36 (0–165) 17 (0–37)

Time from metastasis
diagnosis to metastasis
biopsy, Median [month]

1 (0–131) 0 (0–55) 1 (0–131) 0 (0–94)

Primary metastatic
breast cancer (PMBC) Yes 5 (35.8%) 8 (16.3%) 31 (39.7%) 14 (66.7%)

No 95 (64.9%) 41 (83.7%) 47 (60.3%) 7 (33.3%)
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2.2. Immunohistochemistry (IHC) and In Situ Hybridization (ISH)

Immunohistochemical analyses and in situ hybridization were performed on 3 µm
thick sections of paraffin-embedded formalin-fixed tissues according to standard proce-
dures. HER2 was scored from 0 to 3+ [40]. HER2 2+ cases (n = 22) were further classified
as amplified or non-amplified by either fluorescence in situ hybridization (FISH) (Her2
FISH pharmDX kit, Dako) or chromogenic in situ hybridization (CISH) (Ventana Her2
dual ISH assay, Roche). HER2 2+ tumors with amplification of HER2 and 3+ tumors
were classified as HER2-positive. The HER2-negative cohort was defined as 0, 1+, and 2+
without amplification of HER2. HER2-low tumors included all 1+ and 2+ tumors without
amplification of HER2. Tumors with a HER2 score 0 were classified as HER2-zero [41,42].
Hormone receptor status was positive if tumor cells showed nuclear expression of either
the estrogen receptor (ER) and/or the progesterone receptor (PR), the cut-off being defined
as 1% of tumor cells [55].

The study was approved by the Ethics Committee of the Rhineland-Palatinate Medical
Association, Germany (2021-15657). Written informed consent was obtained from all
patients, and all clinical investigations were performed according to ethical and legal
standards and in compliance with the Declaration of Helsinki. This study follows the
Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting
guideline [56].

2.3. Statistical Analysis

The main objective was to evaluate HER2 expression differences between primary
tumor and distant metastasis, particularly in the HER2-negative (HER2-low and HER2-
zero) primary breast cancer collective. Secondary objectives of our analysis were (i) that
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discordance rates differ according to the molecular subtype of the primary tumor, (ii) that
discordance rates differ according to the site of distant metastasis, and (iii) the discordance
rate in PMBC is lower than in SMBC. The relationship between the different categorical
variables was determined by cross-tabulation. Comparisons between different HER2 status
(primary tumor and metastasis) were calculated by Cohen’s Kappa coefficient. Relation-
ships between HER2 status for primary tumor and clinico-pathological parameters were
assessed by cross-tabulation and using Pearson’s chi-squared test (χ2 test). Statistical analy-
ses were performed using the SPSS statistical software program, version 27.0 (SPSS Inc.,
Chicago, IL, USA), and the statistical language R, version 4.1.2 [57]. Patients’ characteristics
were given in absolute and relative numbers. All p-values are two-sided. Because no
correction was made for multiple testing due to the exploratory nature of the study, these
are descriptive measures that should be interpreted with caution.

3. Results
3.1. Patient Population

The final study cohort included 148 paired samples. Primary tumors were divided
into 127 (85.8%) HER2-negative samples [49 HER2-zero (38.6%) and 78 HER2-low (61.4%)]
and 21 (14.2%) HER2-positive samples (Figure 1). One-hundred and seven (72.3%)
primary tumors showed a luminal-like phenotype, 21 (14.2%) were HER2-positive, and
20 (13.5%) had a triple-negative phenotype. PMBC occurred in 35.8% (n = 53), and
more frequently in the HER2-low (58.5%, n = 31) than in the HER2-zero cohort (15.1%,
n = 8). The median time to first metastasis was 25 months (range 0–150). The median
time between diagnosis of metastatic disease and biopsy was one month (range 0–131).
Metastases were located in the liver (n = 50, 33.8%), bone (n = 38, 25.7%), skin/soft tissue
(n = 18, 12.2%), central nervous system (CNS) (n = 15, 10.1%), other sites (n = 13, 8.8%),
lung/pleura (n = 9, 6.1%), and lymph nodes (n = 5, 3.4%). Seventy-nine (53.4%) patients
received adjuvant endocrine therapy and 72 (48.6%) neo-/adjuvant chemotherapy. A
small proportion of patients were treated with adjuvant anti-HER2 therapy (n = 9, 6.1%).
At the time of metastatic biopsy, 35.1% (n = 52) of patients were receiving endocrine
therapy, 30.4% (n = 45) chemotherapy, and/or 8.8% (n = 13) anti-HER2 therapy for
metastatic disease. Compared with HER2-zero and HER2-positive phenotype, HER2-low
was significantly less frequently diagnosed in larger tumors (>T2) (HER2-low 66.0%
vs. HER2-zero 77.1% and HER2-positive 85.6%, p = 0.032) and poorly differentiated
tumors (G3) (HER2-low 33.3% vs. HER2-zero 49.0% and HER2-positive 60.0%, p = 0.049).
HER2-low status was more common in tumors with higher Ki-67 (>20%) compared with
HER2-zero (82.7% vs. 64.3%). However, higher Ki-67 levels were most frequently found in
the HER2-positive cohort (100%) (p = 0.022). Low HER2 was significantly more common
in luminal-like tumors than in triple-negative tumors (88.5% vs. 11.5%), while conversely,
HER2-zero was more common in triple-negative tumors (22.4% vs. 11.5%) (p < 0.001).
Additional tumor and patient characteristics are listed in Table 1.

3.2. Change of HER2 Status between Primary Breast Cancer and Metastasis

In the HER2-negative cohort, the HER2-low phenotype represented the largest group
[primary tumor 61.4% (n = 78), metastatic samples 73.5% (n = 86)]. Discordance in HER2
status between the primary tumor and the matched metastatic biopsy was 49.6% (n = 63)
(Kappa −0.003, 95%CI −0.15–0.15). Development of the HER2-low phenotype (HER2-zero
to HER2-low or HER2-low to HER2-zero) was most common (n = 52, 40.9%), especially
with enrichment to HER2-low (n = 34, 26.8%) (Figure 2 and Table S1).

In the entire cohort (n = 148), HER2 discordance was 43.2% (n = 64) (Kappa 0.270,
95%CI 0.14–0.41). Most frequently, an evolution from HER2-zero to HER2-low phenotype
was observed (n = 34, 23.0%). Within the HER2-zero cohort, this represented a switch of
69.4% from HER2-zero to HER2-low. A change from HER2-low to HER2-zero occurred
in 12.2% (n = 18). Considered for the HER2-low cohort alone, a switch from HER2-low to
HER2-zero resulted in 23.1%. The HER2-positive cohort showed the greatest stability, with
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a discordance of 4.8% (n = 1 of 21) (Table S2 and Figure S1). When additional metastatic
biopsies were performed, a discordance rate of 57.9% was observed compared with the
previous biopsy (Table 1). Again, the most common finding was a change from HER2-zero
to HER2-low (15.8%; within the HER2-zero cohort: 60.0%).
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3.3. Change of HER2 Status in Different Metastatic Sites

The proportion of HER2-low did not differ significantly between the different metastatic
sites (p = 0.349) (Table 1). In the HER2-negative population, a relevant HER2 discordance
rate was observed between the different metastatic sites (bone: Kappa 0.022, -0.230–0.273;
liver: Kappa 0.048, −0.195–0.291; skin/soft tissue: Kappa 0.082, −0.363–0.527, lymph node:
Kappa 0.000; CNS: Kappa −0.250, −0.606–0.106; others: Kappa −0.467, −0.980–0.047).
Only pulmonary/pleural metastases showed absolute concordance with the primary breast
tumor (Kappa 1.0, 95%CI 1.0–1.0). An increase from HER2-zero to HER2-low at metastatic
biopsy was most frequently detected, excluding bone metastases. A switch to HER2 positive
has been observed especially in CNS metastases (n = 2, 20.0%) (Table S3 and Figure 3).

Similarly, there was a relevant change in HER2 expression in the entire cohort
(Table S4 and Figure S2).

3.4. Change of HER2 Status in Different Molecular Subtypes

HER2 discordance was observed according to the molecular subtype, in the Luminal
A/B cohort (Kappa −0.044, −0.202–0.114) and in triple-negative breast cancer (Kappa
0.107, −0.247–0.461). In both subcohorts, a switch from HER2-zero to HER2-low was most
frequently detected (Luminal A/B n = 28, 26.2%; Triple-negative n = 6, 30.0%) (Table S5
and Figure S3).
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3.5. Change of HER2 Status in Primary vs. Secondary Metastatic Breast Cancer

PMBC was evidenced in 35.8% (n = 53). HER2-low represented the largest propor-
tion in both the primary tumor (58.5%, n = 31) and matched de-novo metastases (54.7%,
n = 29). The de-novo cohort showed a higher prevalence of HER2-low expression in PT
(58.5%, n = 31) than in the relapsed collective (49.5%, n = 47). The HER2-low phenotype was
represented more frequently in secondary metastases than in de-novo metastases (60.0% vs.
54.7%) (Tables S6 and S7). The discordance rate was lower in the PMBC than in the SMBC
cohort [30.2% (Kappa 0.48, 95%CI 0.27–0.69) vs. 50.5% (Kappa 0.14, 95% CI −0.03–0.32)]. In
the de-novo cohort, the increase almost corresponded to the loss of HER2 expression (11.3%
vs. 13.2%), whereas in the SMBC cohort, the change from HER2-zero to HER2-low clearly
predominated (29.5% vs. 11.6%) (Figure 4, Tables S6 and S7).
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4. Discussion

In our retrospective analysis, we showed a relevant discordance rate of HER2 sta-
tus between primary breast cancer and distant metastases, with the conversion from
HER2-zero to HER2-low observed most frequently. Recently published studies have ad-
dressed the heterogeneity of HER2-negative breast cancer, focusing on the HER2-negative
cohort [17,19,20,28]. The need to relativize the traditional dichotomization between
HER2-positive and HER2-negative appeared at the latest with the results of the DESTINY-
Breast04 trial, which demonstrated the superiority of trastuzumab-deruxtecan (T-DXd) vs.
chemotherapy of the physician’s choice in patients with advanced HER2-low breast can-
cer [37]. In addition, other HER2-targeting ADCs like trastuzumab duocarmazine showed
promising activity in early studies [58]. In our previous study, we reported a rate of 48.3%
HER2-low tumors, which was within the range of approximately half of HER2-negative
breast cancer patients (31.0% to 60.6%) reported by Prat and coworkers in a recent review
article [20,58]. Since 80–85% of all breast cancer tumors have a HER2-negative phenotype,
which was 85.2% in our study, a better understanding of this cohort has potential thera-
peutic implications for the majority of breast cancer patients. In this context, the aspect of
the evolution of HER2 expression from early to advanced breast cancer is important. In
the present study, we demonstrated a discordance rate between HER2 status of primarytu-
mors and associated distant metastases within the HER2-negative cohort of 49.6% (Kappa
−0.003, 95%CI −0.15–0.15). The development of HER2-low occurred frequently (40.9%),
particularly with a switch from HER2-zero to HER2-low (26.8%). Discordance rates from
our study were slightly higher than in other studies (38.0% and 40.9%, respectively [52,59].
However, all studies showed an increase in HER2 expression from HER2-zero to HER2-low
during disease progression. Our results of additional metastatic biopsies compared with
initial metastatic biopsies point in the same direction, with a discordance rate of 57.9%.
There are several hypotheses for low HER2 stability (e.g., genetic drift and clonal evo-
lution during tumor progression, intratumoral heterogeneity, and the selective effect of
administered therapies) leading to the enrichment of HER2 expression [41,60–66]. Our
study cohort showed heterogeneity in terms of time to metastasis, with a significantly
longer time in the HER2-zero cohort than in the HER2-low cohort [median 44 months
(0–150) vs. 14 months (0–121)] and in terms of systemic treatments given. Neo-/adjuvant
chemotherapy was significantly more common in the HER2-zero than in the HER2-low
cohort (71.4% vs. 38.5%, p < 0.001). Both aspects may have an impact on the increase
of HER2-low from a primary tumor to distant metastases. In our study, there were no
significant differences in HER2-low expression depending on the metastatic site (p = 0.349).
Comparable to our results, Tarantino and coworkers also found no significant difference in
HER2-low expression at different metastatic sites (p = 0.88), even when they divided biopsy
sites into visceral (liver, lung, and pleura) and nonvisceral (skin and soft tissues, lymph
nodes, bone, other) (p = 0.56) [32]. Miglietta et al. examined locoregional recurrences in
addition to HER2-low prevalence in various distant metastases, also with similar results
for HER2-low [52]. However, in Miglietta′s cohort, a significant difference in discordance
rates was observed between the different metastases (p = 0.001), with the greatest HER2
instability in liver and bone metastases and the greatest concordance in lung and CNS
metastases. Lung/pleural metastases also had the strongest concordance in our study. In
the HER2-negative cohort, discordance rates ranged from 40.9% (liver) to 80.0% (CNS). The
HER2 score changed from HER2-zero to HER2-low most frequently at metastatic biopsy,
except for bone metastases, which is in contrast to the results of Lin et al. [66]. Overall,
the aspects of similar HER2 expression levels at different metastatic sites and the different
discordance rates are of clinical importance when a metastatic site has to be selected for
biopsy to decide on targeted therapies that are also effective in HER2-low tumors. Another
objective of our study was to analyze whether discordance rates depend on the molecular
subtype of the primary BC. Recently published studies that examined discordance rates
as a function of the molecular subtype of the primary tumor showed that HER2-low was
more common in HR-positive tumors than in triple-negative tumors [22,32,52,59,67,68].
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Similarly, the HR-positive subtype was associated with a higher discordance rate, most
frequently switching from HER2-zero to HER2-low [32,52]. In our study, HER2-low was
also significantly more common in luminal-like tumors than in triple-negative tumors,
although the difference was much greater than in the above studies.

A particular aspect of our study was the evaluation of PMBC, which we assessed for
HER2-low prevalence and discordance rates. Compared to SMBC, PMBC had a significantly
lower discordance rate between the PT and matched metastases [30.2% (Kappa 0.48, 95%CI
0.27–0.69) versus 50.5% (Kappa 0.14, 95% CI −0.03–0.32)]. While an increase in HER2
expression between primary tumor and distant metastases was observed across the cohort
in our study, this trend was not observed in PMBC, supporting the hypothesis of HER2
enrichment during tumor progression. Overall, not all studies clearly addressed PMBC [52],
excluded de-novo tumors, or applied various de-novo definitions (e.g., <6 months) [32,59].
Therefore, a comparison between our results and those of other studies is difficult. Although
the de novo cohort of our study was small (n = 53), the aspect of low HER2 instability
should also receive attention in de novo metastatic BC. In this regard, further studies with
larger study cohorts are needed.

Our study has several limitations, such as the retrospective and unicenter setting.
Another limitation is the lack of a central pathology assessment given the low interobserver
reproducibility, especially in HER2-low and HER2-zero [69]. In addition, we did not
investigate a possible prognostic impact of HER2 discordance between the primary tumor
and the corresponding distant metastases. However, the consecutive inclusion of matched
pairs is a strength. In addition, we examined the impact of both the site of distant metastases
and molecular subtypes and took a closer look at the PMBC group.

5. Conclusions

In summary, we have shown in our study that there is a significant discordance rate
between HER2-negative primary breast cancer and the corresponding metastases, with
HER2-zero tumors more likely to become HER2-low tumors at advanced stages. In contrast,
there is less discordance in PMBC. This evolution of HER2 expression is a clinically relevant
rationale for metastatic biopsy and offers patients the opportunity to receive an effective
treatment such as trastuzumab-deruxtecan.
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