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Simple Summary: Hepatocellular carcinoma (HCC) is one of the most prevalent and devastat-
ing malignancies worldwide. An ongoing phase-II clinical trial assesses the efficacy of a novel
sequential trans-arterial chemoembolization (TACE) plus stereotactic body radiotherapy (SBRT) plus
immunotherapy strategy as an induction therapy for unresectable HCC patients. This study aims to
investigate the potential association between radiomic features extracted from pre-treatment multi-
phasic MR images and treatment response following the novel intervention strategy. In this study,
Four DeltaP-derived radiomics that characterize the temporal change in intratumoral randomness
and uniformity were identified as the contributors to the treatment response for a 3-month timepoint.
Additional arterial phase (AP)-derived radiomic features and tumor morphology were also shown to
have strong associations with treatment response for a 6-month timepoint. The success of this study
would demonstrate the feasibility of pre-treatment identification of responsive HCC patients, paving
the way toward effective and personalized oncology for HCC management.

Abstract: This study aims to investigate the association of pre-treatment multi-phasic MR-based
radiomics and dosimetric features with treatment response to a novel sequential trans-arterial
chemoembolization (TACE) plus stereotactic body radiotherapy (SBRT) plus immunotherapy reg-
imen in unresectable Hepatocellular Carcinoma (HCC) sub-population. Twenty-six patients with
unresectable HCC were retrospectively analyzed. Radiomic features were extracted from 42 lesions
on arterial phase (AP) and portal-venous phase (PVP) MR images. Delta-phase (DeltaP) radiomic
features were calculated as AP-to-PVP ratio. Dosimetric data of the tumor was extracted from dose-
volume-histograms. A two-sided independent Mann–Whitney U test was used to assess the clinical
association of each feature, and the classification performance of each significant independent feature
was assessed using logistic regression. For the 3-month timepoint, four DeltaP-derived radiomics
that characterize the temporal change in intratumoral randomness and uniformity were the only
contributors to the treatment response association (p-value = 0.038–0.063, AUC = 0.690–0.766). For the
6-month timepoint, DeltaP-derived radiomic features (n = 4) maintained strong clinical associations
with the treatment response (p-value = 0.047–0.070, AUC = 0.699–0.788), additional AP-derived
radiomic features (n = 4) that reflect baseline tumoral arterial-enhanced signal pattern and tumor
morphology (n = 1) that denotes initial tumor burden were shown to have strong associations with
treatment response (p-value = 0.028–0.074, AUC = 0.719–0.773). This pilot study successfully demon-
strated associations of pre-treatment multi-phasic MR-based radiomics with tumor response to the
novel treatment regimen.
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1. Introduction

Hepatocellular carcinoma (HCC) is one of the most prevalent and devastating malig-
nancies worldwide, ranking as the 4th leading cause of cancer-related deaths. It accounts for
80–90% of the sufferers of primary liver cancer, and its highest incidences occur in eastern
and southeastern Asia and northern Africa [1,2]. Surgical resection and liver transplanta-
tion have been the gold standard curative therapies. Unfortunately, most HCC patients
present intermediate to advanced disease at diagnosis [3]. As such, more than 70% of liver
cancer patients are considered ineligible for such curative interventions [4], partly due to
the presentation of large-sized tumors, poor liver function, or organ shortage. The median
survival remains at approximately 16 months for intermediate-stage HCC patients, and half
a year for advanced-stage HCC patients, respectively [5], reflecting grievous survivorship
in this vulnerable HCC sub-population.

Over the past decades, three key additional regimens have been developed in
the hope of serving either as a bridging therapy before liver transplantation or as a
curative alternative for unresectable HCC patients; they are Trans-Arterial Chemoem-
bolization (TACE), Stereotactic Body Radiotherapy (SBRT) and Immune Checkpoint
Blockade (ICB).

TACE has been widely adopted as a first-line treatment for intermediate-stage HCC [6].
It works by interrupting the major source of oxygen and nutrition supply to the cancer cells
from the hepatic arteries, meanwhile selectively delivering cytotoxic chemotherapeutic
agents for cancer eradication [7]. However, its efficacy is limited in patients with poor
baseline liver function and larger tumor burden, hence TACE alone is often not sufficient
for thorough cancer cell elimination in advanced-stage HCC patients [8]. On the other
hand, SBRT kills cancer cells non-invasively by delivering an ultra-high radiation dose
in a few fractions (usually ≤ 5) to the tumor in a highly precise and conformal manner,
under real-time liver and tumor motion monitoring [9]. The survival benefits of SBRT in
HCC have been well-documented in the literature for early stage tumors [10,11]. Recently,
efforts have been made to investigate the efficacy of sequential TACE-SBRT in intermediate
and advanced-stage HCC on the grounds of the reported potential synergism between
TACE and radiotherapy [12–18]. For instance, Chiang et al. reported a promising efficacy
of combined TACE-SBRT treatments in Barcelona Clinic Liver Cancer (BCLC) system stage
B-C HCC patients, yielding an objective response rate of 68% and a 1-year local control rate
of 93.6% [19]. However, intra-hepatic and distant dissemination remains a key challenge for
managing this subgroup of unresectable HCC patients. Sequential SBRT-immunotherapy
has demonstrated improved local tumor control and distant abscopal effect [20], potentially
compensating for the deficiency of the sequential TACE-SBRT regimen. Our pilot studies
have shown the satisfactory efficacy and safety of combined SBRT and immunotherapy for
HCC patients [21,22].

Notably, for the first time in history, there is an ongoing phase-II clinical trial con-
ducted by our group that aims to assess the efficacy of a novel sequential TACE-SBRT-
Immunotherapy strategy as an induction therapy for unresectable HCC patients [23], the
results are greatly anticipated. While exciting, the potential toxicities associated with this
novel aggressive treatment are yet to be reported. In the era of personalized medicine,
there is a pressing demand to discriminate between responders and non-responders prior
to treatment commencement for the sake of avoiding ineffective and toxic therapies in
non-responders and enhancing individualized oncologic care delivery.

The field of radiomics has been caught in the spotlight of attention within the medical
community [24–31]. It involves high-throughput extraction of quantitative features from
medical images for divulging intrinsic biological and genetic characteristics [32]. The
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capability of radiomics has been extensively reported in various cancer prediction tasks,
including cancer prognosis [33], disease differentiation [34], and treatment response [35,36],
highlighting the high potential of radiomics in informing decision-making in a wide
spectrum of oncologic care. Apart from this, several research groups have reported im-
proved predictive power when combining both radiomics and radiation dosimetric param-
eters [37,38]. Particularly, for HCC management, multi-phasic contrast-enhanced magnetic
resonance (MR) images are routinely used for obtaining dynamic information on disease
pathology and physiology. The role of multi-phasic MR-based radiomics in HCC has been
widely studied for predicting micro-vascular invasion [39,40], cancer recurrence [41–43],
disease diagnosis [44,45], and treatment response [46–49]. Nevertheless, radiomics studies
on treatment response prediction in unresectable HCC patients are scarce [49]. Further,
there is no study assessing the association between radiomic features extracted from pre-
treatment multi-phasic MR images and treatment response following the novel sequential
TACE-SBRT-Immunotherapy regimen.

In this pilot study, we aimed to investigate the association of pre-treatment multi-
phasic MR-based radiomics and dosimetric features with treatment response to the se-
quential TACE-SBRT-Immunotherapy regimen in unresectable HCC sub-population, who
were prospectively enrolled in the first-of-its-kind phase-II clinical trial [23]. The success of
this study would demonstrate the feasibility of pre-treatment identification of responsive
HCC patients for this novel regimen, paving the way towards effective and personalized
oncology for HCC management worldwide in the long run.

2. Materials and Methods
2.1. Patient Data

The present study was approved by the Human Subjects Ethics Subcommittee of
The Hong Kong Polytechnic University and Institutional Review Board of the University
of Hong Kong/Hospital Authority Hong Kong West Cluster. Apart from this, patient
data that were analyzed in this study were prospectively enrolled in an ongoing phase-II
clinical trial conducted by The University of Hong Kong, entitled “Sequential TransAr-
terial hemoembolization and stereotactic Radiotherapy Followed by ImmunoTherapy
for downstaging hepatocellular carcinoma for hepatectomy (START-FIT)” [23]. A total
number of 26 newly diagnosed HCC patients, who were treated with sequential TACE-
SBRT-Immunotherapy at the Department of Clinical Oncology of Queen Mary Hospital
(QMH) between May 2019 to October 2021, were retrospectively analyzed. The inclusion
criteria included: (1) diagnosis of unresectable HCC confirmed pathologically according
to the American Association for the Study of Liver Diseases (AASLD) practice guideline
2010; (2) male or female between 18 and 80 years old; (3) tumor size between 5 and
15 cm, and the number of lesions less than 3; (4) portal vein involvement; (5) Child–
Pugh liver function class A-B7; (6) liver volume minus intrahepatic gross-tumor-volume
(GTV) > 700 cc; (7) no prior TACE; and (8) no prior systemic therapy nor immunother-
apy, TACE or RT. The specific contraindications of SBRT were: any HCC tumor >15 cm;
total maximum sum of HCC diameter >20 cm; more than 3 discrete hepatic nodules;
direct tumor extension into the stomach, duodenum, small bowel, large bowel, and main
branch of biliary tree.

2.2. Treatment Details

SBRT was performed by using 6 MV or 10 MV photon beams delivered from a linear
accelerator within 21–35 days after TACE. The prescribed dose ranged from 27.5 Gy to
50 Gy in 5 fractions, depending on normal tissue constraints. The time interval between
fractions was limited to 24 to 72 h, with radiation delivered to all targets within 5 to 15 days.
Varian External Beam Planning Software (Varian Medical Systems, Palo Alto, CA, USA)
was used for treatment planning. The dosing scheme aimed at using the highest allowable
prescription dose for the tumor target, while fulfilling the constraints of surrounding
organs-at-risk (OARs). TACE and immunotherapy procedures were performed according
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to the routine treatment protocol in QMH. For TACE, an emulsion of a mixture of cisplatin
with lipiodol in a volume ratio of 1 to 1 was prepared and injected into the tumor by
femoral artery puncture. The amount of TACE used was based on tumor size, number, and
arterial blood flow. For immunotherapy, Avelumab was administered via IV injection two
weeks after SBRT; the amount of dose required was based on the patient’s body weight
and toxicity.

2.3. Clinical Endpoint

The clinical endpoint of this study was defined as the response rate at 3 and 6 months
after SBRT, according to the modified Response Evaluation Criteria in Solid Tumors ((mRE-
CIST) version 1.1) criteria. The response rates were categorized into: (1) Complete response
(CR) that represents the disappearance of any intratumoral arterial enhancement in all
target lesions; (2) partial response (PR) that represents at least a 30% decrease in the sum of
diameters of viable target lesions; (3) stable disease (SD) that represents any cases that do
not qualify for either partial response or progressive disease; and (4) progressive disease
(PD) that represents an increase of at least 20% in the sum of the diameters of viable (en-
hancing) target lesions. In this study, the treatment response of each lesion was assessed by
a radiologist with 15 years of experience. Prior to subsequent analysis, patients with (1) CR
and (2) PR were grouped into a respondent group, while those with (3) SD and (4) PD were
grouped into a non-respondent group.

2.4. MRI Acquisition and Segmentation

The pre-intervention gadoxetic acid-enhanced MRI was obtained by using either
1.5T GE Signa system (version: HD16. GE Healthcare, Milwaukee, WI) or Philips 3T MRI
Achieva scanner (Philips Healthcare, Best, The Netherlands) with a 12 or 16 channel,
phased-array body coil. The image sets were acquired according to the START-FIT and
LI-RADS ver. 2017 protocol, including axial arterial phase (AP) and portal venous phase
(PVP) T1W image sets. A demonstrative example of AP and PVP MRI is shown in
Figure 1a,b.

The segmentations (including gross tumor targets and OARs) were manually de-
lineated on the axial planning CT slice-by-slice by an experienced clinical oncologist
(with >15 years of experience). The contours of the lesions were subsequently trans-
formed into other image sets by rigid registration for further processing. The transferred
tumor lesions on the pre-intervention MR image sets were defined as the volumes of
interest (VOIs).

2.5. Dosimetric Features

Dosimetric features of each lesion were obtained from the dose-volume histograms
(DVHs) using the treatment planning system, including volume of GTV and planning-
target-volume (PTV), prescription dose, minimum and maximum dose, mean dose, relative
GTV volumes (in percentage) receiving specific doses (V5 to V50 in 5 Gy increments),
minimum doses to relative liver volumes (D10% to D90% in 10% increments). In total,
33 dosimetric features were calculated for each lesion. A demonstrative example of DVH
and dose distribution is shown in Figure 1c,d.

2.6. Image Preprocessing and Radiomic Features Extraction

The MR images with VOIs were imported into a python-based pipeline developed
by The Hong Kong Polytechnic University, which was employed previously by other
studies [50–53]. Before extracting the radiomics features, multiple pre-processing steps
were performed. In order to tackle the parameter variations between image series, isotropic
resampling was performed by linear interpolation to obtain a 1 × 1 × 1 mm3 voxel size.
Inhomogeneity correction was performed by the N4 bias field correction algorithm to
correct the locally varying intensity. Image intensities were then normalized by shifting
and rescaling each image into a mean of zero and a standard deviation of 100 to maintain
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consistent voxel values across patients. They were further discretized by a fixed bin count
of 100 to reduce the noise of image textures.
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Figure 1. A 76-year-old male patient was diagnosed with advanced-staged HCC. (a) Axial AP T1W
MR image with the VOI, (b) Axial PVP T1W MR image with the VOI. SBRT of 30 Gy was prescribed
in 5 fractions to the tumor. (c) DVH of gross tumor volume (GTV) and planning target volume (PTV)
generated from the treatment planning system and (d) Dose distribution of the SBRT treatment plan.

In this study, radiomics features were extracted from each lesion on both arterial
phase (AP) T1W and portal venous phase (PVP) T1W MR images using the Pyradiomics
(version 2.2.0) package. Delta phase (DeltaP) radiomics features were calculated by dividing
feature values extracted from AP images by those extracted from PVP images. Multiple
types of Radiomics features were extracted, including shape and size features (n = 14),
first-order features (n = 18), and second-order texture features (n = 73). The texture features
were calculated from gray-level co-occurrence matrices ((GLCMs): n = 22), gray-level
run-length matrices ((GLRLMs): n = 16), gray-level size zone matrix (GLSZM: n = 16),
gray-level dependence matrices ((GLDMs): n = 14), and neighboring gray tone difference
matrices ((NGTDMs): n = 5). In total, 287 radiomic features were calculated for each lesion.
The meaning of each radiomic feature parameter for Pyradiomics can be found in the link:
https://pyradiomics.readthedocs.io/en/latest/features.html.

2.7. Statistical Analysis

For each of the studied endpoints, a two-sided independent Mann–Whitney U test was
employed to assess the clinical association between treatment response (i.e., respondent
or non-respondent) and features in each of the studied feature categories (i.e., AP, PVP,
DeltaP radiomic features, and dosimetric features). Features with p-values of <0.05 were
considered statistically significant. Moreover, independent endpoint-associated features
were identified by using multiple feature selection procedures for each feature category.
Ten independent features were first selected by using K-Means clustering from the original

https://pyradiomics.readthedocs.io/en/latest/features.html
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feature sets with a cluster number of ten. Cluster centroids were randomly initialized with
100 iterations to reduce potential bias. Independent features were then identified by the
most significant features from the Mann–Whitney U test within each cluster. p-values were
adjusted with false discovery rate (FDR) by using Benjamini–Hochberg (BH) multiple test
correction among the identified ten independent features. Features with an FDR-adjusted
p-value of <0.1 were reported. To further assess the predictability of each significant
independent feature, logistic regression analysis was applied; the area under the receiver
operator characteristic (ROC) curve (AUC), sensitivity, and specificity were then reported.
Prior to regression analysis, all features were re-scaled to a mean of 0 and a standard
deviation of 1.

Apart from this, a two-sided independent student t-test was used to determine whether
there existed a statistically significant difference in patient demographic variables between
the respondent and non-respondent groups. All statistical analyses were implemented
using R software (version 4.2.1. The R Foundation, Vienna, Austria) and SPSS 26.0 (IBM,
Chicago, IL, USA).

3. Results
3.1. Patient Characteristics

Table 1 summarizes patient characteristics. In total, 26 patients (male/female: 25/1;
mean age: 67 ± 7.6 years) were included in the present study. Among the 26 patients,
14 had a single lesion, 8 had two lesions, and 4 had three lesions, resulting in a total of
42 lesions. The average diameter of the largest tumor nodule was 9.4 ± 3.7 cm.

Table 1. Patient characteristics.

Total Number of Patients 26

Gender
• Male 25
• Female 1

Age (y), mean ± SD 67.0 ± 7.6
• 50–59 5
• 60–69 10
• 70–79 10
• >79 1

Diameters of largest tumor nodule (cm), mean ± SD 9.4 ± 3.7

Sum of diameter of tumor nodule (cm), mean ± SD 12.6 ± 5.6

Medical History
• Hepatitis B 17
• Hepatitis C 4
• Alcoholics 2

Vascular invasion
• Portal vein involvement 6
• Hepatic vein involvement 14

CP Score
• A5 19
• A6 6
• B7 1

BCLC Stage
• Stage A 3
• Stage B 7
• Stage C 16

Lesion numbers
• 1 lesion 14
• 2 lesions 8
• 3 lesions 4
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3.2. Lesion Characteristics and Response Rate

Table 2 displays the overall characteristics and response rates of the lesions in re-
spondent and non-respondent groups in both studied timepoints. For the 3-month as-
sessment, respondents were identified in 18 lesions (42.9%, CR: n = 3; PR: n = 15), while
non-respondents were identified in 24 lesions (57.1%, SD: n = 16; PD: n = 8). No statistically
significant difference in GTV and PTV volumes was observed between groups. For the
6-month assessment, respondents and non-respondents were identified in 28 lesions (66.7%,
CR: n = 13; PR: n = 15) and 14 lesions (33.3%, SD: n = 6; PD: n = 8), respectively. There were
significant differences between respondent and non-respondent groups in average GTV
volumes (295.4 ± 376.2 cm3 vs. 732.2 ± 728.2 cm3, p = 0.014) and average PTV volumes
(418.4 ± 479.6 cm3 vs. 940.4 ± 857.0 cm3, p = 0.015).

Table 2. Characteristics and response rates of the lesions in respondent and non-respondent groups
in both studied timepoints.

3 Months 6 Months

Respondent
Group
(n = 18)

Non-Respondent
Group
(n = 24)

p-Value
Respondent

Group
(n = 28)

Non-Respondent
Group
(n = 14)

p-Value

GTV size (cc) *, mean ± SD 374.3 ± 426.5 491.0 ± 634.6

0.504

295.4 ± 376.2 732.2 ± 728.2

0.014

• <5 cc 3 3 4 2
• 5–200 cc 5 11 12 3
• 200–500 cc 5 1 6 1
• 500–1000 cc 3 4 4 3
• >1000 cc 2 5 2 5

PTV size (cc), mean ± SD 510.1 ± 534.9 654.1 ± 758.3.0 0.496 418.4 ± 479.6 940.4 ± 857.0 0.015

Prescribed Dose for SBRT,
mean ± SD 34.3 ± 4.7 32.9 ± 5.2

0.377

33.9 ± 4.7 32.7 ± 5.5

0.449

• 27.5 Gy 1 4 2 3
• 30 Gy 7 11 12 6
• 35 Gy 4 3 5 2
• 40 Gy 6 5 9 2
• 45 Gy - 1 - 1
• 50 Gy - - - -

Response Rate
• CR 3 - 13 -
• PR 15 - 15 -
• SD - 16 - 6
• PD - 8 - 8

* GTV was defined as VOI in this study.

3.3. Clinical Associations between Features and Treatment Response

Table 3 summarizes the statistically significant features identified from the two-sided
independent Mann–Whitney U test for 3-month and 6-month response rate, respectively.
Based on the results from Table 3, there was an inclination that different modalities of the
pre-treatment multi-phasic MR images (AP, PVP, DeltaP) contain specific types of radiomic
predictors associated with the response rate in HCC patients treated by the sequential
TACE-SBRT-Immunotherapy regimen.

For 3-month response rate assessment, as shown in Table 3a, a total of 17 radiomic
features were found to have a significant association with the 3-month response rate
(p < 0.048), mostly uniformity- and entropy-related features (n = 13/17, 76%). Moreover,
DeltaP-derived radiomic features accounted for the largest proportion (n = 15/17, 88%),
followed by PVP-derived radiomic features (n = 2/17, 12%). However, it is worth noting
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that no shape and size features, dosimetric features, and AP-derived radiomic features were
found to be significantly different between the respondent and non-respondent groups.

For the 6-month response rate assessment, as indicated in Table 3b, a total of 34 features
(Radiomic features: n = 31; Shape and size features: n = 2; Dosimetric features: n = 1) were
found to demonstrate significant clinical associations (p < 0.049). Among the 31 radiomic
features, AP-derived radiomic features accounted for the largest proportion (n = 16/31,
52%), which was absent for the 3-month timepoint (Table 3a); this was followed by DeltaP-
derived (n = 14/31, 45%), and PVP-derived (n = 1/31, 3%) radiomic features. Similar to
the results from the 3-month response rate assessment, uniformity- and entropy-related
features dominated (n = 13/31, 42%), especially in DeltaP-derived features (n = 9/14,
64%). Intriguingly, a considerable proportion of high gray level emphasis-related fea-
tures (n = 8/31, 25%) demonstrated a statistically significant association with the 6-month
response assessment, particularly in AP-derived features (n = 7/16, 43%).

Table 4 showcase a list of independent predictors that were determined to demonstrate
the significant clinical association with the 3-month and 6-month response rate assessment,
respectively. Based on the results from Table 4, previous findings of the inclination shown
in Table 3 remained consistent and valid.

For the 3-month response rate assessment, 4 DeltaP-derived radiomic features were
determined as independent predictors (FDR-adjusted p-value < 0.1, ranging from 0.038
to 0.063), as shown in Table 4a. The 4 predictors were mostly uniformity- and entropy-
related features (GLCM_Joint Entropy, GLRLM_Run Entropy, GLSZM_Gray-Level Non-
Uniformity Normalized and GLSZM_Small Area Emphasis), yielding AUC between 0.690
and 0.766. On the other hand, no shape and size features, dosimetric features, AP-derived,
and PVP-derived radiomic features were identified as independent predictors (Table 4a).

Table 3. (a) A list of statistically significant features identified from two-sided independent Mann–
Whitney U test for 3-month treatment response assessment. (b) A list of statistically significant
features identified from two-sided independent Mann–Whitney U test for 6-month treatment re-
sponse assessment.

(a)

Features p-Value

PVP radiomic features
First-order feature

Uniformity 0.048
Second-order feature

GLCM_Sum Entropy 0.040
DeltaP radiomic features

First-order feature
Entropy 0.045

Uniformity 0.029
Second-order feature

GLCM_Difference Variance 0.011
GLCM_Joint Energy 0.040
GLCM_Joint Entropy 0.037
GLCM_Sum Entropy 0.033

GLRLM_Gray-Level Non-Uniformity 0.031
GLRLM_Gray-Level Non-Uniformity Normalized 0.037

GLRLM_Run Entropy 0.010
GLSZM_Gray-Level Non-Uniformity Normalized 0.010
GLSZM_Size Zone Non-Uniformity Normalized 0.003

GLSZM_Small Area Emphasis 0.003
GLDM_Dependence Entropy 0.029

GLDM_Gray-Level Non-Uniformity 0.019
NGTDM_Contrast 0.029
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Table 3. Cont.

(b)

Features p-Value

Shape and size features
Major Axis Length 0.018

Maximum 3D Diameter 0.049
AP radiomic features

First-order feature
Kurtosis 0.008

Maximum 0.017
Uniformity 0.040

Second-order feature
GLCM_Auto-correlation 0.004

GLCM_Joint Average 0.004
GLRLM_Gray-Level Non-Uniformity 0.049

GLRLM_Gray-Level Non-Uniformity Normalized 0.046
GLRLM_High Gray-Level Run Emphasis 0.004

GLRLM_Long Run High Gray-Level Emphasis 0.021
GLRLM_Short Run High Gray-Level Emphasis 0.004

GLSZM_Gray-Level Non-Uniformity 0.049
GLSZM_High Gray-Level Zone Emphasis 0.005

GLSZM_Small Area High Gray-Level Emphasis 0.005
GLDM_High Gray-Level Emphasis 0.004

GLDM_Small Dependence High Gray-Level Emphasis 0.021
NGTDM_Coarseness 0.049

PVP radiomic features
Second-order feature

GLSZM_High Gray-Level Zone Emphasis 0.046
DeltaP radiomic features

First-order feature
Entropy 0.012

Maximum 0.024
Median 0.049

Minimum 0.014
Range 0.038

Uniformity 0.030
Second-order feature

GLCM_Joint Entropy 0.030
GLCM_Sum Entropy 0.013

GLRLM_Gray-Level Non-Uniformity 0.026
GLRLM_Gray-Level Non-Uniformity Normalized 0.030

GLRLM_Run Entropy 0.009
GLSZM_Gray-Level Non-Uniformity Normalized 0.002

GLDM_Gray-Level Non-Uniformity 0.002
NGTDM_Contrast 0.010
Dosimetric features
V35Gy Percentage 0.035

For the 6-month response rate assessment, 9 features (Radiomic features: n = 8; Shape
and size features: n = 1) were determined as independent predictors (FDR-adjusted p-
value < 0.1, ranging from 0.028 to 0.074), as shown in Table 4b. Among the radiomic
predictors, 4 were DeltaP-derived radiomic features, in which 3 were uniformity- and
entropy-related features (GLCM_Joint Entropy, GLRLM_Run Entropy, GLSZM_Gray-Level
Non-Uniformity Normalized), yielding AUC between 0.699 and 0.788. On the other hand,
4 radiomic predictors were derived from AP MR images, in which 2 were High Gray
Level Emphasis-related radiomic features (GLRLM_Short Run High Gray-Level Emphasis,
GLDM_Small Dependence High Gray-Level Emphasis), yielding AUC between 0.719 and
0.773. Moreover, a shape feature of Major Axis Length of the HCC lesions was selected
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as an independent predictor (FDR-adjusted p-value = 0.074), with an AUC of 0.724. No
PVP-derived radiomic features and dosimetric features were identified as independent
predictors (Table 4b).

Table 4. A list of independent predictors that demonstrated significant clinical association with the
(a) 3-month and (b) 6-month response rate assessment. Statistical significance is indicated by false
discovery rate (FDR)-adjusted p-value, after applying the Benjamini–Hochberg (BH) procedure for
multiple test corrections. AUC, sensitivity, specificity, and p-value obtained from logistic regression
for each of these independent significant predictors are also reported. The superscript a denotes
FDR-adjusted p-values obtained after applying the BH procedure.

(a)

Features FDR-Adjusted
p-Value a AUC Sensitivity Specificity

DeltaP radiomic features
Second-order feature

GLCM_Joint Entropy 0.063 0.690
(0.527–0.843) 0.625 0.667

GLRLM_Run Entropy 0.044 0.734
(0.573–0.869) 0.625 0.667

GLSZM_Gray-Level
Non-Uniformity Normalized 0.038 0.734

(0.566–0.881) 0.625 0.667

GLSZM_Small Area Emphasis 0.038 0.766
(0.600–0.912) 0.625 0.667

(b)

Features FDR-Adjusted
p-Value a AUC Sensitivity Specificity

Shape and size features

Major Axis Length 0.074 0.724
(0.529–0.891) 0.714 0.607

AP radiomic features
First-order feature

Kurtosis 0.028 0.750
(0.589–0.895) 0.786 0.643

Maximum 0.028 0.727
(0.564–0.879) 0.714 0.607

Second-order feature
GLRLM_Short Run High

Gray-Level Emphasis 0.028 0.773
(0.606–0.917) 0.857 0.679

GLDM_Small Dependence
High Gray-Level Emphasis 0.055 0.719

(0.533–0.859) 0.786 0.643

DeltaP radiomic features
First-order feature

Range 0.047 0.699
(0.518–0.865) 0.786 0.643

Second-order feature

GLCM_Joint Entropy 0.070 0.707
(0.527–0.877) 0.643 0.571

GLRLM_Run Entropy 0.047 0.747
(0.593–0.883) 0.714 0.607

GLSZM_Gray-Level
Non-Uniformity Normalized 0.047 0.788

(0.633–0.909) 0.786 0.643

4. Discussion

Unresectable HCC patients present a vulnerable sub-population of liver cancer pa-
tients. Over the years, different forms of combined sequential treatments, such as the
TACE-SBRT and SBRT-Immunotherapy have been investigated as either a curative alter-
native or a bridging therapy for subsequent liver transplantation. For the first time in
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history, a novel sequential TACE-SBRT-Immunotherapy is being introduced in the hope
of integrating the potential synergisms among these three treatment modalities, for this
HCC subgroup in an ongoing phase-II clinical trial [23]. While exciting, the clinical ben-
efits may be restricted only to a small portion of patients, especially when it comes to
immunotherapy [54,55]. In the era of personalized medicine, there is a tremendous demand
for pre-treatment discrimination between responsive and non-responsive candidates in
order to avoid ineffective and toxic therapies in non-respondents.

In this pilot study, we successfully identified four independent predictors (All were
DeltaP-derived radiomics) for 3-month response rate (FDR-adjusted p-value < 0.1, ranging
from 0.038 to 0.063, Table 4a), and nine (four were DeltaP-derived; four were AP-derived;
and one HCC shape feature) for 6-month response rate (FDR-adjusted p-value < 0.1, ranging
from 0.028 to 0.074, Table 4b) to the sequential TACE-SBRT-Immunotherapy regimen in
this prospectively enrolled unresectable HCC sub-population, paving the way towards
effective and safe oncologic care delivery in the long run.

Results of the present study underscored that different modality of the pre-treatment
multi-phasic MR-based radiomics (AP, PVP, and DeltaP) appears to contain specific types
of textural predictors associated with the response rate in unresectable HCC patients
treated by this novel aggressive regimen (Tables 3 and 4). Specifically, the DeltaP-derived
uniformity-related and entropy-related radiomic features were significantly associated
with treatment response rate at both 3-month and 6-month timepoints; and the AP-derived
high gray level emphasis-related radiomic features demonstrated a significant clinical
association, particularly at the 6-month timepoint (Tables 3 and 4).

The four AP-derived radiomic features that emerged to demonstrate significant as-
sociation for 6-month response rate (“GLRLM_Short Run High Gray-Level Emphasis”,
“GLDM_Small Dependence High Gray-Level Emphasis”, “Kurtosis”, “Maximum”) were
related to the hyperintense signal intensity (i.e., the arterial-enhanced signal) on the AP
image (Table 4b). “GLRLM_Short Run High Gray-Level Emphasis” measures the joint
distribution of the short homogeneous runs with high gray-level, with a higher value indi-
cating a greater concentration of high gray-level values within the lesion; “GLDM_Small
Dependence High Gray-Level Emphasis” reflects the joint distribution of small dependence
with higher gray-level values within the lesion; “Kurtosis” is a first-order statistics that
informs the ‘peakedness’ of the distribution of values within the entire lesion, with a higher
value implicating that the mass of the distribution is concentrated towards the tails; and
another first-order measure of “Maximum” that tells the maximum gray-level intensity
within the lesion. Although the biological meaning of these features in the context of HCC
remains to be fully elucidated, they are all related to characteristics and spatial distribution
of hyperintense signals within the lesion on AP images. This can be possibly ascribed by the
fact that AP hyper-enhancement of tumor is a crucial property of HCC lesion [56], which re-
flects the tumor’s capability in generating new blood vessels (termed as neo-angiogenesis),
an ability to drive more nutrition and oxygen supply exclusively from the hepatic arteries.
In fact, “Kurtosis” has been frequently correlated to the response rate in various cancer
types. For instance, Hou et al. conducted a radiomic study for the prediction of tumor
response following systemic treatment of chemoradiotherapy in patients with esophageal
carcinoma and reported that “Kurtosis” was identified as one of the most dominant features
in their combined radiomic models for PR and CR prediction [57]. Moreover, Wang et al.
applied radiomics for predicting tumor response to systemic induction chemotherapy in
patients with nasopharyngeal carcinoma and reported “Kurtosis” as one of the predictive
biomarkers in their MR-based prediction models [58]. Although this study presents a
novel sequential TACE-SBRT-Immunotherapy, we speculated that these radiomic features
characterizing baseline arterial-enhanced signal may be indicative of HCC responsiveness
to treatment perturbations and deserve further in-depth investigations in the future.

Previous studies on multi-phasic MR-based radiomics for tumor response prediction
in HCC patients have mainly focused on TACE treatment [47–49], while those on SBRT
and immunotherapy regimens are scarce or absent. For TACE, Kuang et al. conducted a
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retrospective radiomics study to predict the response of small-sized HCC lesions following
TACE and reported 11 AP-derived and 11 T2-weighted radiomic features as final predic-
tors [47]. More recently, Liu et al. examined the predictive power of multi-phasic MRI
for predicting HCC response following TACE treatment, and reported that 17 AP-derived
and three PVP-derived radiomic features, along with radiomic features from other MR
sequences [48]. However, these studies present a varying degree of disparity in study
design compared with the present work in terms of target population [47], treatment
regimen [47,48], and source images of radiomic features [47,48]. Therefore, a direction
comparison of textual predictors between their studies and the present work appears to be
infeasible and offers little scientific significance. Nonetheless, it is worth noting that the
shape features of HCC seem to be predictive of treatment response despite the mentioned
heterogeneity in study design between studies. In this study, the “Maximum 3D Diameter”
was also found to demonstrate a significant association with treatment response to the
sequential TACE-SBRT-Immunotherapy in the 6-month timepoint (Table 3b). Moreover, the
“Major Axis Length”, another measure of baseline tumor burden which measures the largest
axis length of the HCC-enclosing ellipsoid, was determined as an independent predictor
(Table 4b). This finding is in line with the two previous studies where the “Maximum 3D
Diameter” [47] and “Maximum 2D Diameter Row” [48] were found to be predictive of
TACE treatment. Indeed, this result is also in concordance with the dynamic-CT-based
study conducted by Park et al., where smaller tumor size was a significant predictor for
complete response in HCC patients following TACE treatment [59].

On the other hand, Delta radiomics is a novel concept that reflects the dynamic vari-
ation in radiomic features in longitudinal images, highlighting intratumoral changes in
imaging features and hence implicating the underlying tumoral physiological function.
Compared with non-Delta radiomic features, Delta radiomics has recently been found to
demonstrate higher reproducibility between scanners and institutions in phantom studies,
potentially providing a more generalizable predictive capability, which has gained increas-
ing popularity in the research community [60,61]. Nardone et al. provided a comprehensive
systematic review of the Delta radiomics studies in the body of literature [60]. In the con-
text of treatment response prediction, it has demonstrated ground-breaking evidence in
numerous types of cancer following immunotherapy, including but not limited to renal cell
cancer [62], pancreatic cancer [63], and non-small cell lung cancer [64–67]. Notably, to our
best understanding, this study is one of the very first to report the potential of MR-based
Delta radiomics in associating with treatment response in HCC.

Intriguingly, four DeltaP-derived radiomic features that were selected as independent
significant predictors (Table 4b) were all related to randomness and uniformity of the
spatial distribution of texture within the lesion. They were “GLCM_Joint Entropy” which
measures randomness in signal intensity in neighboring voxels; “GLRLM_Run Entropy”
which measures randomness in the distribution of run lengths and gray levels, with a
higher value reflecting greater textual heterogeneity; “GLSZM_Gray-Level Non-Uniformity
Normalized” which depicts the similarity of normalized gray-level intensity, with a lower
value correlating with a greater similarity; and “Range” which tells the range of signal
intensities within the lesion. These textual reflect the temporal change in the random-
ness and uniformity within the lesion between the AP and PVP MR scans, providing a
better understanding of the intratumoral heterogeneity in time dimension upon arrival
of the imaging contrast agent. Hence, these textual predictors may be indicative of the
aggressiveness of HCC lesions and their responsiveness upon treatment perturbation. In
fact, the radiomic features of “entropy” and “uniformity” have been well-recognized as of
high prognostic value in various cancer types, including but not limited to HCC [68,69],
esophageal cancer [70], lung cancer [71], and squamous cell carcinoma of head and neck
cancer [72]. For instance, Liu et al. selected “Gray-Level Non-uniformity” as one of the
radiomic predictors, which had the largest weight among other predictors, for overall
survival prediction in HCC patients [68]. Another study conducted by Ganeshan et al.
revealed that a higher hepatic entropy and lower uniformity often reflect a more complex
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tumor heterogeneity [73]. Along this line of thinking, Mulé et al. analyzed pre-treatment
contrast-enhanced CT-based textures for overall survival prediction in advanced HCC
patients following treatment with Sorafenib [69]. They reported a significant correlation
between tumor heterogeneity and entropy at both AP and PVP phases, and particularly, the
PVP-derived entropy was determined to be an independent prognostic factor [69]. These
findings may partly explain why the four entropy- and uniformity-related features were
determined to be of a significant clinical association with treatment response.

On the other hand, it is worth noting that the studied dosimetric data from the
SBRT plan appeared to be not predictive of HCC treatment response prediction in this
study. The dose parameter of V35Gy was identified as a significant predictor only for the
6-month timepoint under univariate analysis (Table 3b), which might imply that a dose
threshold 35 Gy was required to trigger tumor responses. The biological effective dose
for 35 Gy in five fractions was calculated as 59.5 Gy (α/β = 10), which was the minimum
effective dose fractionation scheme mentioned in a systematic review and meta-analysis [74].
However, it was not shown predictive after multiple test corrections (Table 4b). In our
study, SBRT was prescribed based on the isotoxic principle that the radiation dose was
individualized based on tumor size, volume, and proximity of organ-at-risk. Such strategy
was commonly adopted in treating large-sized, locally advanced HCC and often resulted in
a heterogeneous dose [75,76]. Our study showed that the dose of 27.5–30 Gy was equally
effective in terms of tumor response. The potential explanation is that immunotherapy
may have sensitized the tumor to radiotherapy and that lower radiation doses can attain
similar local control, as demonstrated in the pre-clinical study [77]. With this regard, it
is interesting to note that while dosimetric parameters have been predictive mainly in
the areas of toxicity prediction [37,38,78–81], there is scarce or none in treatment response
prediction. The underlying reasons remain unknown, and it definitely represents an
interesting research area for future scrutinization.

From a public health standpoint, the findings of this study demonstrated the feasibility
of using cost-effective radiomics techniques in associating with treatment response in a
highly vulnerable sub-population of HCC patients following a novel aggressive treatment.
Patients in this subgroup often suffer not only from HCC but also other liver-related dis-
eases, such as portal hypertension and ascites due to liver cirrhosis [82]. Taken together
with the desperately poor survival rate, tremendous burdens have been placed on this
patient subgroup and the healthcare system. Although the pioneering sequential TACE-
SBRT-Immunotherapy regimen offers both local-regional and whole-body systemic therapy
to this subgroup, the underlying toxicity profile remains unclear. In the long term, the
results of this study may provide valuable insights into pre-treatment identification of re-
sponding and non-responding candidates for this novel treatment, so as to avoid ineffective,
toxic, and costly therapies to refractory patients, while streamlining medical resourcing
allocations within the healthcare system. Several limitations of this study should be ac-
knowledged. First, the cohort of patients was small due to the stringent patient inclusion
criteria for receiving the novel aggressive treatment in the prospective clinical trial. This
limitation diminishes the strength of our results and prevents the possibility of using ma-
chine learning, AI algorithms or other sophisticated classification techniques for prediction
model development [28]. Despite this, we were able to identify specific types of radiomic
predictors from different multi-phasic MR images that can predict tumor response during
sequential TACE-SBRT-Immunotherapy regimen, and provide classification performance
at the individual feature level. More importantly, the key novelty of this present work
lies in that we demonstrated the feasibility of using multi-phasic MR-based radiomics for
predicting tumor response to the novel aggressive therapy in a vulnerable subgroup of
HCC patients. Notably, patient recruitment in the clinical trial is continuously undertaken,
and a larger-cohort study is anticipated and will be part of our future plan. Moreover,
the reproducibility of radiomic features against tumor segmentation variability, and the
correlation between radiomic features and genetic data were not investigated in this study.
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Moving forward with a larger cohort of patients, these should be considered when it comes
to building robust predictive models for clinical use in the future.

5. Conclusions

In this pilot study, we successfully demonstrated that four DeltaP-derived radiomic
features (characterizing temporal change in intratumoral randomness and uniformity),
four AP-derived radiomic features (reflecting baseline tumoral arterial-enhanced signal
pattern), and a tumor morphology (denoting initial tumor burden), were determined to
be significantly associated with the 6-month response rate in unresectable HCC lesions
following aggressive TACE-SBRT-Immunotherapy regimen, while the DeltaP-derived
radiomics were the only contributors to the response rate at 3-month timepoint. While
results indicated a potential for pre-treatment discrimination between responding and non-
responding unresectable HCC candidates for this novel treatment, a larger study cohort is
warranted in the future to validate the results of this work.
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