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Simple Summary: Acetaldehyde (AcAH) is a carcinogenic byproduct of ethanol metabolism. Ethanol-
associated malignancies commonly occur in the upper gastrointestinal tract exposed to AcAH after
ethanol ingestion. Unexpectedly but true, emerging epidemiological evidence supports a link between
alcohol consumption and cutaneous melanoma, suggesting skin exposure to ethanol and AcAH as
potential causes of skin cancer. Humans are unavoidably exposed to ethanol and AcAH daily in
multiple ways, such as through alcohol consumption, food ingestion, inhalation, skin contact, and
bodily microbiota. This review examines the sources of ethanol and AcAH in the skin, their metabolic
pathways, and the consequences of dysfunctional ethanol and AcAH metabolizing enzymes, focusing
on the role of these factors in melanoma development and progression.

Abstract: Malignant melanoma is the deadliest form of skin cancer. Despite significant efforts in
sun protection education, melanoma incidence is still rising globally, drawing attention to other
socioenvironmental risk factors for melanoma. Ethanol and acetaldehyde (AcAH) are ubiquitous
in our diets, medicines, alcoholic beverages, and the environment. In the liver, ethanol is primarily
oxidized to AcAH, a toxic intermediate capable of inducing tumors by forming adducts with proteins
and DNA. Once in the blood, ethanol and AcAH can reach the skin. Although, like the liver, the
skin has metabolic mechanisms to detoxify ethanol and AcAH, the risk of ethanol/AcAH-associated
skin diseases increases when the metabolic enzymes become dysfunctional in the skin. This review
highlights the evidence linking cutaneous ethanol metabolism and melanoma. We summarize various
sources of skin ethanol and AcAH and describe how the reduced activity of each alcohol metabolizing
enzyme affects the sensitivity threshold to ethanol/AcAH toxicity. Data from the Gene Expression
Omnibus database also show that three ethanol metabolizing enzymes (alcohol dehydrogenase
1B, P450 2E1, and catalase) and an AcAH metabolizing enzyme (aldehyde dehydrogenase 2) are
significantly reduced in melanoma tissues.

Keywords: melanoma; ethanol; acetaldehyde; ethanol metabolism; alcohol dehydrogenase; alde-
hyde dehydrogenase

1. Introduction

Melanoma is the most serious type of skin cancer, with an increasing incidence world-
wide [1,2]. Cumulative evidence indicates that the risk of melanoma correlates with genetic
factors [3,4], personal lifestyles [5,6], and phenotypic risk factors that reflect gene/personal
lifestyle interactions [7,8]. Individual lifestyle factors associated with melanoma risk in-
clude UV exposure, cigarette smoking, alcohol use, overweight and obesity, poor diet,
environmental pollution, and stress [5,6]. Recently, we summarized epidemiological data
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on the association between alcohol consumption and cutaneous melanoma [9]. Nearly
half (14 out of 29) of the studies on the relationship between alcohol consumption and
melanoma, including 10 cohort and 19 case-control studies, have shown a positive correla-
tion, while only 2 showed a negative correlation. Further, of 20 studies assessing alcohol
dose effects, 13 (65%) demonstrated an association between alcohol dose and melanoma
risk [9]. These associations became stronger in multiple meta-analyses with larger sample
sizes [10–13]. A systematic meta-analysis by Gandini et al. found that individuals in the
highest category of recent alcohol intake had a 30% increased risk of melanoma compared
to those in the lowest category, and a nearly two-fold increased risk of melanoma was
found with cumulative alcohol consumption [14].

Approximately 4% of cancer cases worldwide are caused by alcohol consumption [15].
The main culprit for this is acetaldehyde (AcAH), an immediate metabolite of ethanol.
AcAH is a mutagen and carcinogen implicated in a wide range of cancers by forming
adducts with proteins and DNA and disrupting cellular functions [16,17]. However, ethanol
and AcAh are derived not just from alcohol drinking but from various sources, some of
which exist naturally [18,19]. In fact, our skin is exposed to ethanol and AcAH every
day, regularly at extremely low and safe levels [18–20]. While our skin, like the liver, is
equipped with ethanol metabolism mechanisms to reduce the concentration of ethanol and
AcAH [18,20], dysfunction of these ethanol and AcAH metabolizing enzymes in the skin
may greatly influence the skin biology and increase the risk of ethanol/AcAH-associated
skin diseases.

This review summarizes various sources of ethanol and AcAH in the skin and ex-
plains how ethanol metabolism can affect an individual’s sensitivity threshold to AcAH
carcinogenesis.

2. Exposure to Ethanol and AcAH

Humans are in a chemical and toxicological environment [21] and are exposed to
ethanol and AcAH in many ways. Once in the bloodstream, ethanol and AcAH can reach
many organs and tissues, including the skin [22]. The skin is also directly exposed to
alcohols and aldehydes from natural chemicals or industrialized products [19,20].

2.1. Sources of Ethanol

Ethanol is not only the active ingredient of alcoholic beverages (beers, wines, and
spirits) but also is a ubiquitous substance from various sources (Figure 1). It is one of
the main indoor and outdoor pollutants [19]. In addition to alcoholic beverages and air
pollutants, non-alcoholic beverages on the market can contain as much as 0.5% ethanol [23].
Certain herbal medicines, including those used to treat coughs, colds, and gastrointestinal
(GI) diseases, are also sources of ethanol [24]. Furthermore, many foods contain ethanol,
which is produced from sugar through fermentation. Examples include fermented foods
(i.e., bread, yogurt, vinegar, and kimchi), preservatives, bakery products, fruit, and fruit
juices [25]. Brewers and bakers use yeast to make a variety of alcoholic beverages and
expand the dough.

Even without the exogenous ethanol intake mentioned above, our bodies contain low
levels of ethanol. Baseline ethanol levels in the blood and breath can reach 0.02–0.15 mg/dL
and 0.07–0.39 mg/L, respectively, without consuming alcohol [26]. These low levels of
ethanol are generated by microbial fermentation. Fermenting yeasts such as Saccharomyces
and Candida (C.) and fermenting bacteria such as Zymomonas mobilis and Sarcina ventriculi are
present in our oral cavity and digestive tract. These microbiotas use anaerobic respiration
to convert non-ethanol, carbohydrate-rich foods such as glucose and lactose to ethanol by
fermentation in the oral cavity, GI system, or urinary system [27]. This microbial ethanol
production is particularly interesting in certain medical conditions.

In auto-brewery syndrome (ABS), also known as gut fermentation syndrome, microbiota-
derived ethanol concentrations in the body are comparable to those produced by directly
consuming alcoholic beverages [28,29]. In a study conducted by Malik et al., the blood alco-
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hol concentration (BAC) in an ABS patient reached 400 mg/dL [30], which is comparable
to a BAC that can cause respiratory depression, coma, and death [31]. The species causing
the ABS include Klebsiella pneumoniae, C. albicans, C. glabrata, Saccharomyces cerevisiae, C.
intermedia, C. parapsilosis, and C. kefyr [32]. ABS is a rare condition. This syndrome could
be underdiagnosed, as the symptoms may be mood changes, delirium, and brain fog or
mimic a food allergy [30,32,33]. Triggers of this ABS include meals high in carbohydrates,
psychological stress, and reduced dietary intake. ABS may also be related to pre-existing
conditions, including a history of antibiotic use and comorbidities, such as type 2 diabetes,
obesity, liver cirrhosis, and Crohn’s disease [27].
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Ethanol can also be produced from AcAH by microbial reduction [34].

2.2. Sources of AcAH

Similar to ethanol exposure, human exposure to AcAH is not only from alcohol
consumption but also from other diverse sources (Figure 1). AcAH can be produced
endogenously in any tissue with high ethanol metabolizing enzyme activity [35]. Bodily
AcAH may come from oral and gut microbes that metabolize ethanol to AcAH. Salivary
AcAH levels reached up to 140 µM after ingesting a moderate amount of ethanol (0.5 g/kg
body weight) [35]. Long-term exposure to locally produced AcAH in saliva may explain
the higher risk of upper GI cancers in heavy drinkers [35].
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The atmospheric AcAH are from photochemical production, net ocean emissions,
biogenic emissions, biomass burning emissions, and anthropogenic emissions, accounting
for 60%, 27%, 11%, 1.6%, and < 1% of global AcAH production, respectively [36]. The
largest source is the photo-oxidation of volatile organic compounds such as alkanes and
alkenes [36]. The second-largest source is water bodies that degrade dissolved organic com-
pounds through the photochemical mechanism and emit AcAH into the atmosphere [37].
Most plant cells and some microorganisms use anaerobic respiration to break down glucose
to AcAH and release carbon dioxide (biogenic emissions). Biomass burning emissions
are from wildfire smoke and biofuel burning. Another source of AcAH includes urban
and industrial pollution, such as residential fireplaces, woodstoves, ethanol fuel, vehicle
exhaust fumes, coal refining, and waste processing. Therefore, like ethanol, AcAH is a
common noxious environmental pollutant [19]. Nevertheless, sinks of atmospheric AcAH
include reaction with hydroxyl radical, photolysis, and wet and dry deposition, leading to
an overall atmospheric lifetime for AcAH of approximately 20 h [36,38].

AcAH sources also include occupational exposure. Individuals may be at risk of
higher AcAH exposure when working in gas stations [39], transportation vehicles [40],
waterpipe café [41], bakeries [42], and beauty salons [43], as well as in industries using
AcAH as a solvent for perfumes, polyester resins, acetic acid, mirror silvering, tanning
leather, denaturing alcohol, fuel compositions, gelatin fiber hardeners, glue and casein
products, paper, cosmetics, aniline dyes, plastics, and synthetic rubber [44].

AcAH is also contained in various foods (e.g., fermented food, roasted coffee, bread,
and ripe fruit) and beverages and is used as a flavoring agent and a preservative for fruits
and fish [45,46].

Furthermore, AcAH is a byproduct of tobacco smoking [47]. When coupled with
nicotine, AcAH has been shown to increase the addictive potential of smoking [48,49].
Nieminen et al. reported that the concentration of AcAH in saliva remains as high as
261 µM with one cigarette, which is higher than the AcAH concentration after drinking
high-concentration (40%) ethanol for a short period [47]. Smoking can increase AcAH
production from ethanol in saliva by 60–75%; for heavy drinking, the increase in AcAH is
up to 100% [47].

Another source of AcAH is pyruvate, an important energy source produced during
glycolysis. In anaerobic conditions, yeast use pyruvate decarboxylase (PDC) to convert
pyruvate to AcAH, and C. albicans, an opportunistic pathogenic yeast, has been shown
to contribute to oral squamous cell carcinoma progression by producing high levels of
AcAH from glucose under low oxygen conditions [50,51]. Some bacteria also use PDC to
convert pyruvate to AcAH. However, as a common pathway in bacteria, pyruvate is first
decarboxylated to acetyl-CoA by pyruvate ferredoxin oxidoreductase and/or pyruvate
formate-lyase. Acetyl-CoA is then converted into AcAH by acetylating acetyl-CoA reduc-
tase in bacteria [52]. Since the enzymes to produce AcAH from pyruvate have not been
reported in humans, pyruvate-derived AcAH is likely produced from bodily microbiota
rather than human cells.

Collectively, ethanol and AcAH are part of our life. The skin is exposed to these toxic
metabolites through the air, water, land, smoke, food, and bodily microbiota, among other
means. Since ethanol and AcAH are readily degraded in the environment or metabolized
in the body, the anticipated skin exposure levels are very low or safe. However, when the
body’s metabolic process becomes dysfunctional, high levels of ethanol and AcAH can
cause health consequences, including skin diseases.

3. Ethanol Metabolism and Its Contribution to Human Diseases

Due to their ubiquitous nature, ethanol and AcAH can affect our health daily, particu-
larly in industrialized countries [19]. In this context, ethanol metabolism is important since
it directly determines the fate of ethanol and AcAH in the body, with varying degrees of
biological consequences.
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The first-pass metabolism of ethanol after its ingestion occurs in the GI mucosa and
flora before it reaches the bloodstream and then in the liver, where most ethanol metaboliz-
ing enzymes are present [53,54]. Overall, over 90% of ingested ethanol is metabolized, and
the remainder is excreted through breath (1–3%), urine (1–3%), and sweat (traces) without
modification [55,56]. As our bodies, including the skin, are exposed to ethanol [18,20],
humans have evolved to harbor a set of metabolic detoxifying enzymes to reduce the toxic
effects of alcohols, aldehydes, and other xenobiotics from various sources. This chapter
will explain the roles of each enzyme, its expression, and the potential consequences when
the enzyme becomes dysfunctional, particularly its carcinogenic effects.

3.1. Ethanol Metabolizing Enzymes and Their Impacts on Humans

The main pathway of ethanol metabolism is oxidation into the highly reactive AcAH [57]
(Figure 2a). The predominant enzyme that oxidizes ethanol to AcAH is cytosolic alcohol
dehydrogenase (ADH) [58]. Other enzymes that convert ethanol to AcAH are microsomal
cytochrome P450 2E1 (CYP2E1) and peroxisomal catalase (CAT) [54,59].
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Figure 2. Schematic overview of ethanol metabolism. Ethanol can be metabolized by oxidative (a) or
non-oxidative (b) pathways. ADH, alcohol dehydrogenase; ALDH, aldehyde dehydrogenase; CAT,
catalase; CYP2E1, cytochrome P450 2E1; EtG, ethyl glucuronide; EtS, ethyl sulfate; FAEE, fatty acid
ethyl ester; FAEES, fatty acid ethyl ester synthase; PEth, phosphatidyl ethanol; PLD, phospholipase
D; SULT, sulfotransferase; UGT, UDP-glucuronosyltransferase. Modified from [9].

There are seven isoforms of ADH [60]. So far, all of them are known to participate in
ethanol oxidation except ADH6 [61]. Although ADH families have a limited distribution
in human tissues, primarily in hepatocytes, they are also found in the GI tract and certain
tissues, including the skin epidermis and dermis [18,58].

ADH1A, ADH1B, and ADH1C (referred to as ADH1-3) play a dominant role in the ox-
idative metabolism of ethanol in the liver after low to moderate alcohol consumption [60,61].
Genetic polymorphisms with physiological significance occur in ADH1B and ADH1C [61].
The common ADH1B*2 allele in East Asia (75%) and the relatively common ADH1B*3 allele
in Eastern Africa (10-30%) [61] display quick ethanol turnover, leading to rapid accumula-
tion of AcAH following ethanol intake [62]. A meta-analysis of 18 studies demonstrates that
ADH1B polymorphisms, particularly rs1229984 Arg47His with a faster metabolic character,
increase the risk of bladder cancer, colorectal cancer, and upper aerodigestive tract cancers
(tumors of the oral cavity, pharynx, larynx, and esophagus) for alcoholics [63]. On the
contrary, the ADH1C*2 allele metabolizes ethanol < 2.5 times slower than the ADH1C*1
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allele. Therefore, Caucasians with ADH1C*1/2 heterogeneity have an increased risk for
alcohol-related esophageal, hepatocellular, and head and neck cancers due to slow ethanol
turnover [64]. Interestingly, a paper reports that these enzymes are also expressed in the
epidermis of human skin (foreskin, breast, and abdomen) [18].

ADH4, a class II ADH, is active only when large quantities of ethanol are consumed
and is expressed almost exclusively in the liver [61]. ADH5, a class III ADH, is ubiqui-
tously expressed and implicated in the first-pass metabolism of ethanol [65,66]. ADH5
has two other main functions: it inactivates formaldehyde and nitric oxide by converting
them into formic acid and S-nitrosoglutathione, respectively, in a glutathione-dependent
manner [67,68]. Formaldehyde, an endogenous byproduct of oxidative demethylation reac-
tions, is genotoxic and carcinogenic, as it cross-links proteins and nucleic acids [69]. There-
fore, ADH5 dysfunction in scavenging formaldehyde is linked to defective hematopoiesis
and increased leukemia [70]. ADH7, a class III ADH, is expressed in the GI tract endothelial
cells and implicated in ethanol’s first-pass metabolism [65].

CYP2E1 constitutes the microsomal ethanol oxidizing system that converts ethanol to
AcAH, accounting for around 10% of the total ethanol oxidizing capacity of the liver [54].
CYP2E1 is highly expressed in the liver but is also detectable in extrahepatic tissues,
including the lung, kidney, skin, brain, placenta, and testis [71,72]. Although CYP2E1 is
critical for oxidizing higher levels of ethanol due to its lower affinity for ethanol than most
ADH isoforms, the fact is that CYP2E1 is inducible up to 10-fold by ethanol [60,73]. An
alcohol-induced increase in the microsomal pathway contributes to liver pathology due to
the generation of reactive oxygen species (ROS) during this reaction [54,57,60], leading to
the development of hepatocellular carcinoma [74]. Diet, lifestyle, and physiological factors
substantially influence CYP2E1 phenotype.

Hepatic CAT plays a minimal role in ethanol metabolism. However, blood CAT activity
significantly correlates with alcohol consumption [75]. Since its oxidation of ethanol is
hydrogen peroxide (H2O2)-dependent, CAT works more efficiently under elevated ROS
levels and oxidative stress following heavy drinking [54]. Since CAT-catalyzed ethanol
oxidation occurs in the brain, this gene may impact susceptibility to alcohol dependence [76].
While CAT has a limited role in ethanol clearance, its polymorphism rs1001179 (Cys262Thr)
has been shown to increase prostate cancer risk because of increased ROS [77,78]. Several
reports have demonstrated that CAT is highly expressed in the skin. CAT activity in the
epidermis is more than eight times higher than in the underlying dermis [79] and plays
a key role in protecting skin against UV radiation and skin aging [80,81]. In epidermal
melanocytes, the expression and activity of CAT are directly related to melanin content,
acting synergistically to defend against solar UV damage [82]. Consistent with these reports,
reduced CAT levels and increased H2O2 levels in the skin have been related to vitiligo and
xeroderma pigmentosum [83–86].

While a majority of ingested ethanol undergoes oxidative metabolism, a small fraction
(0.1–0.2%) can undergo non-oxidative metabolism [56] (Figure 2b), resulting in the enzy-
matic conjugation of ethanol to endogenous metabolites to form ethyl glucuronide (EtG),
ethyl sulfate (EtS), phosphatidylethanol (PEth), and fatty acid ethyl ester (FAEE) [87,88].
EtG and EtS can be retained in the blood (1–3 h), urine (2–4 weeks), and keratinized matrices
such as hair (months), and these metabolic products are used as metabolic biomarkers of
recent alcohol consumption [89,90]. For example, transdermal sensors have been developed
to measure skin concentrations of ethanol or its metabolite EtG after alcohol drinking [91].
The metabolites produced by non-oxidative metabolism are not considered non-toxic. EtG
and EtS affect toll-like receptor signaling and reduce energy metabolism [92]. Phospholi-
pase D, an enzyme synthesizing PEth, is involved in keratinocyte differentiation [93]. FAEE
interferes with cell signaling pathways and disrupts organelle function, contributing to
ethanol toxicity in tissues with a limited oxidative capacity [88].

Additionally, ethanol itself affects the human body. Ethanol can enhance the activity
of adenylyl cyclase, one of the main targets of ethanol in the cAMP/protein kinase A (PKA)
signaling pathway [94,95]. PKA phosphorylates and dephosphorylates many proteins,
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mediating various cellular processes, including glucose and lipid metabolism, cell growth,
differentiation, and death [96].

In conclusion, ethanol metabolizing enzymes and pathways are related to the develop-
ment of cancers. While most exogenous ethanol is metabolized in the GI tract and liver, a
fraction goes to the peripheral tissues. Due to the lack of plasma protein binding, ethanol
is readily distributed in all body tissues except fat and bone [60]. Therefore, the skin may
have evolved to express ethanol metabolizing enzymes.

3.2. AcAH Metabolizing Enzymes and Their Effects on Humans

Since AcAH is incriminated in pathogenesis by its potent and lasting damage to
cellular macromolecules and its mutagenic and carcinogenic effects on DNA, removing
AcAH from the body is essential [97]. In the second step of oxidative ethanol metabolism,
AcAH is further oxidized to acetate by aldehyde dehydrogenase (ALDH), mainly cytosolic
ALDH1A1, mitochondrial ALDH1B1, and mitochondrial ALDH2 (Figure 2a). ALDH1A1
has an affinity for AcAH but metabolizes AcAH less efficiently. ALDH1B1 and ALDH2
have a broad tissue distribution and are catalytically active toward a wide range of alde-
hyde substrates [20,98,99]. ALDH1B1 shares a 75% peptide sequence homology with
ALDH2 [100].

ALDH1A1 and ALDH1B1 have limited involvement in AcAH metabolism under
physiological conditions, as they have a higher Km for AcAH compared to ALDH2 (with
Km values of 180, 55, and 0.2 µM, respectively) [100]. Polymorphisms of ALDH1A1
and ALDH1B1 have been identified in Europeans and are associated with alcohol-related
phenotypes [101,102].

ALDH2 is involved in oxidizing toxic aldehydes of both exogenous and endogenous
sources, including those generated from endoplasmic reticulum stress, oxidative stress, and
other stress-inducing conditions [99,103]. Thus, ALDH2 has special physiopathological
significance, and its downregulation and inactivation have been associated with many
health conditions, including cardiovascular diseases, neurodegenerative diseases, alcohol-
related liver disease, and cancer [99].

ALDH2 downregulation and inactivation are the results of the complex interplay
between genetic susceptibility (e.g., allelic variation, polymorphism, and epigenetics) and
multiple environmental factors (e.g., alcohol, smoking, drugs, and high-fat diet) [104].
One of the well-studied ALDH2 polymorphisms is the ALDH2*2 allele (rs671), which re-
sults from a single point mutation changing the glutamic acid at the 487th position to a
lysine (Glu487Lys of mature protein or Glu504Lys of the precursor protein) [61]. Due to the
tetrameric structure of ALDH2 and the dominant inactive phenotype of the variant, individ-
uals can be categorized into three ALDH2 genotypes. The wild-type ALDH2*1/*1 genotype
possesses a normal enzymatic activity, while the heterozygous ALDH2*1/*2 genotype
retains approximately 15.6% of normal activity, and the homozygous ALDH2*2/*2 geno-
type loses total enzyme activity [105]. The ALDH2*2 (either ALDH2*1/*2 or ALDH2*2/*2)
mutation is one of the most common genotypes carried by more than 8% of the world
population and is frequent in East Asians, with a prevalence of 30–50% [106]. When sim-
ilar amounts of ethanol are consumed, ALDH2-deficient individuals have significantly
higher AcAH-derived DNA adducts in their blood than individuals with the wild-type
genotype [107].

The mechanistic basis behind ALDH2 downregulation without ALDH2 polymor-
phisms is complex and multi-factorial: (1) ALDH2 expression can be epigenetically regu-
lated through gene methylation and hyperacetylation [108–111]; (2) ALDH2 expression is
regulated by several transcriptional factors [112–114] and can be negatively regulated by
cAMP, potentially through phosphorylation of its transcription factor hepatocyte nuclear
factor 4 by PKA [115]; (3) ALDH2 is negatively regulated by small non-coding RNAs, like
miR-193 and -27a-3p [116,117]; (4) ALDH2 activity can be inactivated by chemical modifi-
cations at several functional groups, such as oxidation at Cys residue(s), phosphorylation
at Ser residue(s), nitration at Tyr residue(s), and acetylation at Lys residue(s) [104,118];
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and (5) ALDH2 activity is regulated by several signaling molecules, including c-Jun N-
terminal kinase, AMP-activated protein kinase, ε protein kinase C, and sirtuin 3, through
phosphorylating ALDH2 protein or decreasing its acetylation level [119].

These mechanisms will have biological effects on ALDH2 function, ultimately con-
tributing to carcinogenesis. Indeed, ALDH2 dysfunction has been widely reported to
correlate with tumor initiation and progression in various cancers [120]. Specifically, the
ALDH2*2 allele with a slower AcAH-metabolizing capacity represents an increased risk
of alcohol-related cancers such as esophageal and head and neck cancers [106,121]. When
this slow ALDH2*2 allele is combined with the rapid ADH1B*2/*2 allele (rs1229984), a
clear positive dose-response relationship can be seen between alcohol consumption and
worse survival in patients with bladder and head and neck cancers [122,123], which may be
related to the accumulation of large amounts of AcAH. However, ADH1B polymorphisms
do no appear to result in significant differences in circulating AcAH levels between ALDH2
wild-type and heterozygous genotypes [124]. Moreover, it is worth mentioning that the
effects of the ALDH2*2 allele on alcohol-related cancers may be complex due to its direct
carcinogenesis and indirect protective effect of alcohol avoidance [125].

In addition to the enzymes mentioned above, CYP2E1 also has the ability to oxidize
AcAH (Figure 2a) and plays an alternative role in clearing AcAH from the liver after
alcohol consumption [126]. The joint effects of ALDH2*2 and CYP2E1 (e.g., rs2031920)
polymorphisms on tumor susceptibility in alcohol drinkers deserve to be evaluated [127].

4. Ethanol Metabolism and Its Contribution to Melanoma

As most research on ethanol or AcAH concentrates on the liver and GI tract with
little focus on the skin [128,129], we previously summarized their potential roles in skin
biology and melanoma [9]. Similarly, despite the well-known roles of ethanol and AcAH
metabolizing enzymes, there is a lack of direct evidence for their effects on melanoma.
This chapter will examine the expression of these enzymes in melanoma and consider the
potential association with melanoma biology.

4.1. Potential Roles of Dysfunctional Ethanol and AcAH Metabolism in Melanoma

Ethanol exposure may disrupt a range of melanocyte development processes leading
to defective skin pigmentation [130], in which the role of ethanol metabolism is unknown.
On the other hand, as previously mentioned in Section 3.1, ethanol increases cAMP/PKA
pathway activity, which has been implicated in melanocyte pigmentation, melanomagene-
sis [131,132], and therapy resistance [133]. Therefore, ethanol may directly affect melanoma
initiation and progression.

The enzymes metabolizing ethanol and AcAH have various polymorphic forms, each
with distinct catalytic kinetics, leading to various AcAH production. ALDH2 dysfunction
is a significant cause of toxic AcAH accumulation [124]. Additionally, AcAH is produced
by normal human microbiota, including those on the skin, and damages DNA, impairs
DNA repair, and increases ROS production. High ethanol intake and redox imbalance
in ALDH2-related mitochondrial respiration can elevate CYP2E1 levels, causing further
increases in ROS levels [73,134]. Excessive ROS production has widespread impacts on
cell biology, including inducing inflammation and altering signaling pathways that control
cancer stem cell renewal, cell proliferation, differentiation, and angiogenesis, creating
a favorable microenvironment for cancer initiation [9]. Evidence suggests that a high
pro-oxidant state with impaired antioxidant defenses is related to melanocyte malignant
transformation and melanoma progression [135,136].

Ethanol consumption directly affects the skin, disrupting skin physiology and home-
ostasis by influencing cutaneous metabolism, immune response, vasculature, and antiox-
idant system [137]. This skin damage from ethanol is exacerbated by UV exposure, and
ethanol and UV radiation can act synergistically to induce mutations and weaken pro-
tection mechanisms, including reducing melanin production and glutathione levels [138].
Ethanol and UV radiation also activate cAMP/PKA, mitogen-activated protein kinase, phos-
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phatidylinositol 3-kinase/protein kinase B, and Wnt/β-catenin signaling pathways, leading
to altered expression of the melanocyte transcription factor microphthalmia-associated
transcriptional factor (MITF) [9]. MITF regulates melanocyte biology, and its dysregulation
is directly linked to melanoma development [139].

Animal studies have also shown that ethanol and AcAH promote melanoma pro-
gression and metastasis [140]. The exact mechanism is unclear, but ethanol and AcAH
may remodel the tumor microenvironment to facilitate tumor migration and invasion. For
example, ethanol intake reduces circulating CD8+ T cells and NK cells [141,142], activates
the inflammasome [143], induces hypoxia-inducible factor 1 expression [144,145], and en-
hances extracellular matrix degradation by matrix metalloproteinases [146], all of which
contribute to the progression of melanoma.

Overall, dysfunctional ethanol and AcAH metabolism would amplify the impact of
ethanol and AcAH in tumor formation. For more information on how ethanol and AcAH
contribute to melanoma initiation and progression, please refer to reference [9].

4.2. Ethanol Metabolizing Enzymes in Human Melanoma

Several recent studies have suggested the potential roles of ethanol metabolizing
enzymes in human melanoma by identifying differentially expressed genes using publicly
available microarray data. Liu et al. analyzed three microarray datasets from the Gene
Expression Omnibus (GEO) database, including GSE15605, GSE46517, and GSE114445,
and found that ADH1B was significantly downregulated in primary melanoma samples
vs. normal skin samples [147]. Their Cox regression analysis revealed that ADH1B is an
independent prognostic factor in human melanoma [147]. Another study confirmed the
downregulation (~9-fold) of ADH1B in human primary melanoma samples compared to
normal skin tissues by analyzing two of the three datasets (GSE15605 and GSE46517) and
another dataset GDS1375 [148].

Since the above studies did not include metastatic melanoma samples, we further
analyzed the gene expressions of ethanol metabolizing enzymes in the datasets GSE15605,
GSE7553, and GSE46517 [149–151] (Figure 3a–i, left). Among the ethanol metabolizing
enzymes (ADH1-7, CYP2E1, and CAT), ADH1B, ADH5, and CAT were relatively highly
expressed in all three datasets. When compared to normal skin tissues, primary melanoma
tissues showed reduced ADH1B, CYP2E1, and CAT gene expression in at least two of three
datasets (Figure 3b,h,i, left), consistent with previous observations for ADH1B [147,148].
Moreover, CYP2E1 was shown to be further downregulated in metastatic melanoma com-
pared to primary melanoma in two of three datasets (Figure 3h, left). Unexpectedly, ADH5
was significantly upregulated in primary melanoma samples of one dataset and showed an
increasing trend in melanoma in the other two datasets (Figure 3e, left).

Since melanocytes, the skin pigment-producing cells that give rise to melanoma, make
up only a small portion of normal skin tissue [153,154], we further compared the gene
expression levels of ethanol metabolizing enzymes in normal human skin, nevus, and
melanoma tissues (Figure 3a–i, right). We analyzed another dataset GSE114445, which
contained normal skin, common nevi, dysplastic nevi, and primary melanoma [152]. Re-
sults showed no differences in the gene expression levels of ethanol metabolizing enzymes
between normal skin and melanocytic nevi except for downregulated ADH1A and ADH1B
in common nevi (Figure 3a,b, right). Although we did not find decreased ADH1B and CAT
in primary melanoma compared to normal skin, a decrease in CYP2E1 and an increase in
ADH5 were observed when compared to normal skin and dysplastic nevi (Figure 3b,e,h,i,
right).

These data suggest a potential role for altered gene expression levels of ethanol
metabolizing enzymes in human melanoma. The mechanism behind these data is unknown,
but their expression levels may ultimately relate to the production and metabolism of
AcAH.
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Figure 3. Gene expression of ethanol metabolizing enzymes in normal human skin, melanocytic nevi,
and melanoma. Ethanol metabolizing enzyme genes include ADH1A (a), ADH1B (b), ADH1C (c),
ADH4 (d), ADH5 (e), ADH6 (f), ADH7 (g), CYP2E1 (h), and CAT (i). Data from four independent gene
profiling studies were analyzed: GSE15605 (16 normal skin (NS) samples, 46 primary melanoma (PM)
samples, and 12 metastatic melanoma (MM) samples [149]), GSE7553 (4 NS, 14 PM, and 40 MM [150]),
GSE46517 (7 NS, 31 PM, and 73 MM [151]), and GSE114445 (6 NS, 5 common nevus (CN) samples,
7 dysplastic nevus (DN) samples, and 16 PM [152]). In these datasets, if two or more probes were
used for a certain gene, the gene expression values of these probes per patient were averaged since
they used the same controls. Data are shown as scatter dot plot with median and interquartile range
(IQR). * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001 (Kruskal–Wallis’s non-parametric test
(GSE15605, GSE7553, and GSE46517) and nonparametric estimation of Spearman’s rank correlation
(GSE114445)). n/a, not available.
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4.3. AcAH Metabolizing Enzymes in Human Melanoma

Among four AcAH metabolizing enzymes, upregulation of ALDH1A1 and ALDH1B1
have been reported in various cancers. ALDH1A1 is involved in cancer stem cell mainte-
nance, metabolism, and drug resistance in multiple cancer types, including melanoma [155].
ALDH1B1 is upregulated in several cancers, such as colorectal and pancreatic cancers, and
acts as an oncogene [156,157]. The role of ALDH1B1 in melanoma remains unclear. On
the other hand, ALDH2 expression has been shown to be downregulated in breast, lung,
esophageal, and head and neck cancers, and this reduction in ALDH2 expression has been
linked to a poor prognosis of cancer patients [158,159].

We compared the gene expression levels of ALDH1A1, ALDH1B1, and ALDH2 in
normal human skin vs. primary and metastatic melanoma by analyzing the gene profiling
datasets GSE15605, GSE7553, and GSE46517 as explained in Section 4.2 [149–151]. We found
that ALDH2 expression levels were significantly downregulated in three GEO melanoma
datasets (Figure 4a–c, left). Wu et al. also observed downregulated ALDH2 gene expression
in primary human melanoma [160]. Moreover, analysis of the GSE11445 dataset [152]
revealed that some patients with primary melanoma exhibited decreased expression of
the ALDH2 gene compared to normal skin and melanocytic nevi (Figure 4c, right). These
findings suggest that the downregulation of ALDH2 expression could impact clinical
outcomes in melanoma patients.

Considering the consequences of low ALDH2 expression, leading to AcAH accu-
mulation and compensation by other enzymes, it is plausible to explain how ALDH2
downregulation in tumor tissues contributes to the poor prognosis of cancer patients.
ALDH2 dysfunction has been widely linked to an increased risk of alcohol-related can-
cers [120], and individuals carrying the ALDH2*2 allele may face a 10-fold increased risk of
developing upper esophageal and pharyngeal cancers with chronic alcohol intake [97].

However, the clinical significance of ALDH2 polymorphism in melanoma remains
unclear. The ALDH2*2 allele is prevalent in populations with low melanoma incidence, such
as Mongolians [161], but rare in high-risk populations like Caucasians with high alcohol
consumption [6,161]. Therefore, we analyzed global melanoma data, alcohol consumption,
and published ALDH2 information and found that the wild-type ALDH2 allele was strongly
positively correlated with melanoma incidence (R = 0.70; p < 0.001), while the allelic variants
had a modest to strong negative correlation (R = −0.70; p < 0.001 and R = −0.51; p = 0.01
for ALDH2*1/*2 and ALDH2*2/*2, respectively) [6]. Interestingly, alcohol consumption
showed similar trends: people with the wild-type ALDH2 allele tended to drink more
alcohol (R = 0.39; p = 0.07), while the allelic variants consumed less alcohol (R = −0.38;
p = 0.07 and R = −0.25; p = 0.26 for ALDH2*1/*2 and ALDH2*2/*2, respectively) [6]. These
data suggest that carriers of the ALDH2 mutation may develop less melanoma because
they drink less alcohol [105]. This notion is supported by observations by Koyanagi et al.
on GI tract cancers [125], who split the ALDH2 allele effects into the carcinogenic effect
(direct effect from increased AcAH exposure) and the protective effect (indirect effect from
decreased alcohol intake). They found that while the ALDH2 allele increased the risk of GI
tract cancers, especially those of the upper GI tract, the risk protection was also prominent
for all GI tract cancers observed except small intestine cancer [125]. These demonstrate the
complexity of the relationship between ALDH2 expression, ALDH2 polymorphism, and
melanoma outcomes. Understanding the mechanisms underlying ALDH2 downregulation
or inactivation in cancers not involving ALDH2 polymorphisms is crucial.
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Figure 4. Gene expression of acetaldehyde (AcAH) metabolizing enzymes in normal human
skin, melanocytic nevi, and melanoma. AcAH metabolizing enzyme genes include ALDH1A1 (a),
ALDH1B1 (b), and ALDH2 (c). See Figure 3 for CYP2E1. Data from four independent gene profiling
studies were analyzed as described in Figure 3: GSE15605 (16 normal skin (NS) samples, 46 primary
melanoma (PM) samples, and 12 metastatic melanoma (MM) samples [149]), GSE7553 (4 NS, 14 PM,
and 40 MM [150]), GSE46517 (7 NS, 31 PM, and 73 MM [151]), and GSE114445 (6 NS, 5 common
nevus (CN) samples, 7 dysplastic nevus (DN) samples, and 16 PM [152]). Data are shown as scatter
dot plot with median and interquartile range (IQR). * p < 0.05, ** p < 0.01, and **** p < 0.0001 (Kruskal–
Wallis’s non-parametric test (GSE15605, GSE7553, and GSE46517) and nonparametric estimation of
Spearman’s rank correlation (GSE114445)).

5. Conclusions and Future Directions

Alcohol consumption has long be recognized as a risk factor for many GI tract cancers
due to their exposure to mutagenic AcAH. However, growing evidence suggests that
alcohol consumption is a potential culprit in cutaneous melanoma. The underlying mecha-
nisms by which ethanol and AcAH induce carcinogenesis in melanoma remain unclear. It
is important to investigate whether there are shared mechanisms between melanoma and
other cancers. On the other hand, the skin is exposed to toxic environmental metabolites
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in addition to the ethanol and AcAH that circulate from the digestive system following
alcohol drinking and food intake. All these different sources of ethanol and AcAH, com-
bined with other risk factors such as UV radiation and smoking, make the pathogenesis of
melanoma complex. Understanding the contributions of each source of ethanol and AcAH
in melanoma development is essential.

A simple but important question is how ethanol and AcAH contribute to melanoma-
genesis beyond the formation of carcinogenic macromolecular adducts. One possible
explanation is that the levels of ethanol and AcAH in the skin exceed the detoxification
capacity of metabolic enzymes, thereby activating the cAMP/PKA signaling and promoting
the formation of macromolecular adducts. Like the liver, the skin harbors a set of ethanol
and AcAH metabolizing enzymes that play a crucial role in preventing the excessive
accumulation of ethanol and toxic metabolites. Additionally, the cutaneous antioxidant
system can help reduce oxidative stress caused by ethanol metabolism. However, it is still
unclear whether there are differences in the biological properties of ethanol and AcAH
detoxification and ROS scavenging between skin tissue and the digestive system.

Nevertheless, evidence supports that downregulation and inactivation of ethanol or
AcAH metabolizing enzymes due to genetic polymorphisms and somatic mutations are
associated with various human diseases. Therefore, restoring the activity of these metabolic
enzymes, particularly the ALDH2 enzyme, may be important to prevent melanoma initia-
tion and progression.
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