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Simple Summary: In the Liver Imaging Reporting and Data System (LI-RADS), liver observations
are categorized as LR1-LR5 according to the probability of benign and hepatoma on the basis of major
features. Subsequent adjustment is allowed using ancillary features (AFs). However, the LI-RADS
does not provide specific guidelines. In this study, we determined the utilization of a machine-
learning-based strategy of applying AFs to LR3/4 on MRI. Our decision tree algorithm of applying
AFs for LR3/4 provides significantly higher AUC, sensitivity, and accuracy than those of other
methods, albeit reduced specificity. These appear to be usefully employed in certain circumstances in
which there is a focus on the early detection of hepatoma.

Abstract: Background: This study aimed to identify the important ancillary features (AFs) and
determine the utilization of a machine-learning-based strategy for applying AFs for LI-RADS LR3/4
observations on gadoxetate disodium-enhanced MRI. Methods: We retrospectively analyzed MRI
features of LR3/4 determined with only major features. Uni- and multivariate analyses and random
forest analysis were performed to identify AFs associated with HCC. A decision tree algorithm
of applying AFs for LR3/4 was compared with other alternative strategies using McNemar’s test.
Results: We evaluated 246 observations from 165 patients. In multivariate analysis, restricted diffusion
and mild–moderate T2 hyperintensity showed independent associations with HCC (odds ratios: 12.4
[p < 0.001] and 2.5 [p = 0.02]). In random forest analysis, restricted diffusion is the most important
feature for HCC. Our decision tree algorithm showed higher AUC, sensitivity, and accuracy (0.84,
92.0%, and 84.5%) than the criteria of usage of restricted diffusion (0.78, 64.5%, and 76.4%; all p < 0.05);
however, our decision tree algorithm showed lower specificity than the criterion of usage of restricted
diffusion (71.1% vs. 91.3%; p < 0.001). Conclusion: Our decision tree algorithm of applying AFs for
LR3/4 shows significantly increased AUC, sensitivity, and accuracy but reduced specificity. These
appear to be more appropriate in certain circumstances in which there is an emphasis on the early
detection of HCC.

Keywords: hepatoceullular carcinoma; Liver Imaging Reporting and Data System; MRI

1. Introduction

The Liver Imaging Reporting and Data System (LI-RADS) was released in 2011 by
the American College of Radiology [1] and was continuously updated until 2018 to im-
prove diagnostic accuracy and promote communication between healthcare providers by
standardizing the interpretation and categorization of liver observations. In the LI-RADS,
liver observations are categorized as LR1 to LR5 according to the probability of benignity
and hepatocellular carcinoma (HCC), though the algorithm includes the size and major
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features (MFs) such as nonrim arterial phase hyperenhancement (APHE), enhancing cap-
sule, nonperipheral washout, and threshold growth. After allocation to a category based
on the MFs, adjustment using ancillary features (AFs) is allowed [2]. Observations can
be upgraded by one category up to LR4 using AFs favoring malignancy, whereas they
can be downgraded by one category using AFs favoring benignity. Based on a recent
meta-analysis, the occurrence rate of HCC is 0% in LR1, 13% in LR2, 38% in LR3, 74% in
LR4, and 94% in LR5 [3], although these rates in the lower categories may be inflated owing
to selection bias for biopsied lesions. Once the LR category is assigned to each observation,
cases with LR3 and LR4 observations are recommended for repeat or alternative diagnostic
imaging in 3–6 months, multidisciplinary discussion, or biopsy. However, an invasive
biopsy is a risky procedure and may result in biopsy failure because small lesions are
classified as mainly LR3 or LR4. In addition, there is a risk of missing local treatment
opportunities or a decrease in the number of treatment options due to increased lesion size
or vascular invasion during follow-up without treatment. The LI-RADS does not provide
specific guidelines for the application of Afs, and the utilization of AFs are at the discretion
of the radiologist according to each case. Furthermore, variability of the proportion of the
change in the LI-RADS category has been shown after the application of AFs among the
studies, that is, from 18.1% to 56.4% [4–6]. Studies have shown that some observations
remained in the initial category even after the application of AFs; therefore, specific and
appropriate instructions for the application of AFs are necessary to improve the accuracy
and timeliness of diagnosis. Prior studies have reported the widely variable performance of
AFs of 3~62% in sensitivity and 79~99% in specificity [5,7–9], and certain AFs, such as mild–
moderate T2 hyperintensity or hepatobiliary hypointensity, showed stronger associations
than other AFs. However, some studies were limited to the analysis of hepatic observations
already categorized as LR5; thus, these studies involved unavoidable inflated sensitivity
and unreliable significant association of AFs for diagnosing HCC. Those studies reported
various rules for applying AFs for improving the diagnostic performance of LR3 and LR4
observations on gadoxetate disodium-enhanced MRI (using 2–4 or more AFs or specific
combinations using independent features identified by multivariate analysis) [4,10–12].

Recently, artificial intelligence has been actively utilized in many complex problems to
facilitate the identification of complex patterns and relationships within various parameters.
It has the potential to rapidly evolve into an applicable solution in the medical field to
improve diagnostic accuracy, treatment strategy, and follow-up outcomes [13,14]. However,
to our knowledge, no study has examined the effect of machine learning algorithms on
applying AFs in the LI-RADS.

Therefore, this study aimed to identify the important features of AFs and determine
the utilization of a machine-learning-based strategy for applying AFs to LR3 and LR4
observations on gadoxetate disodium-enhanced MRI.

2. Materials and Methods

This retrospective study was conducted at a single center after approval was obtained
from the institutional review board. The requirement for informed consent was waived
due to the retrospective nature of the study.

Interventional studies involving animals or humans and other studies that require
ethical approval must list the authority that provided approval and the corresponding
ethical approval code.

2.1. Study Subjects

We searched our institution’s electronic medical records and identified 523 treatment-
naïve patients at risk for HCC who underwent gadoxetate disodium-enhanced MRI be-
tween January 2017 and February 2022. We included patients who met the following criteria:
(1) age ≥ 18 years; (2) high risk for HCC according to the LI-RADS v2018 (presence of
cirrhosis or chronic hepatitis B infection regardless of the presence of cirrhosis); and (3) MRI
findings of a focal hepatic solid nodule. We excluded 356 patients based on the following
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criteria: (1) inadequate final diagnosis such as unknown final diagnosis of malignancy as a
result of immediate locoregional therapy or insufficient follow-up (<2 years) for benign
lesions to determine size stability (n = 308); (2) poor quality of images for interpretation
(n = 3); (3) only observations categorized as LR1, LR2, LR5, LR-TIV, or LR-M, according
to the LI-RADS v2018 MFs and the algorithm (n = 45). Finally, 167 patients (132 males
and 35 females; mean age, 62.8 ± 8.4 years) in whom gadoxetate disodium-enhanced
MRI showed at least one untreated LR3 or LR4 observation were included in this study
as a development group. For external validation, we collected 25 temporally separated
patients who underwent gadoxetate disodium-enhanced MRI between March 2022 and Oc-
tober 2022. Excluding 5 patients due to nonavailable final diagnosis, 20 patients (17 males
and 3 females; mean age, 64.4 ± 10.6 years) were enrolled as a test group. The LR3 and LR4
observations were categorized using only the MFs per the LI-RADS v2018 as follows: LR3,
nonrim APHE, size 10–19 mm, and no additional MFs; LR4, nonrim APHE, size 10–19 mm,
and enhancing “capsule” only as MFs; or nonrim APHE, size ≥ 20 mm, and no additional
MFs. We did not consider threshold growth because we included only observations that
first presented on gadoxetate disodium-enhanced MRI.

2.2. MRI Techniques

The gadoxetate disodium-enhanced liver MRI examinations were conducted using
a 3-T MRI scanner (MAGMETOM Vida, Siemens Healthcare; SIGNA Architect, GE, Er-
langen, Germany). The imaging protocol included the following sequences: axial T2-
weighted single-shot fast spin echo; axial T2-weighted fast spin echo; axial dual-gradient-
recalled echo (GRE) T1-weighted sequence (in-phase and opposed-phase); and axial T1-
weighted three-dimensional (3D) GRE with fat suppression (liver acquisition with volume
acceleration—LAVA, or volumetric interpolated breath-hold examination—VIBE) obtained
before and after the intravenous bolus injection of 0.025 mmol/kg gadoxetate disodium
at a rate of 1.0 mL/s, followed by a subsequent 20 mL saline flush. Postcontrast axial
3D GRE images were obtained during the late hepatic arterial phase (AP; 5 s after peak
aortic enhancement determined using 1 mL test bolus injection), portal venous phase (PVP;
50 s), transitional phase (TP; 3 min), and hepatobiliary phase (HBP; 20 min). Diffusion-
weighted images were acquired using a maximum b-value of 800 s/mm2. Details of the
MRI parameters are shown in Table A1 in Appendix A.

2.3. Image Analysis

Image analyses were performed by two board-certified radiologists with >9 years of
experience in hepatic imaging, who were blinded to any information about clinical history
or final diagnosis. Any disagreement was resolved in consensus. Nodule size and the
presence or absence of MFs (nonrim APHE, nonperipheral washout, or enhancing capsule)
according to the LI-RADS v2018 were analyzed. The following AFs were also assessed
based on the LI-RADS v 2018: (1) AFs favoring malignancy in general: mild–moderate T2
hyperintensity, corona enhancement, fat sparing in a solid mass, iron sparing in a solid
mass, TP hypointensity, HBP hypointensity, and restricted diffusion; and (2) AFs favoring
malignancy in particular: nonenhancing capsule, nodule-in-nodule, mosaic architecture,
blood products in mass, and fat in mass more than that in the adjacent liver. Imaging
features regarding interval change in tumor size (threshold growth, subthreshold growth,
size stability ≥ 2 years, or size reduction) and discrete nodules observed on ultrasound
were not assessed because only focal lesions initially detected on MRI were included, and
prior imaging studies for the comparison were not provided. AFs favoring benignity were
also not analyzed in this study because no observation showed AFs favoring benignity in
preliminary imaging analysis.

2.4. Reference Standard

The diagnosis of HCC was performed through histopathological confirmation or diag-
nosis of definitive HCC (LR5) on follow-up imaging (either contrast-enhanced computed
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tomography [CT] or MRI) within 12 months [5,11,12,15,16]. Benignity was diagnosed based
on histopathological results or shrinkage or stability of the solid mass as seen on follow-up
serial imaging (contrast-enhanced CT or MRI) for a minimum of 24 months [5,11,12,15–17].
The mean imaging follow-up period for benign observations was 28.1 ± 23.0 (range,
24.7–52.3) months. Histopathological diagnosis was performed after surgical resection
(n = 11) or core-needle biopsy (n = 30).

2.5. Extracting Important Features and Constructing a Machine-Learning-Based Algorithm for
Applying AFs

Evaluating the influence of each factor is important for understanding the prediction
process. In this study, we evaluated the feature importance using a random forest model. A
random forest [18] is an ensemble of decision trees. First, we sampled a dataset by allowing
duplication from the training data, and many decision trees were generated using the
sampled data. Second, various types of tree structures, which are called clusters of random
forest trees, were generated. Important features are located at the top of each tree to predict
the results, and the importance of each feature can be determined by statistically analyzing
the number of trees.

After determining the feature importance by random forest, we used the decision tree
model for HCC prediction. A decision tree [18] is one of the most famous machine learning
algorithms. The advantage of a decision tree is that it is very intuitive and explainable for
classification and regression; therefore, it is easy to understand why the results are predicted
by the decision tree. In other words, unlike other machine learning algorithms such as
KNN and SVM, a decision tree has the advantage of using both the results and a prediction
process because of its explainability. In this study, we used scikit-learn (v1.1.1) [19] in
Python for decision tree training. The classification and regression tree (CART) method in
scikit-learn is used to train the decision tree. The CART divides the data into two subsets
depending on the characteristics that distinguish the data in the training set. The CART
sets a threshold for one input feature, divides the data into two subsets according to the
threshold, and sets the input factor and its threshold to minimize the impurity between
the two divided subsets. The cost function of the classification CART is described by the
following Equation (1):

J(k, tk) =
mle f t

m
Gle f t +

mright

m
Gright (1)

where is the kth feature of the input, tk is the threshold of the kth feature of the input,
Gle f t/right is the impurity of the left/right subset, mle f t/right is the number of samples of the
left/right subset, and m is the total number of samples. The CART builds its subtree using
a recursive method of dividing the subset. The threshold is determined using two criteria:
GINI and entropy. In this study, we used the GINI method to determine the threshold of
the subset tree.

Most ML algorithms cannot be reproduced due to the random characteristics of some
hyperparameters. To solve the random characteristics of these ML algorithms, most ML libraries,
including scikit learn, fix the random characteristics, enabling the generation of reproducible
random variables. In other words, we used the randomness fixing technique of scikit-learn to
perform fixing of both the randomnesses of the data splits and the hyperparameters.

2.6. Statistical Analysis

All statistical analyses were performed on an observational basis. Continuous variables
are presented as mean ± standard deviation (SD) or as median and interquartile range
(IQR) and compared between HCC and non-malignant nodules using the Student’s t-test
or the nonparametric Mann–Whitney U test. Categorical variables or MFs and AFs are
expressed as numbers and frequencies and compared using chi-squared test or Fisher’s
exact test, as appropriate. To identify significant AFs suggestive of HCCs rather than
non-malignant nodules in initial LR3 or LR4 observations (LR3 or LR4 determined with



Cancers 2023, 15, 1361 5 of 15

only MFs, regardless of AFs), univariate and multivariate logistic regression analyses were
performed. In the multivariate analysis, variables that showed a positive association with
HCC (p < 0.05) in the univariate analysis were entered, and backward stepwise elimination
was performed. The inter-reader agreement was evaluated using kappa statistics.

The important AFs were identified using random forest analysis, and a decision tree
algorithm was constructed for the application of AFs to improve diagnostic performance in
the LR3 and LR4 categories.

Sensitivity, specificity, accuracy, and area under the receiver operating characteris-
tic (ROC) curve (AUC), positive predictive value, and negative predictive value were
calculated to evaluate the diagnostic performance of our diagnostic systems. Statistical
significance was set at p < 0.05. Statistical analyses were performed using SPSS version
25.0 (IBM Inc., Armonk, NY, USA) and MedCalc version 19.4.0 (MedCalc Software). The
important AFs were identified, and a decision tree algorithm for applying AFs to the
LR3 and LR4 categories was constructed using Python 3.8.13 module scikit-learn (v1.1.1)
(Python Software Foundation, Wilmington, DE, USA).

3. Results
3.1. Baseline Characteristics of Patients and Observations

The final study sample included 167 patients (mean age, 62.8 years; range, 33–84 years)
with 245 observations (median size, 13 mm; IQR 10–17.8 mm) in the development group
and 20 patients (mean age, 64.4 years; range, 37–81 years) with 30 observations (median size,
11 mm; IQR 6–23 mm) (Table 1) in the test group. Among 167 patients, hepatitis B was the
most common cause of liver cirrhosis or chronic liver disease (n = 117, 77%). One hundred
twelve (67.1%) patients had one lesion, 36 (23.7%) had two lesions, and 19 (12.5%) had
three or more lesions. The median size of 245 observations was 13 mm (IQR, 10–17.8 mm).
Among MFs, nonrim APHE was observed in 96 (39.2%) nodules, nonperipheral washout in
74 (30.2%) nodules, and enhancing capsule in 15 (6.1%) nodules. Overall, 137 HCC lesions
and 108 benign lesions were identified. The test group included 20 patients.

Table 1. Baseline characteristic of 245 observations in 167-patient development group and 30 observa-
tions in 20-patient test group.

Characteristics Development Group Test Group

Age * 62.8 ± 8.4 64.4 ± 10.6

Sex
Male 132 (79.0) 17 (85.0)

Female 35 (23.) 3 (15.0)

Underlying disease

Hepatitis B with/without cirrhosis 117 (77.0) 13 (65.0)
Hepatitis C with cirrhosis 10 (6.6) 2 (10.0)

Alcoholic liver disease with cirrhosis 30 (19.7) 4 (20.0)
NASH with cirrhosis 3 (2.0) 0 (0.0)
Cryptogenic cirrhosis 7 (4.6) 1 (5.0)

Laboratory †

AST (IU/L) 36 (27.0, 52.5) 46 (25, 96)
ALT (IU/L) 28 (19.0, 41.8) 28 (6, 148)

Total bilirubin (mg/dL) 0.8 (0.5, 1.2) 1.2 (0.4, 5.7)
Prothrombin time (s) 12.7 (12.0, 13.6) 13.3 (12, 22)
Platelet (×1000/µL) 123 (82.5, 177.5) 116 (37, 299)

AFP (ng/mL) 7.1 (3.5, 26.7) 10.4 (1.8, 239)

No. of nodules included in the analysis

1 112 (73.7) 13 (65.0)
2 36 (23.7) 4 (20.0)
3 16 (10.5) 3 (15.0)
4 2 (1.3)
5 1 (0.7)

LiRADS category LR3 199 (81.2) 20 (66.7)
LR4 46 (18.8) 10 (33.3)
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Table 1. Cont.

Characteristics Development Group Test Group

Major feature

Size † 13 (10.0, 17.8) 11 (6, 23)
APHE 96 (39.2) 20 (66.7)

Non-peripheral washout 74 (30.2) 9 (30.0)
Enhancing capsule 15 (6.1) 6 (20.0)

Reference standard
Pathologic diagnosis 41 (16.7) 11 (36.7)
Imaging follow-up 204 (83.3) 19 (63.3)

Final diagnosis HCC 137 (55.9) 16 (53.3)
Non-malignant nodule 108 (44.1) 14 (46.7)

Unless otherwise indicated, data are the number of patients with percentages in parentheses. * Data are
mean ± standard deviation. † Data are median value, and data in parentheses are range. NASH—non-alcoholic
steatohepatitis; AFP—alpha-fetoprotein; ALT—alanine aminotransferase; AST—aspartate aminotransferase;
APHE—arterial phase hyperenhancement.

3.2. Comparison of Imaging Features between HCCs and Non-Malignant Nodules and Important
Features for Diagnosis HCC in LR3 and LR4 Observation

Comparative analyses of the imaging features between HCC and non-malignant nodules
are summarized in Table 2. The most common AFs recorded in HCC were HBP hypointensity
(131, 95.6%), followed by TP hypointensity (113, 82.5%), restricted diffusion (88, 64.2%), and
mild–moderate T2 hyperintensity (86, 62.8%). Fat sparing and iron sparing in the solid
mass were not observed. Univariate analyses demonstrated that restricted diffusion, mild–
moderate T2 hyperintensity, TP hypointensity, HBP hypointensity, nonenhancing capsule,
and nodule-in-nodule appearance were significantly associated with HCC (all p < 0.05). In
the multivariate analyses, restricted diffusion (odds ratio [OR], 12.4; 95% confidence interval
[CI], 5.1–30.35; p < 0.001) and mild–moderate T2 hyperintensity (OR, 2.5; 95% CI, 1.1–5.3;
p = 0.02) were independent significant features associated with HCC (Table 3). Random forest
analysis showed restricted diffusion as the most important feature (feature importance ratio:
0.48), followed by mild–moderate T2 hyperintensity (feature importance ratio: 0.21; Figure 1).
Interobserver agreement of the AFs are presented in Table A2. We observed a range from
0.21 to 0.74 of kappa values for each AF. Among the AFs, hepatobiliary-phase hypointensity
showed the highest kappa value. Restricted diffusion and mild–moderate T2 hyperintensity
showed moderate agreement with kappa value of 0.55, in both. Nodule-in-nodule architecture
showed a relatively high proportion of agreement (82.7%). However, it showed the lowest
kappa value (0.21) due to its low prevalence.

Table 2. Distribution of ancillary features favoring malignancy between HCC and non-malignant nodule.

Development Group Test Group

HCC
(n = 137)

Non-Malignant
Nodules (n = 108) p-Value HCC

(n = 16)
Non-Malignant
Nodules (n = 14) p-Value

Favoring malignancy in general

Corona enhancement 3 (2.2) 1 (0.9) 0.633 1 (6.3) 0 (0.0) 1.0
Fat sparing in solid mass 0 (0.0) 0 (0.0) NA 0 (0.0) 0 (0.0) NA
Restricted diffusion 88 (64.2) 9 (8.3) <0.001 13 (81.3) 0 (0) <0.001
Mild–moderate T2 hyperintensity 86 (62.8) 19 (17.6) <0.001 14 (87.5) 1 (7.1) <0.001
Iron sparing in solid mass 0 (0.0) 0 (0.0) NA 0 (0.0) 0 (0.0) NA
Transitional phase hypointensity 113 (82.5) 73 (67.6) 0.007 9 (56.3) 11 (78.6) 0.20
Hepatobiliary phase hypointensity 131 (95.6) 94 (87.0) 0.015 12 (75.0) 12 (85.7) 0.46

Favoring HCC in particular

Nonenhancing “capsule” 11 (8.0) 1 (0.9) 0.011 0 (0.0) 0 (0.0) NA
Nodule-in-nodule appearance 12 (8.8) 1 (0.9) 0.007 1 (6.3) 0 (0.0) 1.0
Mosaic architecture 5 (3.6) 0 (0.0) 0.069 2 (12.5) 0 (0.0) 0.53
Fat in mass, more than adjacent liver 25 (18.2) 11 (10.2) 0.077 1 (6.3) 3 (21.4) 0.50
Blood products in mass 5 (3.6) 0 (0.0) 0.069 1 (6.3) 0 (0.0) 1.0

Data are the number of patients with percentages in parentheses.
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Table 3. Univariable and multivariable analysis of AFs associated with HCC.

Univariable Analysis Multivariable Analysis

OR (95% CI) p-Value OR (95% CI) p-Value

Favoring malignancy in general

Corona enhancement 2.4 (0.2, 23.4) 0.452
Fat sparing in solid mass NA
Restricted diffusion 19.8 (9.2, 42.5) <0.001 12.4 (5.1, 30.3) <0.001
Mild–moderate T2 hyperintensity 7.9 (4.3, 14.5) <0.001 2.5 (1.1, 5.3) 0.022
Iron sparing in solid mass NA
Transitional phase hypointensity 2.3 (1.2, 4.1) 0.008 0.9 (0.4, 2.1) 0.883
Hepatobiliary phase hypointensity 3.3 (1.2, 8.8) 0.020 5.5 (0.9, 32.1) 0.057

Favoring HCC in particular

Nonenhancing “capsule” 9.3 (1.2, 73.5) 0.034 15.8 (0.8, 318.2) 0.072
Nodule-in-nodule appearance 10.3 (1.3, 80.3) 0.026 16.5 (0.9, 142.1) 0.051
Mosaic architecture 1,321,752,144.2 (0.0) 0.999
Fat in mass, more than adjacent liver 2.0 (0.9, 4.2) 0.081
Blood products in mass 1,321,752,144.2 (0.0) 0.999

OR—odds ratio; CI—confidence interval.
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3.3. Development of Decision Tree Algorithm for Application of AFs to LR3 and LR4 Observation

Figure 2 shows the decision tree algorithm for the application of AFs to LR3 and LR4
observations for HCC diagnosis. Restricted diffusion was the first partitioning imaging feature
of the decision tree algorithm. Further branching was performed using other features such as
nodule-in-nodule, mild–moderate T2 hyperintensity, blood in mass, TP hypointensity, corona
enhancement, HBP hypointensity, and fat in mass. This decision tree algorithm yielded an
AUC of 0.84 (95% CI, 0.84–0.85); sensitivity of 92.0% (95% CI, 91.6–92.4); specificity of 71.1%
(95% CI, 70.9–71.4); and accuracy of 84.5% (95% CI, 84.1–84.8) in the development group. In
the test group, the decision tree algorithm showed good diagnostic performance: an AUC of
0.82 (95% CI, 0.76–0.88); sensitivity of 94.0% (95% CI, 89.3–98.2); specificity of 68.7% (95% CI,
58.0–79.4); and accuracy of 81.9% (95% CI, 75.8–87.9).
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3.4. Comparison of Diagnostic Performance of Decision Tree Algorithm with Alternative Criteria of
Applying Afs

We also established alternative criteria for the application of Afs to LR3 and LR4 for
HCC diagnosis. The diagnostic performance of these criteria for the application of Afs
(according to the number of Afs and exclusive usage of significant Afs or their combination)
is presented in Table 4. Figure A1 in Appendix A shows the diagnostic performance
of the application criteria according to the number of Afs favoring malignancy at every
cutoff point, that is, the number of Afs ≥ 1 to ≥6. A cutoff value of ≥3 showed the
highest diagnostic performance, with an AUC of 0.75 (95% CI, 0.75–0.76); sensitivity of
77.6% (95% CI, 76.4–78.8); specificity of 72.9% (95% CI, 72.2–73.7); and accuracy of 75.5%
(95% CI, 75.0–76.1). We also analyzed the application criteria via various combinations of
independently significant AFs (restricted diffusion and mild–moderate T2 hyperintensity)
identified from the multivariate and random forest analyses. Among those criteria, the
criterion of “restricted diffusion only” yielded the highest AUC (0.78) compared with the
criterion of “restricted diffusion or mild-moderate T2 hyperintensity” (AUC, 0.76; p = 0.025);
“restricted diffusion and mild-moderate T2 hyperintensity” (AUC, 0.75; p = 0.01); and “mild-
moderate T2 hyperintensity only” (AUC, 0.73; p < 0.001; Table A3 in Appendix A). Our
decision tree approach had higher AUC, sensitivity, and accuracy than the other criteria (all
p ≤ 0.002, Figures 3 and 4); however, it showed a significantly reduced specificity compared
with the criterion of “restricted diffusion only” (Table 4).

Table 4. Comparison of various approaches for applying AFs to LR3 and LR4 for diagnosis of HCC.

AUC
(95% CI)

Sensitivity
(9% CI)

Specificity
(95% CI)

Accuracy
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

I. Decision tree algorithm

Development cohort 0.84
(0.84, 0.85)

92.0%
(91.6, 92.4)

71.1%
(70.9, 71.4)

84.5%
(84.1, 84.8)

70.5%
(70.2, 70.9)

92.2%
(91.8, 92.7)

Test cohort 0.82
(0.76–0.88),

94.0%
(89.3–98.2)

68.7%
(58.0–79.4)

81.9%
(75.8–87.9)

70.7%
(63.0–78.5)

92.3%
(87.5–97.2)

II. Number of AFs ≥ 3 0.75
(0.75, 0.76)

77.6%
(76.4, 78.8)

72.9%
(72.2, 73.7)

75.5%
(75.0, 76.1)

78.3%
(77.4, 79.1)

72.2%
(70.9, 73.6)

III. Restricted DWI 0.78
(0.77, 0.78)

64.5%
(63.6, 65.4)

91.3%
(90.8, 91.7)

76.4%
(75.7, 77.0)

90.3%
(89.9, 90.7)

67.2%
(66.1, 68.2)

Comparison of each approach for applying AFs

I vs. II p < 0.001 p = 0.002 p = 0.886 p = 0.017 p = 0.216 p < 0.001
I vs. III p < 0.001 p < 0.001 p < 0.001 p = 0.032 p < 0.001 p < 0.001
II vs. III p = 0.011 p = 0.024 p < 0.001 p = 0.899 p = 0.025 p = 0.469

AUC—area under curve; PPV—positive predictive value; NPV—negative predictive value; CI—confidential
interval; AF—ancillary feature; DWI—diffusion-weighted image.
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Figure 3. Histologically proven hepatocellular carcinoma (HCC) in a 67-year-old man with hepati-tis-B-
virus-related liver cirrhosis. Gadoxetate disodium-enhanced MRI (a–e, arrow) shows a 10-mm observa-
tion with nonrim arterial phase hyperenhancement (a) and lack of definitive nonperipheral washout or
enhancing capsule on portal venous (b) and transitional phase image (c). Thus, it is categorized as LR3
according to major features only. The observation shows restricted diffusion (b = 800 s/mm2; (d)) and
mild T2 hyperintensity (e). Our decision tree algorithm classifies this nodule as HCC.
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Figure 4. Histologically proven hepatocellular carcinoma (HCC) in a 35-year-old woman with
chronic hepatitis B. Gadoxetate disodium-enhanced MRI (a–e, arrow) shows a 17-mm observation
with a smaller inner nodule showing different imaging characteristics than the larger outer nodules
on precontrast T1 image (a). This demonstrates the nodule-in-nodule. This observation does not
show nonrim arterial phase hyperenhancement (b) in the nonperipheral washout on portal venous
phase. (c) It shows enhancing capsule in the portal venous (c) and transitional phase (d). Thus, it
is cate-gorized as LR4 according to major features only. The observation shows suspicious mild T2
hy-perintense foci within the nodule (arrowhead; (e)). Our decision tree algorithm classifies this
nodule as HCC.
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4. Discussion

The current study revealed two AFs favoring malignancy (restricted diffusion and
mild–moderate T2 hyperintensity) as significant independent features for the diagnosis of
HCC in LR3 and LR4 observations on gadoxetate disodium-enhanced MRI in both multi-
variate and random forest analyses. Furthermore, we presented a strategy for applying AFs
in the diagnosis of HCC from the initial LR3 and LR4 observations, which are categorized
using only the MFs of the LI-RADS v2018. We developed a decision tree algorithm to apply
AFs to LR3 and LR4 observations. This approach was compared with other alternative
approaches using the number of AFs or various combinations of significant AFs identified
from multivariate and random forest analyses. Our decision tree approach showed the
highest AUC, sensitivity, and accuracy compared with other criteria, albeit with somewhat
compromised specificity.

Our results showed that restricted diffusion and mild–moderate T2 hyperintensity
were independent and important features for the diagnosis of HCC from the LR3 and LR4
observations in both multivariate and random forest analyses. In particular, restricted
diffusion showed the highest odds ratio (12.4; 95% CI, 5.1–30.0) and importance ratio (0.48),
which is consistent with the results of previous studies [20–22]. Diffusion restriction is not
specific to HCC but is more often used for detecting hepatic lesions and discriminating
malignant lesions from benign lesions [23,24]. It is important to understand hepatocar-
cinogenesis in the early diagnosis of HCC from a premalignant lesion such as a dysplastic
nodule. Hepatocarcinogenesis is a multi-step process that starts from a regenerative nodule
in cirrhosis or as a dysplastic nodule and progresses to advanced HCC [25]. Given that one
of the major histologic differences between dysplastic nodules and early HCC is the degree
of cellular density, restricted diffusion reflecting the high cellularity of lesions might help
in the better discrimination of HCC from non-malignant lesions [15].

T2 hyperintensity is a typical imaging feature of HCC and helps differentiate hypovascu-
lar HCC from dysplastic nodules [26]. We observed that mild–moderate T2 hyperintensity has
an OR of 2.5 and an importance ratio of 0.21 and is the second most significant feature after
restricted diffusion. According to previous studies, mild–moderate T2 hyperintensity has been
proven to be a suggestive feature of progressed HCC rather than early HCC [27,28]. When a
focus of HCC develops within a dysplastic nodule, a mildly elevated signal may be observed
on T2-weighted images, representing the focus of HCC within the hypointense dysplastic
nodule, and has been described as a “nodule-in-nodule” appearance. This is consistent with
our results showing that presentations of a nodule-in-nodule appearance were significantly
more frequently encountered with HCCs than with non-malignant nodules, although their
numbers were small. Thus, the entire change in T2 signal intensity of the observation may
reflect the progressive biological characteristics of HCC.

In our study, among AFs favoring malignancy, the most commonly encountered
feature was HBP hypointensity. However, this feature was not significantly associated
with HCC in the multivariate analysis. This might be because this feature appears to be
frequent, even in non-malignant nodules, which is consistent with the results of previous
studies [11,29]. Because organic anion-transporting polypeptides that mediate hepatic
uptake of gadoxetic acid may decrease in expression in the early stage of hepatocarcinogen-
esis, dysplastic nodules or regenerative nodules, and even hemangioma cysts, can present
with HBP hypointensity [30,31]. Therefore, applying this characteristic to the LR3 and LR4
categories may cause concerns regarding false positivity when diagnosing HCC. In this
study, we found consistent results: HBP hypointensity was a significantly frequent finding
among AFs in misclassification cases using our decision tree algorithm (Table A4).

In the decision tree algorithm for the application of AFs in LR3 and LR4 observation,
the results showed a good ability of the method to diagnose HCC, with an AUC of 0.84
(95% CI, 0.84–0.85); sensitivity of 92.0% (95% CI, 91.6–92.4); specificity of 71.1% (95% CI,
70.9–71.4); and accuracy of 84.5% (95% CI, 84.1–84.8). The decision tree algorithm consists
of restricted diffusion, nodule-in-nodule, mild–moderate T2 hyperintensity, blood in mass,
TP hypointensity, corona enhancement, HBP hypointensity, and fat in mass. Interestingly,
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in the decision tree algorithm, nodule-in-nodule, blood in mass, TP hypointensity, corona
enhancement, HBP hypointensity, and fat in mass, which failed to demonstrate independent
associations in the present study, were correlated with restricted diffusion and mild–moderate
T2 hyperintensity. This may indicate that minor AFs still play important roles in the diagnosis
of HCC among observations that already exhibit significant weighting features.

We also evaluated an alternative application algorithm using a criterion based on
the number of AFs and criterion utilizing independent features identified by multivariate
analysis. These approaches have been addressed in previous studies [10–12,32]. Kang
et al. reported that criteria with the number of AFs ≥ 4 showed a sensitivity of 80.6% and
a specificity of 70.0% [12], and Cannella et al. reported that criteria with the number of
AFs ≥ 2 showed a sensitivity of 72.6% and a specificity of 91.5% [11]. The present study
also showed good diagnostic ability for HCC using criteria with the number AFs ≥ 3,
with a sensitivity of 77.6% and a specificity of 72.9%. Direct comparison between results
among the studies may be unnecessary because of the differences in the characteristics
between study populations. Nevertheless, our results have strength in overcoming the
overestimation of sensitivity because of the exclusion of the LR5 observation. In addition,
this approach showed significantly lower sensitivity and specificity than those of the
decision tree algorithm.

Cannella et al., Lee et al., and Jeon et al. showed how to incorporate AFs identified as
significant independent features in multivariate analysis to enhance diagnostic performance
in the LR3 and LR4 categories in the LI-RADS diagnostic table [10,11,32]. In the present
study, we identified that the highest diagnostic performance for HCC was achieved using
the exclusive application of restricted diffusion to the LR3 and LR4 categories, among other
combinations of significant AFs. This approach had significantly higher specificity than
our decision tree algorithm (91.3% vs. 71.1%, p < 0.001). Nevertheless, our decision tree
algorithm showed significantly higher AUC, sensitivity, and accuracy in HCC diagnosis
in LR3 and LR4 observations (AUC, 0.84 vs. 0.78, p < 0.001; sensitivity, 92.0% vs. 64.5%,
p < 0.001; and accuracy, 84.5% vs. 76.4%, p = 0.032) than that of the criteria utilizing the
exclusive application of restricted diffusion to the LR3 and LR4 category. Indeed, the
LI-RADS is designed to promote the specific diagnosis of HCC [1]. Other Western countries
also adopt specific diagnostic algorithms to avoid false-positive diagnoses of HCC, because
liver transplantation is the only potentially curative treatment in patients with advanced
cirrhosis, who predominantly constitute individuals with a high risk of HCC in Western
countries [33,34]. Meanwhile, Asian countries prefer sensitive diagnosis of HCC to detect
HCC in its early stages and to provide patients with HCC with local treatment, such
as resection or ablation, as a curative treatment [33,34]. Therefore, despite significantly
reduced specificity, our decision tree algorithm for the application of AFs with significantly
high sensitivity can be used more in Asian societies.

This decision tree algorithm is a conceptually simple decision-making model and
provides the diagnosis process of HCC in an easy-to-understand classification system.
Thus, it may be useful in situations in which a decision must be made effectively and
reliably. Although there were some limitations in the absence of AFs favoring benignity in
our decision tree algorithm, it may be still useful in daily practice, as compared with other
alternative approach.

Our study had several limitations. First, there may have been an inevitable selection
bias owing to the retrospective nature of this study. Among the initially eligible patients,
approximately 308 patients were excluded from the study population due to a lack of a
final diagnosis. Among these, the majority showed LR4 observation. They tended to be
treated with locoregional treatment without pathological confirmation, especially when
they exhibited a co-existing LR5 observation. Second, our study conducted LR3 and LR4
observations simultaneously. As LR3 and LR4 may express different distributions of AFs
between HCC and non-malignant nodules, subgroup analysis of LR3 and LR4 showed
more confident study results. Although subgroup analysis could not be performed in this
study due to the lack of LR4 lesions, a larger study should be conducted in the future.
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Lastly, the majority of benign lesions in this study were not confirmed using biopsy but
by follow-up imaging. To minimize misdiagnosis, we considered benignity based on long-
term stability (≥24 months), whereas HCC was considered based on the presence of LR5
observation on follow-up imaging [5,11,12,16,17,26].

5. Conclusions

In conclusion, among the LI-RADS v2018 AFs favoring malignancy, restricted diffusion
and mild–moderate T2 hyperintensity showed a strong association for the diagnosis of
HCC in LR3 and LR4 observations. Our decision tree algorithm for applying AFs to LR3
and LR4 observations provides significantly increased AUC, sensitivity, and accuracy but
reduced specificity. These appear to be more appropriate for application under certain
circumstances with an emphasis on early detection of HCC.
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Appendix A

Table A1. Parameters of the MRI sequences.

Sequence

T1 LAVA/VIBE Dual-echo T1 GRE Navigator-triggered TSE T2 DWI †

SIGNA
Architect

MAGNETOM
Vida

SIGNA
Architect

MAGNETOM
Vida

SIGNA
Architect

MAGNETOM
Vida

SIGNA
Architect

MAGNETOM
Vida

Repetition time (ms) 43.42 3.2 125 164 2100 1300 2600 2300
Echo time (ms) 1 1 1, OP; 3, IP 1, OP; 3, IP 96 83 67 60
Flip angle (◦) 10 11 60 57 90 120 90 90

Matrix 260 × 220 352 × 209 260 × 220 320 × 216 260 × 260 256 × 216 260 × 260 130 × 106
Field of view 360 × 360 400 × 338 360 × 360 400 × 338 360 × 360 400 × 338 360 × 360 400 × 326

Section thickness (mm) 4 3 5 5 5 5 5 5
No. of signal
acquisitions 1 1 1 1 1 1 4 2

DWI—diffusion-weighted imaging, GRE—gradient-recalled echo, IP—in-phase, NA—not applicable,
OP—out-of-phase, T1—T1-weighted, T2—T2-weighted, TSE—turbo-spin echo, VIBE—volumetric interpolated
breath-hold examination, LAVA—liver acquisition with volume acceleration. † Diffusion-weighted imaging was
performed using four b-values of 0, 50, 400, and 800 s/mm2.
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Table A2. Inter-observer agreement for AFs in the 274 nodules.

Favoring Malignancy in General,
Not HCC in Particular Agreement Proportion Kappa Value

Corona enhancement 98.1 (269) 0.66
Restricted diffusion 78.8 (216) 0.55
Mild–moderate T2 hyperintensity 78.8 (216) 0.55
ron sparing in solid mass 100 (274) 0.05
Fat sparing in solid mass 100 (274) 0.50
Transitional-phase hypointensity 85.4 (234) 0.47
Hepatobiliary-phase hypointensity 94.2 (258) 0.74

Favoring HCC in particular

Nonenhancing capsule 96.2 (264) 0.65
Nodule-in-nodule architecture 82.7 (227) 0.21
Mosaic architecture 96.2 (264) 0.48
Fat in mass, more than adjacent liver 92.3 (253) 0.73
Blood products in mass 96.2 (264) 0.49

Data in parentheses are number of nodules. HCC—hepatocellular carcinoma.
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Figure A1. Receiver operating characteristic curve of the number of ancillary features favoring malig-
nancy for the diagnosis of hepatocellular carcinoma and diagnostic performance of each criterion values.

Table A3. Diagnostic performance of criteria of applying AFs with various combinations of significant
associations.

AUC
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Accuracy
(95% CI)

PPV
(95% CI)

NPV
95% CI)

(1) 0.78
(0.77, 0.78)

64.5%
(63.6, 65.4)

91.3%
(90.8, 91.7)

76.4%
(75.7, 77.0)

90.3%
(89.9, 90.7)

67.2%
(66.1, 68.2)

(2) 0.73
(0.72, 0.73)

63.1%
(61.7, 64.5)

82.3%
(81.4, 83.1)

71.6%
(70.9, 72.3)

81.7%
(80.8, 82.6)

64.0%
(62.8, 65.1)

(3) 0.76
(0.75, 0.76)

72.7%
(71.8, 73.7)

78.3%
(77.5, 79.0)

75.2%
(74.8, 75.6)

80.8%
(80.0, 81.5)

69.6%
(68.5, 70.6)

(4) 0.75
(0.74, 0.76)

54.9%
(53.6, 56.1)

95.3%
(94.9, 95.7)

72.8%
(71.9, 73.6)

93.6%
(93.1, 94.1)

62.7%
(61.6, 63.8)

Comparisons of each criterion, p-value

AUC sensitivity specificity accuracy PPV NPV

(2) (3) (4) (2) (3) (4) (2) (3) (4) (2) (3) (4) (2) (3) (4) (2) (3) (4)

(1) <0.01 0.03 0.01 0.91 0.18 0.13 0.08 0.01 0.37 0.27 0.84 0.42 0.12 0.08 0.6 0.66 0.77 0.48
(2) <0.01 0.12 0.12 0.209 0.57 0.01 0.42 0.85 0.99 0.03 0.41 0.91
(3) 0.35 0.003 <0.01 0.62 0.02 0.27

(1) Restricted diffusion; (2) mild–moderate T2 hyperintensity; (3) restricted diffusion or mild–moderate
T2 hyperintensity; (4) restricted diffusion and mild–moderate T2 hyperintensity; AUC—area under curve;
PPV—positive predictive value; NPV—negative predictive value; CI—confidential interval; AF—ancillary feature;
DWI—diffusion-weighted image.
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Table A4. Comparison between true prediction and false prediction using decision tree algorithm in
development group.

True Prediction
(n = 200)

False Prediction
(n = 45) p-Value

Favoring malignancy in general

Corona enhancement 3 (1.5) 1 (2.2) 0.56
Fat sparing in solid mass 0 (0.0) 0 (0.0)
Restricted diffusion 89 (44.5) 8 (17.8) 0.01
Mild–moderate T2 hyperintensity 93 (46.5) 12 (26.7) 0.02
Iron sparing in solid mass 0 (0.0) 0 (0.0)
Transitional phase hypointensity 154 (77.0) 32 (71.1) 0.4
Hepatobiliary phase hypointensity 180 (90.0) 45 (100.0) 0.03

Favoring HCC in particular

Nonenhancing “capsule” 12 (6.0) 0 (0.0) 0.13
Nodule-in-nodule appearance 12 (6.0) 1 (2.2) 0.472
Mosaic architecture 5 (2.5) 0 (0.0) 0.59
Fat in mass, more than adjacent liver 28 (14.0) 8 (17.8) 0.52
Blood products in mass 5 (2.5) 0 (0.0) 0.59

Data are the number of patients with percentages in parentheses.
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