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Simple Summary: High-grade ovarian epithelial cancer (HGOEC) is considered to be among the
most fatal gynecological cancers, and it is associated with poor response to treatment and adverse
prognosis, possibly due to marked intratumoral heterogeneity. The aim of this study is to present a
novel technique that can assess intratumoral cellularity based on quantitative features extracted from
medical images, denoted as radiomics, advanced image processing and artificial intelligence algo-
rithms, in an attempt to offer biomedical engineers and health professionals a tool for personalized
medicine. According to our results, the average accuracy rating of the proposed method in our study
population (n = 22) was over 85%.

Abstract: Purpose: Tumor heterogeneity may be responsible for poor response to treatment and
adverse prognosis in women with HGOEC. The purpose of this study is to propose an automated
classification system that allows medical experts to automatically identify intratumoral areas of
different cellularity indicative of tumor heterogeneity. Methods: Twenty-two patients underwent
dedicated pelvic MRI, and a database of 11,095 images was created. After image processing techniques
were applied to align and assess the cancerous regions, two specific imaging series were used to
extract quantitative features (radiomics). These features were employed to create, through artificial
intelligence, an estimator of the highly cellular intratumoral area as defined by arbitrarily selected
apparent diffusion coefficient (ADC) cut-off values (ADC < 0.85 × 10−3 mm2/s). Results: The average
recorded accuracy of the proposed automated classification system was equal to 0.86. Conclusion: The
proposed classification system for assessing highly cellular intratumoral areas, based on radiomics,
may be used as a tool for assessing tumor heterogeneity.

Keywords: ovarian epithelial cancer; radiomics; artificial intelligence classification; quantitative
characteristics; tumor heterogeneity; medical image processing

1. Introduction

High-grade ovarian epithelial cancer (HGOEC), also known as high-grade serous
ovarian carcinoma, is considered to be a particularly aggressive form of ovarian cancer
accounting for 207,252 deaths in 2020, according to [1]. It is the most common type of
ovarian cancer and is characterized by rapid growth and early metastasis [2]. It is the
third most common gynecological malignancy worldwide [1], and although there was a
decreasing trend in the incidence and mortality rates of ovarian cancer globally between
1980 and 2018, a substantial increase in the incidence of ovarian cancer was observed in
younger females [3] and accounted for over 70% of deaths among patients with ovarian
carcinoma [4].
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The presence of intratumoral heterogeneity, or the diversity of cell types and genetic
mutations within a single tumor, is considered to play a significant role in the development
and progression of cancer [5]. Intratumoral heterogeneity can make it more difficult to
diagnose and treat cancer because different cells within the tumor may respond differ-
ently to treatment [6]. For example, some cells may be more resistant to chemotherapy or
radiation therapy. Additionally, intratumoral heterogeneity can also lead to the develop-
ment of therapy-resistant subclones, which can ultimately result in tumor recurrence and
poor patient outcomes. Overall, understanding intratumoral heterogeneity is crucial for
the development of personalized medicine, as it is important that the treatment strategy
takes into account the specific genetic mutations and cellular characteristics of a patient’s
tumor [5,6].

In patients with HGOEC, magnetic resonance imaging (MRI) may be used to assess
the presence of intratumoral heterogeneity, as it can provide useful information to evaluate
the imaging characteristics in the different areas of a tumor. MRI scanning can also help the
medical doctor to identify areas of high cellularity, cellular atypia, or necrosis, which may
be indicative of tumor heterogeneity. Moreover, functional techniques, such as diffusion-
weighted imaging (DWI), are a way to obtain information since highly cellular tissues
usually exhibit lower apparent diffusion coefficient (ADC) values than healthy tissue
because the water diffusion is restricted by the high cellularity and the disorganized
architecture of the tumor [7,8].

The assessment of MRI data can be based on radiomics by providing a more compre-
hensive and objective characterization of the tumor, allowing for a more accurate diagnosis
and prognosis, as they express features of medical images as a series of quantitative
data [9,10]. Radiomic features extracted from the tumor’s images can be based on texture,
shape, size and intensity, and they can be indicative of the tumor’s biological behavior pro-
viding information that is not visible during visual inspection. As ovarian tumors exhibit
extensive morphological characteristics [11,12], quantification of the imaging information
can be potentially used in fully or semi-automated procedures by employing artificial
intelligence techniques in decision support systems (DSS).

In the fairly recent past, radiomics-based analysis has been employed in order to
correlate ovarian cancer phenotype, primarily from Computed Tomography (CT) imaging
data, with specific gene patterns and survival rates. Based on various studies performed
by The Cancer Genome Atlas (TCGA) Research Network, the classification of ovarian
cancer (CLOVAR) model was proposed, which relies on microarray transcriptomic profiles,
which in turn were used as a prognostic algorithm for high-grade serous ovarian cancer
(HGSOC) [13]. Moreover, the relationships between features extracted from CT images
and CLOVAR subtypes of HGSOC were assessed [14]. Furthermore, several quantitative
metrics acquired from CT imaging data were proposed for expressing spatial inter-site
imaging heterogeneity in HGSOC [15]. To our knowledge, the assessment of ovarian cancer
heterogeneity in MRI data is not a widely explored subject, especially for HGOEC.

The aim of this study is to present a novel classification method for assessing imaging
data and depicting highly cellular tissue within the cancerous tumor based on radiomic
features extracted from multiple magnetic resonance imaging sequences. The proposed
system identifies intratumoral areas with low ADC values based on the hypothesis that
marked tumor heterogeneity may potentially affect prognosis and treatment, as the scope
of imaging informatics is to improve efficiency, accuracy and reliability of services among
the medical society [16].

2. Materials and Methods
2.1. Data Acquisition and Datasets

Between March 2019 and March 2022, pelvic MRI scans were performed on 22 women
(age: 38–88 years, mean age: 61 years). The data were acquired at the Department of
Radiology of the National and Kapodistrian University of Athens in a 3.0-T MRI scanner
(Philips Healthcare, Best, The Netherlands). The particular individuals were considered
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potential HGOEC cases, according to clinical examination and laboratory findings. At
the time, none of them had received treatment for HGOEC or had any other conditions
requiring an MRI scan.

MR images created a database of 11,095 images with pelvic cancerous regions, with
a size of 448 × 448 pixels. According to the acquisition protocol designed for this study,
those images came from the following sequences:

• T2-weighted DIXON sequences in the axial plane;
• Diffusion-weighted imaging (DWI) in the axial plane.

2.2. Algorithm

The goal of this study is to locate the regions of the tumor with low ADC values.
This is achieved through a combination of image processing techniques and artificial
intelligence. The overall procedure can be summarized in the following steps, which are
performed sequentially:

• Image registration: The process of aligning two or more medical images of the same
or different modalities (such as CT, MRI, PET, SPECT, or ultrasound) to analyze them.
In our case, the T2-weighted and the DWI images are aligned.

• Image segmentation: The process of dividing an image into multiple regions or
segments, each of which corresponds to a different anatomical structure or tissue type.
The goal of medical image segmentation is to detect the outline of the cancerous region.

• Image extraction: The process of extracting the cancerous region. The image extraction
is needed for both the machine learning pipeline itself and the validation of the whole
model through the comparison with the ADC values derived from the DWI sequence.

• Feature extraction: The process of extracting quantitative characteristics, called ra-
diomic features, from the above-mentioned extracted images.

• Feature selection: The process of identifying the subset of the most relevant and useful
features from the extracted radiomic features.

• Classification: A machine learning technique that involves training a model to assign a
class label to the input data, namely the set of T2-weighted images, on a pixel-by-pixel
basis, in an attempt to characterize each region of the data as potentially dangerous
or non-dangerous.

The overall processing flow of the proposed system is presented in Figure 1.
As can be seen in Figure 1, the first step is to align the images. In order to accomplish

this, a two-stage registration technique is employed. Image registration is the spatial
alignment of an imaging dataset (moving) with respect to a reference dataset. This is
achieved through a recursive process of gradually transforming the images until they
are finally aligned. In each iteration, the parameters of a geometrical transformation are
calculated according to an optimization algorithm, and the similarity of the transformed
images is assessed using a measure of the match [17]. In the case of this study, an initial,
fast registration was performed using the Affine transformation, Downhill Simplex as an
optimization method and the Mattes mutual information as a measure of the match [18,19].
Subsequently, a second, thorough registration step was performed based on the non-rigid
Demon algorithm. The particular technique freely deforms the images by defining an
elastic deformation field [20]. The DWI datasets used in this study comprise several
subseries corresponding to the different b-value in each case. Those subseries have no
spatial differences. Therefore, by applying the above registration scheme, subseries for
all b-values are automatically aligned to the T2-weighted images. The same method is
employed for aligning the ADC images to the T2-weighted images. ADC image alignment
is necessary as ADC maps are used as “the golden standard” to validate the prediction of
the model. The accuracy of the alignment is measured quantitatively using the root mean
square difference between the point intensities of the initial images that need to be aligned
(DWI and ADC datasets) and the reference dataset, which in our case is the T2-weighted
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dataset [21]. In effect, the smaller this difference is, the better the compared datasets match
and hence the more accurate their alignment.
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Once both the DWI and ADC image series are spatially matched, it is possible to
detect the anatomical region of the tumor from the DWI series. For this purpose, the
K-Means clustering algorithm is applied to the images acquired with a b value equal to
1200 s/mm2 for automatically identifying the whole tumor [22,23]. Two radiologists with
more than 10 years of experience in gynecological imaging were assigned to separately
read the original images and select the cancerous regions by manual segmentation in
order to validate qualitatively the regions that were automatically extracted through the
K-Means clustering approach.

After distinguishing tumorous and non-tumorous areas, it is possible to define the
outline of the cancerous region. In each case, the particular region was extracted as a new
image. At the same time, the low ADC region of the tumor was automatically extracted
from the images derived from the MRI and used as a “golden standard” to validate
the proposed model. The ADC cut-off selected to define the “highly cellular tumorous
area” was 0.85 × 10−3 mm2/s according to the radiologists’ personal experience and
data obtained from the literature [24–26].

In order to assess the heterogeneity of the neoplasm itself, in search of the low ADC
region within the tumor, a feature extraction technique was employed to extract the quanti-
tative characteristics of the region of interest. The pre-processed image series, along with
their corresponding masks, that is, pixels with useful information versus background, were
used, and feature extraction was performed in each slice of the volumetric imaging data,
providing a total of 1242 features. After removing the constant features, which are the
features that do not differ from image to image, an optimal subset of the original feature



Cancers 2023, 15, 1058 5 of 13

vector is selected through a recursive feature elimination cross-validation process [27].
In the case at hand, the aim was to reduce the dimensionality n of the feature space F
in order to overcome the risk of overfitting by recursively evaluating our classification
process. To produce a feature ranking, we tested two optimization methods. First of all, a
support vector machine (SVM) was used as a type of supervised learning algorithm for
the classification of the pixels. The learning method used by SVM is based on the concept
of maximal margin classification, which involves finding the hyperplane with the largest
possible margin (the distance between the hyperplane and the nearest examples) that
separates the classes. This can be formulated as an optimization problem, where the goal is
to find the hyperplane that maximally separates the classes while minimizing the number
of misclassified examples. To solve this optimization problem, SVMs use the concept of
kernel functions, which map the input data into a higher-dimensional space, where it may
be easier to find a hyperplane that separates the classes. The kernel function is chosen
based on the characteristics of the input data, and it can be used to transform the data into a
space where it is linearly separable, even if it is not linearly separable in the original space.

The second method employed during training was stochastic gradient descent (SGD),
where the goal is to learn the parameters of the model that minimize the loss function,
which measures the difference between the model’s predictions and the true class labels of
the examples in the training set. SGD involves iteratively updating the model parameters
in a direction that minimizes the loss function. At each step, SGD uses a randomly chosen
subset of the training examples (called a mini-batch) to compute an estimate of the gradient
of the loss function with respect to the model parameters. The model parameters are
then updated in the opposite direction of the gradient, with the step size determined by a
learning rate hyperparameter.

Ten-fold cross-validation was implemented in order to minimize the risk of overfitting
and the limited data sample [28]. Ten-fold cross-validation is a resampling procedure used
to evaluate machine learning models on a limited data sample. This is achieved by splitting
the whole dataset into ten groups, excluding one each time and keeping the rest nine
groups for training the algorithm. The excluded group is used for validation (testing). This
process is repeated 10 times, which is equal to the number of groups created. The efficiency
of the produced feature subset was assessed with respect to the limited dataset available for
the purposes of this study. Finally, in the testing phase, the points of the tumorous region
of a new patient were split into blocks of 400 points (pixels), and the points of every block
were classified as low-value ADC region or not, while the selected features of each block
were fed into the machine learning classifier for testing. The accuracy score is derived by
comparing the predicted value of every point classified by the model to the respective ADC
value of the DWI sequence.

2.3. Radiomics

In addition to the original images themselves, several other qualitative features were
used for classifying the tumorous regions. Those features were extracted by applying the
following filters [29–32]:

• Wavelet filter: A wavelet filter is a mathematical tool used, in our case, to analyze
and process image data signals. It is based on the concept of wavelets, which are
small, localized functions that can be used to represent signals at different scales
and resolutions. This filter applies a wavelet filter to the input image and yields the
decompositions and the approximation.

• Laplacian of Gaussian filter: The particular filter applies a Laplacian of Gaussian filter
to the input image and yields a derived image for each sigma value specified. A
Laplacian of Gaussian image is obtained by convolving the image with the second
derivative (Laplacian) of a Gaussian kernel.

• Square filter: Takes the square of the image intensities and linearly scales them back to
the original range. It is used to enhance certain features or attributes of the T2-weighted
image, such as sharpness and contrast.
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• Square root filter: The square root filter is a type of image processing technique that
is used to enhance the contrast and texture of the input image. It takes the square
root of the absolute image intensities and scales them back to the original range. The
square root filter works by raising each pixel value in the image to the power of 0.5
and has the effect of enhancing the contrast of the image, increasing the visibility of
small structures.

• Logarithm filter: The logarithm filter works by applying a logarithmic transformation
to the pixel intensity values in the image. This transformation maps the pixel values to
a new scale, which can help to stretch out the differences between pixels with relatively
small intensity values and those with relatively large intensity values. This can make
it easier to distinguish between different tissue types or structures within the image.

• Exponential filter: The exponential filter considers the exponential absolute intensity.
It works by applying a weighted average to the pixel values in a local region around a
central pixel, with the weighting decreasing exponentially as the distance from the
central pixel increases.

• Gradient: The gradient returns the magnitude of the local gradient. The gradient is a
measure of the local intensity change or slope of an image. It is calculated by taking the
derivative of the intensity values in the image with respect to position. The gradient
can provide information about the edges and boundaries of objects in an image, as
well as the texture and shape of these objects.

• Local Binary Pattern: This is a simple and efficient method for extracting texture
features from images. It works by dividing an image into small cells or neighborhoods
and comparing the intensity values of each pixel to the center pixel value. Based on
the comparison, the pixel is assigned a binary value (0 or 1). These binary values are
then concatenated to form a binary pattern, which is a unique descriptor of the texture
in the neighborhood.

For the above-mentioned T2-weighted images, the following categories of features
were extracted [33]:

• Nineteen features from first-order statistics. First-order statistics are a type of feature
that can be extracted from medical images using radiomics techniques. These features
describe the overall distribution of intensity values within an image and can provide
information about the shape, symmetry and intensity range of the structures in the
image. Examples of first-order statistics include the mean, median and standard
deviation of the intensity values within an image.

• Shape-based (2D) features. Shape-based features in radiomics involve the measure-
ment and characterization of the shape of structures in the images. These features can
include measures of size, shape and spatial relationships, such as the volume, surface
area and compactness of a structure. These features are independent of the gray level
intensity distribution in the ROI.

• Features from the gray-level cooccurrence matrix describe the second-order joint
probability function of an image region. One of these features is autocorrelation.
Autocorrelation is a quantitative measure of fineness or coarseness of the texture,
which expresses the average intensity difference between a center point and the points
of the whole region, indicating the spatial rate of change.

• Sixteen features from the gray-level run-length matrix. This matrix corresponds to the
continuous image points that have the same intensity value. One example of such a
feature is the run percentage (RP). RP measures the coarseness of the texture by taking
the ratio of the number of runs and the number of voxels in a region of interest.

• Sixteen features from gray-level size zone that quantifies gray-level zones in an image.
An example of these features is large area emphasis (LAE). LAE is a measure of the
distribution of large area size zones, with a greater value indicative of larger size zones
and more coarse textures.

• Fourteen features from the gray-level dependence matrix (GLDM) that quantifies
gray-level dependencies in an image. An example of these features is dependence non-
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uniformity (DN). DN measures the similarity of dependence throughout the image,
with a lower value indicating more homogeneity among dependencies in the image.

• Five features from the neighboring gray-tone difference matrix, which quantifies
the difference between a gray value and the average gray value of its neighbors
within a distance δ. An example of these features is coarseness, which has been
described above.

2.4. Evaluation Criteria

In order to evaluate the performance of the proposed classification systems, four
well-established metrics were employed: accuracy, balanced accuracy, sensitivity and speci-
ficity [34–36]. Accuracy considers the sum of the True Positive and True Negative elements
as the numerator and the sum of all the entries of the confusion matrix as the denominator.

In other words, it refers to the percentage of correct predictions made by a classifier
out of all the predictions made. It is a common metric used to evaluate the performance of
a classifier, and it is calculated by dividing the number of correct predictions by the total
number of predictions. The basic element of the metric is every pixel of the tumorous area.
Each unit has the same weight, and they contribute equally to the accuracy values. [34].

Balanced accuracy is a metric for evaluating the performance of a classifier, specifically
when the classes in the data are imbalanced. It is calculated by taking the average of the
recall for each class, where recall is defined as the number of True Positive predictions
made by the classifier divided by the total number of instances of the class in the data. It is
used because our initial set of data is unbalanced [34].

Sensitivity (or recall) is the fraction of True Positive elements divided by the total
number of positively classified units. Sensitivity measures the model’s predictive accuracy
for the positive class. Specificity, respectively, is the proportion of the True Negatives
correctly identified by a diagnostic test. It suggests how good the test is at identifying
normal (negative) conditions. In all cases, the results of the classification system were
compared against the ADC-based regions, focusing on the highly cellular tumor area.

All image processing routines were developed using the Insight Toolkit (ITK) [37].
The resulting 3D models used for assessing the extracted tumorous regions were visualized
through the Visualization Toolkit (VTK) [38]. The classification pipeline framework was
implemented using Python 3.6 [39], and the extraction of the radiomics features was based
on the pyradiomics 3.0.1 package [40].

3. Results

Data from all 22 MRI datasets were processed to produce respective 3D models of the
tumors in each case. Initially, the estimated 3D models were assessed qualitatively by means
of visual inspection of the extracted tumors. After the extraction of the tumorous regions
from the 3D models and the generation of the training data, the proposed classification
system was applied to the extracted regions of interest in order to classify their pixels. The
validation was performed using the respective ADC values per point derived from the
diffusion-weighted images.

Table 1 illustrates the accuracy, balanced accuracy, sensitivity and specificity scores
for 22 models, leaving one patient out each time, treated as a new patient. As can be
seen in Table 1, the average recorded accuracy of the SGD classification algorithm over all
examined cases was 0.89, while the balanced accuracy was estimated to be 0.84.
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Table 1. Prediction Results.

Patient
Accuracy Balanced Accuracy Sensitivity Specificity

SVM SGD SVM SGD SVM SGD SVM SGD

1 0.55 0.78 0.69 0.55 0.44 0.97 0.94 0.12
2 0.99 1 0.86 1 0.99 1 0.73 1
3 0.99 1 0.91 0.96 0.99 1 0.81 0.92
4 0.98 1 0.99 1 0.98 1 1.00 1
5 0.86 1 0.93 1 0.86 1 1.00 1
6 0.98 1 0.50 1 1.00 1 0.01 1
7 0.63 0.68 0.58 0.77 0.67 0.59 0.49 0.94
8 0.99 0.98 0.99 0.99 0.99 0.98 1.00 1
9 0.92 0.99 0.94 0.99 0.92 0.99 0.96 0.99

10 0.88 0.85 0.77 0.77 0.92 0.88 0.62 0.65
11 0.97 0.97 0.91 0.94 0.98 0.98 0.83 0.9
12 0.87 0.68 0.87 0.83 0.87 0.67 0.87 1
13 0.99 0.99 0.99 0.86 0.99 0.99 1.00 0.73
14 0.80 0.97 0.77 0.86 0.80 0.98 0.75 0.74
15 0.95 0.98 0.95 0.98 0.90 0.97 1.00 0.99
16 0.74 0.65 0.79 0.74 0.69 0.58 0.89 0.89
17 0.81 0.93 0.78 0.58 0.81 0.94 0.75 0.22
18 0.77 0.88 0.77 0.88 0.85 0.79 0.69 0.97
19 0.99 0.99 0.73 0.62 0.99 0.99 0.48 0.25
20 0.92 0.87 0.67 0.78 0.99 0.9 0.36 0.66
21 0.48 0.59 0.71 0.63 0.42 0.57 1.00 0.69
22 0.87 0.79 0.84 0.86 0.87 0.78 0.81 0.93

Average 0.86 0.89 0.81 0.84 0.86 0.89 0.77 0.8
±Std. Dev. 0.14 0.14 0.13 0.15 0.16 0.15 0.25 0.27

Figure 2 depicts the reconstructed 3D volume of the T2-weighted dataset with
the tumorous regions superimposed, as these were calculated from the ADC values
derived from the DWI sequence using the specified threshold. In the particular example,
three heterogeneity regions are depicted, namely, (a) the red region corresponding to
the highly cellular tumor area, (b) the blue region, corresponding to the low cellular
tumor area and (c) the yellow region, corresponding to the uncertain tumor area, while
Figure 3 depicts the highly cellular tumor area that was estimated using the proposed
classification pipeline for the same patient, superimposed on the T2-weighted dataset.
As can be seen in Figures 2 and 3, the red areas, which correspond to the potentially
dangerous cancerous tissue, are derived from the “golden standard”, and the prediction
model, respectively, and they match closely, indicating that the proposed classification
system performed well for the particular case.

On average, the classification processing pipeline required about 10 min for feature
extraction and classification of each patient (depending on the processed datasets). All
tests were performed on a common reference system (Intel Core i7-1165G7at 3.5 GHz,
40 GB of RAM, running on Debian 11 GNU/Linux).
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4. Discussion

The first step of the proposed study was to form a database of MRI imaging data
with images from patients suspicious of HGOEC. Those images were used to extract ra-
diomic features. Radiomic features enable us to quantify image characteristics and create a
self-learning model for differentiating high and low cellularity areas. The alignment and
segmentation techniques applied to develop the model were evaluated quantitatively and
qualitatively, while the whole artificial intelligence classification system was tested for possi-
ble overfitting over the entire available dataset from the patients recruited during the study.

The presented quantitative and qualitative results demonstrate that the proposed
system provides a good prediction performance concerning the highly cellular tumor area.
By examining Table 1, it can be concluded that, apart from three patients with low accuracy
scores, the majority of the patients showed an accuracy score over 88%, which is considered
acceptable regarding the low number of patients used for training. We believe that the
limitation of the small number of patients from whom the image database was created
leads to a lower accuracy score as the classification accuracy of a machine learning model
is generally related to the amount of data that the model has been trained on. In general, as
the amount of training data increases, the model’s ability to learn and generalize to new
examples tends to improve. This is because a model trained on a larger dataset has the
opportunity to learn more about the underlying patterns and relationships in the data and
can, therefore, make more accurate predictions.

However, the risk of a possible biased result due to the small number of patients in our
dataset is eliminated through the implementation of the specific ten-fold cross-validation
method concerning models based on a limited data sample [28].

Another area for potential future work is to use this algorithm to assess the whole
tumor or even to study a correlation between biomarkers automatically derived from
imaging data and clinical, genomics and/or proteomics data, especially in highly cellular
tumors, as radiomics offer huge opportunities to better capture tumor behavior [41].

Identification of intratumoral genetic heterogeneity, or the presence of genetic varia-
tions within a single tumor, may help identify areas of unexpected, more aggressive tumor
growth. This is because tumors with a high degree of genetic heterogeneity are more likely
to contain subclones or subpopulations of cells that have acquired genetic mutations that
promote the growth and spread of cancer [42].

One way that intratumoral genetic heterogeneity can be identified is through the
use of genomic sequencing techniques, such as whole-genome sequencing or targeted
sequencing of specific genes. These techniques can reveal variations in the DNA sequence
of different cells within a tumor, allowing for the identification of subclones or subpopula-
tions of cells with distinct genetic profiles. In addition, the spatial distribution of genetic
variations within a tumor can also be analyzed through techniques such as single-cell se-
quencing and spatial transcriptomics, which can help map the location of genetic variations
within the tissue.

The knowledge of the presence of subclones with specific genetic characteristics within
a tumor can help guide treatment decisions. For example, if a subclone with a specific
genetic mutation is identified, targeted therapies that target that mutation may be more
effective in treating that particular area of the tumor [43].

Similar studies could be tested on different cancer subtypes where the system can
classify different subtypes of cancer based on imaging, genetic, molecular and clinical
characteristics. Therefore, another possible area for the presented model to be tested is on
different types of abnormalities or lesions in images such as CT or MRI scans.

Consequently, in summary, while similar classification systems could be applied to
various medical data, a good assessment of the tumor through the proposed model offers
an opportunity for an intratumoral genetic heterogeneity study and hence the identification
of areas with potentially more aggressive tumor growth. The identification of specific
genetic mutations or subclones within a tumor can also guide treatment decisions and
personalized medicine approaches [43–45] (personalized medicine).
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5. Conclusions

The intuitive application programming interface allows for the fast building of medical
image segmentation, visualization of the tumor fused in the T2W sequence, pipelines
including data I/O, pre-processing, metrics, a library with state-of-the-art feature extraction
model and model utilization such as training, tumor area classification as well as fully
automatic evaluation.

We propose an effective classification system for assessing highly cellular tumorous
areas with the use of radiomics, extracted through a series of pre-processing steps that
consist of registration, segmentation and feature extraction on imaging data. The proposed
system may be potentially useful for biomedical engineers as a guide to improve the
prediction performance based on classification and could even help medical professionals to
classify patients into different risk groups that can lead to personalized medicine. Accurate
preoperative classification of HGOEC patients into risk categories may be associated with
early customization of treatment, optimizing the therapeutic outcome and thus ultimately
improving patients’ survival rates [46].
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