
Citation: Abe, S.; Tago, S.; Yokoyama,

K.; Ogawa, M.; Takei, T.; Imoto, S.;

Fuji, M. Explainable AI for

Estimating Pathogenicity of Genetic

Variants Using Large-Scale

Knowledge Graphs. Cancers 2023, 15,

1118. https://doi.org/10.3390/

cancers15041118

Academic Editors: Therese Becker,

Yafeng Ma and Samuel C. Mok

Received: 5 October 2022

Revised: 5 December 2022

Accepted: 7 February 2023

Published: 9 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Explainable AI for Estimating Pathogenicity of Genetic Variants
Using Large-Scale Knowledge Graphs
Shuya Abe 1, Shinichiro Tago 1 , Kazuaki Yokoyama 2 , Miho Ogawa 2, Tomomi Takei 2, Seiya Imoto 3

and Masaru Fuji 1,*

1 Artificial Intelligence Laboratory, Fujitsu Research, Fujitsu Ltd., Kawasaki 211-8588, Japan
2 Department of Cell Processing and Transfusion, IMSUT Hospital, The Institute of Medical Science,

The University of Tokyo, Tokyo 108-8639, Japan
3 Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science,

The University of Tokyo, Tokyo 108-8639, Japan
* Correspondence: fuji.masaru@fujitsu.com; Tel.: +81-50-3619-7404

Simple Summary: To treat diseases caused by genetic mutations, such as mutations in genes and
cancer cells, genomic medicine is being promoted to identify disease-causing variants in individual
patients using comprehensive genetic analysis (next-generation sequencing, or NGS) for diagnosis
and treatment. However, clinical interpretation of the large amount of variant data output by NGS is
a time-consuming task and has become a bottleneck in the promotion of genomic medicine. Although
AI development to support this task has been conducted in various fields, none has yet been realized
that has both high estimation accuracy and explainability at the same time. Therefore, we propose an
AI with high estimation accuracy and explanatory power, which will eliminate the bottlenecks in
genomic medicine.

Abstract: Background: To treat diseases caused by genetic variants, it is necessary to identify disease-
causing variants in patients. However, since there are a large number of disease-causing variants,
the application of AI is required. We propose AI to solve this problem and report the results of
its application in identifying disease-causing variants. Methods: To assist physicians in their task
of identifying disease-causing variants, we propose an explainable AI (XAI) that combines high
estimation accuracy with explainability using a knowledge graph. We integrated databases for
genomic medicine and constructed a large knowledge graph that was used to achieve the XAI.
Results: We compared our XAI with random forests and decision trees. Conclusion: We propose an
XAI that uses knowledge graphs for explanation. The proposed method achieves high estimation
performance and explainability. This will support the promotion of genomic medicine.

Keywords: explainable AI; deep learning; knowledge graph; precision medicine; cancer genomic medicine

1. Introduction

Genetic diseases are caused by genetic variants transmitted from parents to children,
whereas cancer is a disease resulting from the accumulation of variants. For the diagnosis
and treatment of diseases caused by these variants, genomic medicine has been promoted
to identify disease-causing variants in individual patients through comprehensive genetic
analysis (next-generation sequencing, or NGS) [1,2].

The translation and clinical interpretation of a large amount of variant data output
by NGS, by referring to medical papers, databases, and clinical trial information, is a very
labor-intensive task and has become a bottleneck in the promotion of genomic medicine.

The application of AI in the medical field has produced significant results, including
the prediction of lymph node metastasis in breast cancer and the progression of Alzheimer′s
disease [3,4]. From these, AI is expected to eliminate bottlenecks in genomic medicine
as well.
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However, AI enables the identification of disease-causing genetic variants, but even
if this is achieved with high accuracy, there is always the possibility that the AI-based
estimation results may be incorrect [5–10]. Therefore, trusting the AI estimation results may
lead to a misdiagnosis. Therefore, it is necessary for physicians to verify the accuracy of AI
estimation results before using them for diagnosis [8]. Not only in the medical field, but for
this application of verifying AI estimation results, a technology has been proposed to allow
AI users to verify the estimation results by outputting the reasons that led to the estimation
results along with the AI estimation results. This technology is called explainable AI (XAI)
and has been intensively studied in recent years [11–16].

There are two challenges in achieving gene variant identification with XAI. The first
is the difficulty of combining high estimation accuracy with high explainability, which
is a general problem for explainable AI. In terms of explainability for XAI, AI can be
classified into black-box AI and white-box AI: estimation AIs with high performance but
low explanatory power are black-box AIs, while AIs with low estimation performance but
high explanatory power are white-box AIs. AI development to support this work is being
conducted in various fields, but nothing has been achieved that has both high estimation
accuracy and explainability at the same time [17]. The second challenge is that it is unclear
what explanations physicians should provide for the use of AI in diagnosis. For example,
one method of explanation in XAI is to output the internal information of the AI. However,
while such an explanation may be convenient for AI developers, it is incomprehensible to
physicians who are unfamiliar with AI. Physicians require an explanation that they can
understand using their own knowledge.

We aimed to address these issues by adding an explanatory function to the black-box
AI to achieve high explainability while maintaining high estimation performance. This
additional functionality is achieved by combining the black-box AI estimation results
and accompanying information with genomic medical knowledge. To this end, various
databases on genomic medicine are maintained and integrated, and the information that
explains the data itself (ontology) is assigned to these databases to construct a knowledge
graph. With this knowledge graph, a large amount of knowledge about genomic medicine
can be made available through computer programs, and in doing so, high estimation
performance and explanatory power can be achieved (Figure 1). To solve the bottleneck
of genomic medicine, we propose XAI, which combines high accuracy and explainability,
and provides physicians with understandable explanations. We report the results of the
application of our AI in the identification of disease-causing variants.
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deep tensor.

2. Materials and Methods
2.1. Knowledge Graph–Integrating Genome Databases

Physicians surveyed medical articles, public databases, and clinical trial information
and guidelines such as ACMG [18], JSH [19], ASH [20], and NCCN [21] for clinical interpre-
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tation and translation. To achieve XAI using these databases in an integrated manner, these
databases were combined, given an ontology, and a knowledge graph was constructed.
In this study, a knowledge graph was constructed using public databases with relatively
well-developed data.

To build our knowledge graph, we adopted the Resource Description Framework
(RDF)-style [22] ontology defined by an open community. The open community is called
med2rdf and is led by Kyoto University and the Database Center for Life Science. To
integrate each database, a hub node for genes and variants was prepared, and the nodes
of the genes and variants in each database were connected to the hub node. This allowed
different databases to be used centrally, making large amounts of genomic medical data
available from XAI and achieving high estimation performance and explanatory power.

The knowledge graph we constructed consisted of each database, an ontology for computer
programs to understand the data, and hub nodes to connect various databases. The databases
were ClinVar [23] (April 2020 version; 703,471 records; 337,480,558 triples), dbNSFP [24] (v4.1;
83,293,580 records; 10,588,087,867 triples), COSMIC [25] (V91; 36,741,586 records;
1,981,773,447 triples), and dbscSNV [24] (v1.1; 15,030,435 records; 431,501,716 triples; db-
scSNV is included in dbNSFP), for a total of 13,338,843,588 triples. The ontologies used
were Med2rdf [26] (142 triples), SIO [27] (15,608 triples), HCO [28] (42,140 triples), and
Faldo [29] (235 triples), for a total of 58,125 triples. Our ontology refers to other basic
ontologies commonly used in RDF, but we have not counted them as triples. The hub
nodes connecting the databases were 2,224,371,765 triples. A total of 15,563,273,478 triple
knowledge graphs were constructed. This is larger than the 103 million triples of DBpedia,
a well-known large-scale knowledge graph [30].

2.2. Explainable AI

The proposed explainable AI is a method that adds an explanation mechanism to
the black-box AI. This explanation mechanism combines the explanatory information of
the black-box AI with the physician’s knowledge to provide an explanation that is in line
with the physician′s usual investigation. To achieve this, we require an AI that is capable
of handling graphical data, such as knowledge graphs. Therefore, deep learning, which
learns and estimates from the graph data, was employed. Some of these deep learning
methods output the degree to which the nodes on the graph contribute to the estimation
(contribution) as an explanation of the estimation. We believe that it is inappropriate to
use this contribution degree as is and to emphasize the nodes in the graph data with high
contribution degrees to explain the estimation results. This is because such an explanation
may: (1) lack information for the explanation (lack of explanatory information); (2) not
consider the important points in the explanation (lack of consideration of importance); or
(3) be a form of explanation that is unfamiliar to physicians.

1. Lack of explanatory information: Presenting only the highly contributing nodes is
insufficient as an explanation, and there are often cases where physicians cannot
understand the meaning of the nodes or why they are the reason for the estimation
result unless related nodes are presented simultaneously. For example, if the contribu-
tion of a node in pathogenicity is high, presenting only this node does not improve
comprehensibility for physicians. In this case, it is necessary to explain the name of the
variant to which the pathogenic node is connected and the fact that this information is
from the ClinVar database, thereby simultaneously presenting the related information.

2. Lack of consideration of importance: It is important to present the information that
physicians consider important. For example, if a variant is listed in ClinVar or COS-
MIC, the fact that it is listed provides important information to the physician.

3. Unfamiliar format: Normally, physicians report the results of their literature searches
and verify medical information in writing. Likewise, the literature and guidelines
to which physicians refer are written, and physicians rarely have the opportunity to
refer to graphical data. Therefore, graphical data are a form of expression unfamiliar
to physicians, and explanations using graphical data may be difficult for physicians
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to understand. Explanations using text, a data format familiar to physicians, are
important. Thus, our XAI generates text from graph data and presents explanations.

The following explanations were realized for the above issues:

• Explain the node with the highest contribution to deep learning.
• When explaining a node, the node necessary for understanding should be

explained simultaneously.
• The information that physicians consider important should also be explained.
• Explain according to the guideline of ACMG.

To achieve these goals, the following information was defined for each type of node
using an ontology:

• Importance of each node to the physician (X-Impact).
• A rule (X-Rule) consisting of a combination of the following information:

• A rule for the set of nodes required to describe any node.
• Rules for generating sentences from node sets.

We constructed a subgraph consisting of all nodes that were directly or indirectly ref-
erenced by the variant under study and applied all X rules to all node sets. The importance
of the generated sentences (X-Factor) was calculated from the contribution (X-Contribution)
and X-Impact during deep learning estimation using the following formula:

X-Factor = sigmoid((X-Contribution × X-Impact)) (1)

The generated sentences were sorted in order of increasing X-Factor, and the top N
sentences were used as explanatory sentences.

We employed deep tensor as a deep learning implementation that could handle
graph data [31]. Deep tensor outputs contributions to the edges during estimation (X-
Contributionedge). Since our method assumes that nodes have contributions, we converted
edge contributions to node contributions using the following equation:

X-Contribution = X-Contributionedge (2)

Figure 2 shows an example of this calculation.
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2.3. Evaluation Method
2.3.1. Target of Evaluation

The performance of estimating whether a variant was the cause of the disease (pathogenic-
ity) was evaluated. Various methods have been proposed for this estimation depending on the
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type of variant, among which single nucleotide missense variants are known to be difficult to
estimate [32]. Therefore, we evaluated the estimation performance for this missense variant.

For evaluation, we estimate the pathogenicity of variants and measure their correctness.
For this purpose, we prepared a set of variants with known pathogenicity as our correct
answer set.

2.3.2. Correct Answer Set

The correct answer set was generated in ClinVar, which assigns each variant a pathogenic-
ity and a review status, expressed as stars 0–4. This review status represents the method
used to determine the pathogenicity of the variant and can be considered a confidence
indicator of the accuracy of the pathogenicity. The more stars, the higher the confidence
level; if two or more institutions agree on the pathogenicity determination, the review
status is two or more stars. Therefore, those with two or more stars were used.

We also excluded variants that were determined to be likely pathogenic, likely benign,
or the variant of uncertain significance (VUS), and used only those variants that were
determined to be pathogenic or benign. The total number of variants was 5568, including
2158 pathogenic variants and 3410 benign variants.

2.3.3. Five-Fold Cross-Validation

To measure the performance of AI, we train on a set of correct answers in advance and
measure estimation performance on a set of correct answers. However, if the same data
is used for training and estimation, estimation performance for unknown data cannot be
measured. Therefore, we trained on a portion of the set of correct answers and measured
estimation performance on the remaining set of correct answers. Thus, the set of correct
answers was divided into five parts, the estimation performance was measured for each
partition, and the average of the five estimation performances was used as the performance
of the method (five-fold cross-validation).

However, simply dividing the set of correct answers into five is problematic. Since
variants have different properties for each gene, if we train on a variant of one gene and
estimate on another variant of the same gene, we may not be able to correctly measure the
performance of estimating an unknown variant. If trained on a variant of one gene, a variant
of another gene should be estimated. Therefore, the set of correct answers was divided into
five sets so that the training and estimation would target different chromosomes, although
this would be a larger unit than genes.

2.3.4. Balancing the Number of Pathogenic and Benign Variants

When learning, better results are expected if the number of pathogenic and benign
variants is equal. Therefore, we randomly excluded benign variants from the set of correct
answers and equaled the number of pathogenic and benign variants. The result was a final
correct set of 2158 pathogenic variants and 2158 benign variants, for a total of 4316 variants.

2.3.5. Trained Model

We prepared the correct answer for the estimation from ClinVar. Therefore, if informa-
tion from the ClinVar is used for features during training, estimation performance may not
be measured correctly. On the other hand, the information from the ClinVar is useful for
explaining the estimation results.

Therefore, we decided to prepare a trained model to measure the estimation perfor-
mance and a trained model for explanation. The trained model for estimation does not
include information on ClinVar, while the trained model for explanation does.

Since the information in the ClinVar contains the correct answer, simply training with
the information in the ClinVar may always train a model that explains only the information
in the ClinVar. In this case, it will not be possible to explain variants that are not described
in ClinVar. To avoid this, we constructed a learned model in which half of the randomly
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selected variants were explained using information from the ClinVar and the other half of
the variants were explained without information from the ClinVar.

2.3.6. Correct Answer Set for Explanation

For the evaluation of explainability, the correct answer was used, which was slightly
different from the evaluation of estimated performance. Variants with ambiguous correct
answers were excluded from the set of correct answers in order to correctly evaluate the
performance in the estimation performance evaluation. However, since a larger amount of
training data are better, variants that were likely pathogenic and benign were included in
the set of correct answers in the trained model for explanation.

Furthermore, since there was no need to limit the type of variants to missense vari-
ants, we used data from all single nucleotide variants and used 30,754 pathogenic and
10,909 benign variants as the correct set. To reduce data bias, we also randomly excluded
pathogenic variants and used 10,909 pathogenic and 10,909 benign variants as the correct
set for explanation.

2.3.7. Features for Estimation

The deep tensor used in the proposed method can directly handle graph structures.
Therefore, we obtained the graph of features from our knowledge graph and performed
training, estimation, and explanation.

For the variant to be estimated and its neighbors within 100 bases of this variant, we
constructed a subgraph consisting of the following feature nodes. Then, between these
subgraphs, links were added from the nodes of the variant to be estimated to the nodes
of the neighboring variants. Thus, a graph of the features of the variants to be estimated
was constructed.

In addition, some features of dbNSFP were not included in the trained model for
estimation in order to avoid false improvements in estimation performance due to problems
caused by circularity [33].

The features used in learning and estimating the learned model for estimation were
as follows:

• COSMIC: registration status, sample size, number of papers;
• DbNSFP: scores for each algorithm;

• SIFT [34];
• LRT [35];
• PROVEAN [36];
• PhyloP100way_vertebrate [37];
• GERP++_RS [38];
• SiPhy_29way_logOdds [39].

In addition, the following information on genetic variants within 100 bases of the
studied genetic variant was also used as a feature:

• ClinVar: clinical significance, review status, year of last update, number of submissions,
publications, and sources of publications;

• COSMIC: registration status, number of samples, and publications.

2.3.8. Features for Explanation

In addition to the features used in the learned model for estimation described above, the
following features were also used to train and explain the training model for explanation:

• ClinVar: clinical significance, review status, year of last update, number of submissions,
publications, and sources of publications;

• dbNSFP: scores for each algorithm;

• CADD [40];
• DANN [41];
• FATHMM [42];
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• M-CAP [43];
• MetaLR [8];
• MetaSVM [8];
• MutPred [44];
• MutationTaster [45];
• Polyphen2_HDIV [46];
• Polyphen2_HVAR [46];
• REVEL [6];
• Fathmm-MKL_coding [42];
• PhastCons100way_vertebrate [47];

• DbscSNV: Scores of each algorithm;

• AdaBoost;
• Random forest.

2.3.9. Methods of Comparison

The following methods were compared to evaluate estimation performance:

• Deep tensor: A black-box AI and deep learning method that uses graph data. We used
this in our proposed method;

• Decision trees: A white-box AI said to have excellent explanatory properties;
• Random forests: A black-box AI with excellent estimation performance.

2.3.10. Features for Decision Trees and Random Forests

While deep tensor can directly handle graph structures as features, decision trees
and random forests cannot handle graph structures. Therefore, we converted the graph
structure features, constructed by deep tensor, into a format that can be handled by decision
trees and random forests.

To compare performance under equivalent conditions, it is desirable to use exactly the
same features. However, in order to convert the data into a format that can be handled
by decision trees and random forests while preserving the full information of the graph
structure, it is necessary to consider all combinations of features. This would result in
huge amounts of data containing a large number of useless feature combinations. Such
features are impractical since they require a large amount of computation and are likely to
significantly degrade estimation performance. Therefore, we analyzed the data in advance,
conducted preliminary experiments, and determined the feature values based on these
results. However, we used the same features as deep tensor whenever possible.

The format of features for decision trees and random forests is an array of pairs of
feature names and their values, and the number of elements in the array does not change.
Since the number of neighboring variants changes, the feature values for these variants
were converted based on the knowledge obtained from prior experiments.

The three points for converting features are as follows: (1) features that change the
number of elements in the array are aggregated, (2) the combination of features should be
limited to useful ones, and (3) other features should be converted as much as possible from
the graph information.

Specifically, the features of the variants to be estimated were prepared as an array of
feature names and their value pairs. However, for example, the number of elements is
indefinite when simply converted to an array, since the features for literature are different
nodes with different literature information. Therefore, the number of references was used
as the feature value.

However, since the literature included in ClinVar has publisher information, we tabu-
lated the data by publisher, whereas the COSMIC literature does not have such information,
so we simply totaled the data.

Since the number of neighboring variants was indefinite, the total was used as the
feature, but since the proximity to the variant to be estimated is important, it was summed
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for each difference in distance from the variant to be estimated. The number of features was
calculated for each distance between the variant and the target variant, since the proximity
of the variant to the target variant is important.

The number of samples in COSMIC was carried forward by log10 of the number of
samples, aggregated as follows:

• If number of samples = 1, aggregate to the number 0;
• If 1 < number of samples ≤ 10, aggregate to the number 1;
• If 10 < number of samples ≤ 100, aggregate to the number 2;
• If 100 < number of samples ≤ 1000, aggregate to the number 3;
• If 1000 < number of samples ≤ 10,000, aggregate to the number 4;
• If 10,000 < number of samples, aggregate to the number 5; All cases greater than 10,000

were aggregated to 5.

The following features of ClinVar were also aggregated:

• VariantImpact and clinicalsignificance;
• VariantImpact, reviewStatus, and clinicalsignificance.

2.3.11. Other Experimental Conditions

The proposed method takes a variant as input, and outputs the degree of pathogenicity
of the variant as a score from 0.0 to 1.0, where 0.5 or more is interpreted as pathogenic and
less than 0.5 as benign.

An X-Rule was developed to generate explanatory text for the estimation results, with
input from physicians (Table 1).

Table 1. This is the rule (X-Rule) for generating explanatory text with our proposed method. In
"Variants in COSMIC", "*" in "p.R1861*" means mutation to any amino acid. The URL "https://
pubmed.ncbi.nlm.nih.gov/28492532/" of "Variants reference" was confirmed on 9 February 2023.

X-Rule Name Sample Sentence

Neighboring variants in ClinVar Fourteen neighboring variants are “missense variant”,
three of which are registered as “Pathogenic” in ClinVar.

Outstanding algorithms in dbNSFP

This variant has dbNSFP algorithms:
phyloP100way_vertebrate is high (0.97),

SiPhy_29way_logOdds is high (0.88), SIFT is high (0.72),
PROVEAN is high (0.71), and LRT is moderate (0.63).

Average of algorithms in dbNSFP
This variant has an average score of 0.84 for

14 prediction algorithms, and 0.79 for 4 conservation
algorithms from dbNSFP.

Same amino acid variants Neighboring variants in the same base are registered as
"VUS" in ClinVar.

Neighboring variant papers Eight neighboring variants are reported
in twenty-six papers.

Variants in COSMIC A neighboring variant, p.R1861*,
is registered in COSMIC.

Variants in dbNSFP This variant has a score of 0.88 according to the SIFT
algorithm of dbNSFP.

Variants reference
This variant is explained in

https://pubmed.ncbi.nlm.nih.gov/28492532/
(accessed on 2 December 2022).

Variants in ClinVar This variant is considered pathogenic with 3 stars in
ClinVar, and the report has 3 submissions.

Variants type This variant is a missense variant.

https://pubmed.ncbi.nlm.nih.gov/28492532/
https://pubmed.ncbi.nlm.nih.gov/28492532/
https://pubmed.ncbi.nlm.nih.gov/28492532/
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We present the explanatory sentences generated by our proposed method for the cases
of hereditary diseases and cancer. We also present explanations by the decision trees, for
comparison. Note that we do not provide an explanation for random forests, since it is an
unexplainable method.

Figure 3 shows the pipeline of our method described so far.
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3. Results
3.1. Evaluation of Estimation

We compared the estimation performance of deep tensor (version 20191210_mod_bugfix),
decision trees, and random forests (decision trees and random forests using the scikit-
learn [48] version 0.24.0 implementation). Estimation performance was 0.94 (93 epochs),
0.93 (27 depths), and 0.91 (9 depths) for deep tensor, random forests, and decision trees,
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3.2. Evaluation of Explicability

Using variant MYO7A NM_000260.4(MYO7A):c.5618G>A (p.Arg1873Gln) as an ex-
ample, we compare the proposed method with the decision tree explanation. This variant
causes hereditary hearing loss. It is also not described as pathogenic in the version of Clin-
Var used in our experiments, but is described as pathogenic in the recent 202005 version of
ClinVar. Therefore, if we can correctly estimate the pathogenicity of this variant, it is an
example of correctly estimating an unknown variant.

The decision trees correctly estimated this variant as pathogenic. Figure 6 shows the
model of the decision tree training results visualized using PyDotPlus (version 2.0.2). The
paths that explain this variant are circled with red boxes. This red box was drawn manually.
Figure 7 shows the result of the human interpretation of the path of this variant in text. Our
proposed method also correctly estimated this variant as pathogenic and generated the
explanation shown in Figure 8.
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not registered in any of the databases we have used, such as ClinVar. This variant has been
suspected as a cause of blood cancers, but has been clinically confirmed to be benign. With
the proposed method, we were able to correctly infer that this variant is benign. Figure 9 is
a description of the proposed method, showing that this variant is benign.
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In addition, we also present variant TP53 NM_001126112:exon4:c.G250A:p.A84T. This
variant is also not described as benign in the version of ClinVar we used in our experiments,
but is described as benign in the recent 202005 version of ClinVar. And we were able to
correctly estimate it as benign using the proposed method. Figure 10 is a description of the
proposed method.
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4. Discussion
4.1. Results of the Performance Evaluation

The proposed method achieved a higher estimation accuracy than random forests,
which are generally known for their superior estimation performance. Simultaneously, the
proposed method generated sentences similar to human interpretations of the tree structure
of decision trees. Thus, we confirmed that the proposed method achieves the same, or
better, explanatory power than decision trees.

As shown in Figure 4, the decision trees are highly accurate when the depth parameter
is around 5, but less accurate when the depth parameter is greater than that. This is thought
to be due to overlearning. On the other hand, deep tensor and the random forests do not
change their accuracy significantly when the parameter is changed, suggesting that they
are able to learn without overlearning. In addition, deep tensor consistently maintains
higher performance in comparison to random forests, when the parameter is varied. This
is thought to indicate that deep tensor achieves higher generalization performance without
overlearning compared to random forests.

4.2. Comparison of Explanations

Figure 6 is the training result of the decision tree and is also the output of the decision
tree explanation. Figure 7 is the human interpretation of this, taking into account the
information of the relevant variant and expressed in sentences.

In a decision tree, each node is an element of the explanation. Each node then deter-
mines the next node based on whether it meets or does not meet a threshold value. Tracing
back to the last node reveals the pathogenicity that is the result of the classification. Thus,
when looking at each node in isolation, it is unclear how the explanation of each node
affects the determination of pathogenicity. It is also unclear whether the threshold values
for each node are appropriate for determining pathogenicity. Therefore, it does not make
sense for a physician to independently verify the explanation of each node to validate the
estimation results. It is necessary to verify that all nodes satisfy the threshold value at the
same time. It is possible to verify whether several nodes are satisfied at the same time.
However, in the case of Figure 6, it is necessary to verify whether six nodes are satisfied at
the same time, which requires a lot of effort for a human to verify. In summary, in order to
validate the decision tree explanation, it is necessary to verify that all sentences are satisfied
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simultaneously for each statement that does or does not clearly imply pathogenicity, which
is difficult.

On the other hand, Figure 8 is an explanation of the proposed method. The second and
third sentences of this explanation of the proposed method use information from dbNSFP
to show that this variant is presumably pathogenic. dbNSFP is a database of scores from
various algorithms that estimate the pathogenicity of a variant, with higher scores for each
algorithm indicating a higher likelihood of pathogenicity. The fourth sentence suggests that
this variant is not benign, based on the information that the variant of the same amino acid
is VUS. The fifth and eighth sentences suggest that this variant may be pathogenic since
the nearby variant is registered as pathogenic in ClinVar. Similarly, the seventh sentence
also suggests that this variant may be pathogenic since the nearby variant is registered
as pathogenic in COSMIC. As shown in Figures 9 and 10, the proposed method can also
generate explanations for various variants.

Thus, each sentence of the proposed method explains independently and with different
evidence whether this variant is pathogenic. It is possible to verify the pathogenicity of
this variation from this explanation since each statement can be verified independently. We
believe that verifying the explanation of the proposed method is easier than verifying the
explanation of the decision tree.

4.3. Estimation Performance of Other Methods

Various methods and benchmarks have been proposed for estimating the pathogenicity
of mutations [3–5]. Among these, REVEL and ClinPred are well-known for their high
estimation performance. Both methods are similar in that they are based on random forests,
using dbNSFP as a feature. We would like to compare these methods with the proposed
method, but it is not easy to compare machine learning methods [6,15]. The comparison
results differ due to differences in training data, test data, and parameter tuning during
training, but it is difficult to align these conditions. Fortunately, the results of ClinPred
testing with ClinVar are publicly available, so it is possible to compare the proposed method
with ClinPred. However, the version of ClinVar used by ClinPred for training and testing
differs from the version of ClinVar used by us, as do the criteria for selecting the records in
ClinVar. Therefore, the comparison is not made under the same conditions.

1. The AUC listed in the ClinPred paper is 0.98, and the AUC of the proposed method is
also 0.98. From this point of view, the performance is equivalent.

2. The mutations in the test results of ClinPred were matched with the mutations in the
test results of the five-fold cross-validation of the proposed method, and the perfor-
mance of ClinPred was calculated only from the mutations that could be matched.
The mutations that could not be matched were 30 of 863, 8 of 863, 14 of 863, 8 of
863, and 6 of 864, respectively. Since only a few mutations could not be matched, we
do not believe that they had a significant impact on the performance measures. The
performance of ClinPred in these results was accuracy 0.96, precision 0.99, recall 0.93,
F1 score 0.96, and AUC 0.99. This performance is higher than the performance of
ClinPred described in their paper [15]. We believe that differences in training data are
the cause of the differences in performance. ClinPred has excluded some mutations
from the test to avoid false performance increases due to type 1 circularity [15,33].
On the other hand, the proposed method excludes such mutations from the training
data for the same reason. From this, we believe that the increase in performance of
ClinPred is due to the fact that it differs from the test set used in their paper [15].

Based on these results, we believe that the proposed method has an estimation per-
formance close to that of ClinPred. In addition, these studies aim for high estimation
performance; we aim for both high performance and explainability.

4.4. Realization of Explanations by Random Forests

The output of random forests does not explain the estimation results. However,
there are possible ways to realize the explanation. For example, the deep tensor used
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in the proposed method uses LIME to output the edges of the graph that contributed to
the estimation results, and the proposed method uses the information on these edges to
provide an explanation [49]. Similarly, it is possible to apply LIME or SHAP to Random
Forest and output the features that contributed to the estimation results [50]. Therefore,
by using this information, it may be possible to achieve the same explanation in random
forests as in the proposed method.

However, we have constructed a knowledge graph integrating various data in genomic
medicine in order to provide physicians with understandable explanations. To utilize this
knowledge graph, we believe that the proposed method using deep tensor, which can
directly handle graph data, is more appropriate.

4.5. Another Knowledge Graph

We constructed a knowledge graph of genomic medicine to achieve an explanation.
Other knowledge graphs for genomic medicine include CKG, which is a large knowledge
graph integrating many databases in genomic medicine [51]. However, important databases
on mutations, such as ClinVar, dbNSFP, and COSMIC, are not integrated. Also, the format
of the graph is Neo4j, which is different from our knowledge graph based on standardized
specifications. Despite these differences, both the CKG and ours are knowledge graphs that
integrate various data for genomic medicine. In the future, we would like to combine both
of them to construct a more valuable knowledge graph.

4.6. Application to Genome Medicine

The number of genetic mutations found by NGS can number in the tens of thousands
in a single patient. The physician identifies a small number of pathogenic mutations among
them to determine a course of treatment. In the process of identifying these mutations,
physicians consult databases of various mutations. In addition to the mutation under
investigation, they also investigate surrounding mutations and make a comprehensive
judgment based on these results. Due to the large number of mutations to be investigated,
this investigation takes a lot of time, and it is not practical to do it completely manually.

Therefore, only those mutations whose pathogenicity is clearly described in the
database may be extracted mechanically, and only the extracted mutations may be judged
by humans. For example, commercial reports such as FoundationOne CDx and Oncomine
do not clearly disclose the method for determining pathogenicity, but given some public in-
formation, it is thought that pathogenicity is determined by a curated knowledge database
and rules [52–54]. However, since only a few mutations are known to be pathogenic in the
database, pathogenic mutations may be missed by this method.

To solve this miss, it is necessary to examine mutations whose pathogenicity has not
been identified in the database. However, the number of such mutations is so large that
manual investigation requires a great deal of time and is not realistic. Therefore, there
are high hopes for an approach in which AI discovers mutations that are not listed in the
database but are pathogenic, and physicians can determine only such mutations. However,
in order to determine the pathogenicity of a mutation, it is necessary to investigate not
only the mutation under investigation but also the surrounding mutations. Therefore, a
lot of time is needed to determine the pathogenicity of a single mutation. Therefore, it is
necessary not only to find pathogenic mutations, but also to explain the estimated results
in order to support physicians in their investigations and judgments.

Our XAI will support such investigations and decisions by physicians. We believe that
this will allow physicians to investigate and determine more pathogenic mutations and
eliminate the bottleneck of investigating and determining mutations in genomic medicine.

However, the extent to which the proposed method can eliminate bottlenecks in
genomic medicine needs to be evaluated in the future. For example, the degree of efficiency
of the investigation, the number of mutations that can be investigated, and the number of
patients that can be treated. However, evaluating these factors is difficult to implement
since it would involve changes in the systems and workflows used by physicians. It also
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requires time for physicians to learn new systems. Another reason is that physicians
involved in genomic medicine are extremely busy. Therefore, the proposed method needs
to be implemented and evaluated in a practical system.

4.7. Application of AI in Future Genomic Medicine

To identify the pathogenicity of a mutation, physicians investigate various databases to
make a decision. Therefore, the results of investigations and decisions may vary from physi-
cian to physician, as difficult decisions are made based on the results of many investigations.

For example, the ACMG has 16 criteria for classifying pathogenic variants, 12 criteria
for classifying benign variants, and 15 rules for combining criteria [18]. Thus, a complex
decision-making process is required.

In order for genomic medicine to be applied to more patients in the future, more
physicians need to be involved in genomic medicine. At this time, it will be important to
implement AI to homogenize the results of investigations and decisions.

4.8. Application to Other Fields

There are two challenges to applying the proposed method to fields, other than
genomic medicine.

The first challenge is that the construction of X-Impact and X-Rule requires expertise in
the applied field and labor-intensive manual work. In this application to genome medicine,
there was no problem in terms of expertise since the project was carried out in collaboration
with physicians. In addition, the manual construction of X-Impact and X-Rule in the
application of genome medicine enables accurate explanations, which is expected to be an
advantage in the medical field where accuracy is important.

The second challenge is that the construction of knowledge graphs requires know-how
in selecting appropriate ontologies. As mentioned earlier, this was not a problem in this
case since the project was conducted in collaboration with physicians.

To solve these issues, a method to automatically construct X-Impact and X-Rule should
be considered. This would facilitate the application of X-Impact and X-Rule to new fields
since it would not require expertise or manpower, and it would also enable the application
of X-Impact and X-Rule to data that has not been maintained as a knowledge graph.
However, in the case of automatic construction, ensuring the accuracy of explanations is an
important issue.

5. Conclusions

In this study, we proposed XAI to solve the bottleneck of genomic medicine. The
unique feature of this method is that it constructs a huge knowledge graph for genomic
medicine and uses it to achieve estimation and explanation. We also proposed features
that the description of XAI for genomic medicine should satisfy. The proposed method
is then compared with decision trees and random forests to show that the proposed
method combines the advantages of both white-box and black-box AI and can achieve high
estimation accuracy and explainability simultaneously. The proposed method opens up
the possibility of AI application to genomic medicine.
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