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This Special Issue reminds us that, although incredible developments have occurred in
the field of cancer immunotherapy, there is still plenty of room for improvement. Although
many otherwise untreatable patients have benefited from novel therapies, we still do not
completely understand why some patients respond while others do not. Here, experts
in the field summarize recent breakthroughs, but they also examine the challenges and
opportunities in improving current therapies. These discussions are increasingly important
because cancer immunotherapy has become a focal point in the race toward a cure.

Many manuscripts from this Special Issue focus on improving and better understand-
ing current immunotherapies. For example, Lau and colleagues lay the groundwork for
enhancing the clinical efficacy of adoptive cell transfers [1], and others identify novel
antigens [2]. An innovative approach by Jazowiecka-Rakus and collaborators boosted the
effectiveness of oncolytic viruses [3], while Ponath et al. redeployed histone deacetylase
inhibitors to improve natural killer cell immunotherapy [4]. Such advancements rely on
understanding existing therapies to identify suitable opportunities. This is exemplified
by the work of Wu et al., who revealed avenues for improving chimeric antigen receptor
(CAR) T cells by elucidating how they differ from conventional T cells [5]. In addition
to iterative improvements, Maruoka and colleagues also embraced new technologies by
leveraging recently developed photoimmunotherapy [6]. Together, these studies pave the
way for future clinical advancement.

Once a treatment completes clinical trials, it must continue to be scrutinized for efficacy
and safety. Notably, Choi and colleagues studied an immune checkpoint inhibitor (ICI)
that may be less effective than previously reported [7]. They demonstrated the importance
of retrospectively studying real-life clinical experiences beyond trials. An opinion piece
featured here also discusses current knowledge in the field of ICIs and how they can be
leveraged to improve clinical outcomes for patients with HER2-positive breast cancer [8].
These articles promote the idea that the bench-to-bedside process is indeed circular and
not linear.

In recent years, a wealth of knowledge has been generated and many of the included
reviews focus on the key cellular players underpinning tumor immunology and the cy-
tokines that control them. Examples include the importance of understanding metabolism
in CAR T cells [9] and not minimizing the physical properties of the CARs and their direct
impact on clinical outcomes [10]. Similarly, the use of CARs in a variety of other cell types
beyond T cells is reviewed [11], reminding us that the pursuit of innovation is within
reach. While cells play a central role in immunotherapies, we must not underestimate
the complex contribution of the cytokines that influence them. For example, the inter-
leukin 12 family of cytokines, and their roles in both improving and suppressing immune
responses, are discussed in depth [12]. Similarly, a pleiotropic cytokine, tumor necrosis
factor alpha, is also implicated in many processes that can promote or hinder effective
anti-cancer responses [13]. Such reviews help demystify complicated cellular interactions,
in turn informing better future therapies.
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The potential of non-T cells in immunotherapy is increasingly appreciated, including
natural killer cells [14] and dendritic cells [14]. The success of these strategies relies on
the immune recognition of cancer cells. It is imperative that we better understand the
mechanisms involved in the frequent failure to recognize tumor antigens [15] and the
evasion of immune responses [16].

Emerging strategies to modulate the immune system are also dissected in this issue.
For instance, the use of nonreplicating adenovirus for gene therapy is explored [17], while
another manuscript addressed the opportunity of targeting dynamic kinases expressed on
both immune and tumor cells [18]. New immunotherapies can be associated with toxicity
and, thus, clinical tolerance was discussed in some reports included in this issue. For
example, the use of pattern recognition receptors (PRR) to improve immune responses must
be balanced against potential harm and side effects. Some intratumorally administered
PRR agonists have recently been investigated, and they possess more favorable safety
profiles [19]. Complications have also been reported with the use of other immunotherapies,
such as anti-CD3-bispecific antibodies [20]. Reviewed by Middelburg et al., anti-CD3-
bispecific antibody therapies, like CAR T cells, are therapeutically effective in hematological
cancers, but they fail to treat solid tumors [21]. Hurdles include the immunosuppressive
tumor microenvironment and the difficulty for T cells to infiltrate the tumors [22]. Another
innovative strategy involves the use of nanoparticles and, more recently, combining them
with immunotherapies [23].

Glioblastoma, an aggressive tumor of the brain, is characterized by poor clinical
outcomes. Many animal studies failed to capture key human disease features, and the
results were not successfully translated clinically. One article from this issue discusses the
complexity of conducting and interpreting clinical trials featuring immunotherapies for
glioblastomas [24], while another article focuses on key limitations in the animal models
informing these trials [25].

Overall, the field of cancer immunotherapy represents an exciting breakthrough.
Improved understanding has resulted in novel therapeutics, which have, in turn, been
optimized. Despite such impressive advancements, many patients either lack access to
or fail to benefit from treatment. Future work must improve accessibility, as well as
stratify patients to better address their individual needs. This will allow a golden age of
personalized immunotherapy in oncology.
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