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Simple Summary: The epigenome is dynamic and flexible and can influence its phenotype by turning
the genes on and off based on the environment to which it is exposed. Significant epigenetic changes
detected are DNA methylation, histone modifications, and RNA-associated alterations. These modifi-
cations are potentially heritable across the genome, leading to transgenerational inheritance, and they
can even be reversible based on lifestyle modifications. This review focuses on the environmental
impact of cannabinoid factors and the subsequent combined effects on epigenetic modifications, such
as cancer metabolism, through a biased G protein-coupled receptor signaling paradigm regulating
several hallmarks of cancer.

Abstract: The concept of epigenetic reprogramming predicts long-term functional health effects. This
reprogramming can be activated by exogenous or endogenous insults, leading to altered healthy and
different disease states. The exogenous or endogenous changes that involve developing a roadmap of
epigenetic networking, such as drug components on epigenetic imprinting and restoring epigenome
patterns laid down during embryonic development, are paramount to establishing youthful cell type
and health. This epigenetic landscape is considered one of the hallmarks of cancer. The initiation
and progression of cancer are considered to involve epigenetic abnormalities and genetic alterations.
Cancer epigenetics have shown extensive reprogramming of every component of the epigenetic
machinery in cancer development, including DNA methylation, histone modifications, nucleosome
positioning, non-coding RNAs, and microRNA expression. Endocannabinoids are natural lipid
molecules whose levels are regulated by specific biosynthetic and degradative enzymes. They bind
to and activate two primary cannabinoid receptors, type 1 (CB1) and type 2 (CB2), and together with
their metabolizing enzymes, form the endocannabinoid system. This review focuses on the role of
cannabinoid receptors CB1 and CB2 signaling in activating numerous receptor tyrosine kinases and
Toll-like receptors in the induction of epigenetic landscape alterations in cancer cells, which might
transmogrify cancer metabolism and epigenetic reprogramming to a metastatic phenotype. Strategies
applied from conception could represent an innovative epigenetic target for preventing and treating
human cancer. Here, we describe novel cannabinoid-biased G protein-coupled receptor signaling
platforms (GPCR), highlighting putative future perspectives in this field.

Keywords: health-related diseases; cardiovascular diseases; metabolic disorders; epigenome;
epigenetic reprogramming

1. Introduction

‘Epigenetic’ refers to “on top of or in addition to genetics.” A genome is the set of
genetic information in the cell’s DNA. Every body cell has the same genome, though their
respective phenotypes are different due to the control of gene expression [1]. An epigenome
consists of a series of chemical compounds and complex external modifications that can
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cause changes in the genomic DNA without causing any changes to the DNA sequences of
a gene, giving each cell a unique cellular and developmental identity [2]. The epigenome of
an organism is dynamic and flexible and can influence its phenotype by turning the genes
on and off based on the environment to which it is exposed [1]. Some significant epige-
netic changes detected are DNA methylation, histone modifications, and RNA-associated
alterations. These modifications are potentially heritable across the genome, leading to
transgenerational inheritance. They can even be reversible based on lifestyle modifica-
tions [1]. This review focuses on the impact of cannabinoid factors and the subsequent
combined effects on epigenetic modifications, such as cancer metabolism, through a biased
G protein-coupled receptor signaling paradigm regulating several hallmarks of cancer.

2. Cannabis and the Endocannabinoid System

The cannabis sativa plant comprises over 550 chemical compounds [3]. Of these
compounds, more than 100 have been identified as phytocannabinoids—plant-derived
natural products that act on the endocannabinoid system (ECS) [3]. The most well-studied
phytocannabinoids include delta-9 tetrahydrocannabinol (THC), cannabidiol (CBD), and
cannabigerol (CBG) [4]. THC is the primary cannabis psychoactive component and is part
of the chemical class that constitutes most of the phytocannabinoid content in C. sativa. [3,5].
In comparison, CBD is a principal non-psychoactive constituent of cannabis with various
pharmacological actions. At the same time, CBG is a minor constituent that serves as
the direct precursor to CBD and THC [4]. Endocannabinoids and synthetic cannabinoids
represent two other groups of chemical compounds that share similar structures and
characteristics to the phytocannabinoids isolated from C. sativa. [6]. Endocannabinoids
are chemical compounds naturally produced within the human body, while synthetic
cannabinoids are produced in the laboratory [6]. The two major endocannabinoids are
anandamide (AEA) and 2-arachidonic glycerol (2-AG) [7]. Synthetic cannabinoids represent
a large group of chemical compounds, and much research has focused on developing
synthetic cannabinoids for medical research purposes and promising therapeutic tools [8,9].

Cannabinoid receptors, belonging to the G-protein coupled receptor (GPCR) family,
mediate the biological activity of both endogenous and exogenous cannabinoids [10]. The
primary cannabinoid receptors within the body are the CB1 and CB2 receptors [11]. The
activation of CB1 and CB2 receptors stimulates cellular signaling via the G alpha subunit
(Gi/o), leading to the inhibition of adenylyl cyclase and the subsequent stimulation of
protein kinases that play a crucial role in multiple signaling pathways, including mitogen-
activated protein kinase (MAPK) pathways, phosphoinositide 3-kinase (PI3K) pathways,
and cyclogeneses (COX) 2 pathways [12]. CB1 is the most abundant GPCR expressed in the
mammalian brain [13]. Specifically, the CB1 receptor has high expression in brain regions
involved in learning and memory (e.g., hippocampus), motor coordination (e.g., basal
ganglia, cerebellum), and cognitive and emotional processes (e.g., amygdala, prefrontal
cortex), allowing it to mediate most of the neurobehavioral effects of THC [11,14]. Although
a long-standing belief existed that CB2 receptor expression was restricted to peripheral
tissues and predominantly in immune cells, low expression of CB2 receptors in the brain
has also been reported [15]. CB1 and CB2 receptor expression occurs in tissues outside the
central nervous system, including skeletal muscle, liver, immune cells, and reproductive
organs [16]. Furthermore, recent studies suggest that other GPCRs besides CB1 and CB2
could also mediate the intracellular effects of cannabinoids, such as GPR18 and GPR55 [17].

Cannabis is widely recognized for its recreational use due to its psychiatric effects,
including anxiolysis and euphoria [18]. Moreover, medicinal cannabis is being increasingly
explored as a potential therapy to treat various conditions, including chronic pain, vomiting,
and nausea due to chemotherapy, depression, anxiety disorder, sleep disorder, and even
cancer therapy [19,20]. Despite growing interest in the therapeutic potential of cannabi-
noids, further research is needed to develop a more comprehensive understanding of the
adverse effects of cannabis use [21,22]. Of particular significance are studies that assess the
impact of cannabinoids on the tumor microenvironment and epigenetic reprogramming.
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3. Cannabis and Cancer Metabolism
Cannabis and the Endocannabinoid System’s Potential as a Cancer Therapeutic

Given the growing interest in cannabis, there is more research on the effects CB1
and CB2 have on tumor growth and metastasis [23]. Several studies have identified a
correlation between cannabinoid receptor upregulation, endocannabinoid metabolic en-
zymes, and ligands in cancerous tissue [24–27]. If ligand and receptor upregulation is
correlated with cancerous tissue, it suggests that the ECS plays a role in cancer modula-
tion. Chakravarti et al., [26] found that cannabinoids mediate cancer cell signaling. How-
ever, a study by Velasco et al., [28] demonstrated that C. sativa L.’s cannabinoid and non-
cannabinoid secondary metabolites have apoptotic, anti-inflammatory, and anti-metastatic
properties suggesting cannabis’ properties may be harnessed for anti-cancer therapeutics.

Several in vitro and in vivo studies found that THC and JWH-133, a CB2 agonist,
exert anti-proliferative and anti-angiogenic effects on ErbB-2 breast cancer by reducing
MMP-2 (Matrix metalloproteinase) and MMP-9 (Matrix Metalloproteinase-9) levels [29–31].
Additionally, CBD reduces A549 lung cancer cells through upregulating tissue inhibitors of
MMP-1 (TIMP-1) and reducing plasminogen activator inhibitor-1 (PAI-1) [32,33]. JWH-133
inhibits MMP-2 secretion to induce anti-angiogenic properties in A549 cells [34]. Moreover,
cannabinoids appear to have anti-proliferative effects on tumors through anti-invasion
properties and inhibiting MMPs, impacting cancer metastasis through ECM (Extracellular
matrix) degradation [31]. Additionally, the results of some studies suggest cannabinoids
may affect EMT (Epithelial-mesenchymal transition) and chemoresistance. For example,
the cannabinoid 2-methyl-2′-F-anandamide reduces β-catenin nuclear translocation and
transcriptional activity, inhibiting the Wnt/β-catenin pathway [35]. As a result, the ex-
pression of β-catenin target genes such as MMP-2, c-Myc, and cyclin D are reduced [35].
Additionally, mesenchymal markers such as N-cadherin, Slug, and Snail are reduced [35].
One study by Caffarel et al., [31] found that a selective inhibitor of the monoacylglyc-
erol lipase (MAGL), a key enzyme in the human endocannabinoid system, that degrades
2-arachidonoylglycerol metabolism, reducing EMT markers and upregulates epithelial
markers, including E-cadherin. In breast cancer, the GPCR receptor, GPR55, heterodimer-
izes with CB receptors, and its targeting impacts tumor growth [36]. Additionally, CB2
heterodimerization with human epidermal growth factor receptor 2 (HER2) and C-X-C
chemokine receptor type 4 activates CB2 and inhibits signaling of the aforementioned
(word for HER2 and C-X-C), suggesting its potential as an anti-tumor therapeutic [37].
Several studies report that dysregulation of the ECS during carcinogenesis may result in
increased cancer aggression [38–42] as the endocannabinoid system is involved in various
aspects of tumorigenesis [28,43–45]. For example, studies have linked cannabinoids to
promoting apoptosis, inducing cell cycle arrest, and having a role in the invasion and
self-renewal of tumor cells [28,44–46]. In pancreatic cancer, cannabinoids cause apoptosis
by inhibiting pancreatic beta cell insulin receptor signaling, which interacts with the CB1
receptor from the MAPK and extracellular signal-regulated kinase (ERK) pathways [47,48].
In breast cancer, the inhibition of the epidermal growth factor (EGF), nuclear factor kappa B
(NF-kB), ERK/Akt, and MMP 2 and 9 signaling pathways due to ECS activation results in
anti-proliferative effects [49]. The ECS’s ability to inhibit tumorigenesis and other aspects
of cancer growth makes it a novel target when treating various cancers. However, more
research is needed to define the ECS’ role in tumor heterogeneity and how its signaling
impacts the activation of other signaling pathways involved in cancer progression.

4. Cannabis and Epigenetics
4.1. Cannabis-Induced Epigenetic Effects

Although experimental data about the epigenetic modifications induced by cannabis
remain sparse, studies have begun to reveal specific epigenetic modifications associated
with cannabis exposure [20]. Modifications of the epigenetic marks such as DNA methy-
lation, histone modifications, and changes in non-coding RNA (ncRNA) regulate gene
expression by altering DNA accessibility and chromatin structure [50]. Recently, much
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research has focused on the association between developmental cannabinoid exposure
and aberrant epigenetic markers that could modulate the risk of disease [51]. One study
by Schrott et al. demonstrated an association between cannabis use in adult males with
significant hypomethylation at 17 CpG sites within the autism candidate gene Discs-Large
Associated Protein 2 (DLGAP2) in sperm [52]. In a follow-up animal study, the research
group demonstrated intergenerational inheritance of this altered DNA methylation pattern,
specifically identifying four CpG sites within the DLGAP2 gene with significant hypomethy-
lation in cannabis-exposed offspring rats compared to controls [52]. Another study by
Szutorisz et al. demonstrated that the offspring of parents exposed to THC during their ado-
lescence had an increased propensity to self-administer heroin as adults despite not being
exposed to THC themselves [53]. A subsequent investigation of the molecular mechanisms
that enable parental THC exposure to influence addictive behavior in offspring revealed
1027 differentially methylated regions in the nucleus accumbens of rats with parental THC
exposure [54].

Moreover, one study demonstrated that prenatal cannabis exposure decreased the
expression of dopamine receptor D2 (D2R) mRNA—a consistent feature observed in adults
with substance use disorders in the human ventral striatum [55,56]. Mechanistic studies
in rats revealed that decreased D2R expression in THC-exposed offspring is mediated
by epigenetic alterations, specifically by increased dimethylated lysine 9 (2meH3K9) and
decreased trimethylated lysine-4 (3meH3K4) on histone H3 [56]. The authors propose
that these epigenetic modifications could contribute to addiction vulnerability later in
life [56]. Prenatal THC exposure can also lead to the differential expression of micro RNA
(miRNAs) [57]. In one study, prenatal THC exposure was associated with the upregulation
of miR-122-5p and the resultant downregulation of insulin-like growth factor 1 receptor
(Igf1r) [57]. The downregulation of this receptor resulted in an increase in follicular apopto-
sis among THC-exposed offspring, leading the authors to speculate whether prenatal THC
exposure may interfere with critical pathways in the developing ovary, ultimately leading
to subfertility [57]. Although studies have begun to reveal associations between cannabis
exposure and epigenetic effects, there is a significant gap in knowledge concerning the
molecular pathways that mediate the epigenetic modifications induced by cannabis [58].

4.2. Molecular Insights into Cannabis-Induced Epigenetic Effects

Current research has only begun to uncover the pathways involved in cannabis-
induced changes in DNA methylation, histone modifications, and miRNA expression [59].
Of the existing research, evidence supports the hypothesis that cannabis can alter the activ-
ity of histone and DNA-modifying enzymes [58]. For example, Khare et al. demonstrated
that THC exposure caused a 3.5-fold increase in histone deacetylase 3 (HDAC3) expression
in the BeWo trophoblast cell line [60]. HDAC3 is a component of the nuclear receptor
corepressor (N-Cor) repressor complex, responsible for the deacetylation of lysine residues
on the N-terminal of core histones [61]. Moreover, multiple studies have examined the effect
of phytocannabinoids on DNA methyltransferases (DNMT) expression [62–66]. One study
compared epigenetic changes in THC-treated and untreated myeloid-derived suppressor
cells (MDSCs) [63]. This study revealed an increase in methylation at the promoter regions
of DNMT3a and DNMT3b in THC-exposed cells, resulting in a significantly reduced ex-
pression of these enzymes [63]. A different study revealed that CBD increased global DNA
methylation levels in human keratinocytes by selectively enhancing DNMT1 expression
without affecting DNMT3a or DNMT3b expression [62]. Previous studies indicate that
phytocannabinoids can modulate the expression of histone and DNA-modifying enzymes;
however, the interactions and factors involved in these changes have yet to be elucidated.

Nevertheless, a study by Paradisi et al. investigating the role of the endocannabi-
noid anandamide in inhibiting human keratinocyte differentiation began to characterize
the molecular mechanisms that modulate DNMT activity [67]. The investigators deter-
mined that anandamide can decrease the expression of genes involved in keratinocyte
differentiation by increasing de novo DNMT activity in a CB1-dependent manner [67].



Cancers 2023, 15, 1030 5 of 27

Most importantly, this study revealed that the interaction between anandamide and CB-1
increases DNMT activity through a p38 and, to a lesser extent, p42/44 MAPK-dependent
pathway [67]. Similarly, a more recent study revealed that CBD upregulates the expression
of specific genes involved in melanogenesis in a CB1-dependent manner, mediated by the
activation of p38 and p42/44 MAPK; however, this study did not investigate the role of
DNMTs [68].

Although signaling cascades are often described as isolated entities, biological signal-
ing involves complex interactions between these cascades [69]. For instance, p38 and related
kinases can act as cofactors in NF-κB activation, and significant overlap exists between the
stimuli that activate NF-κB and the stimuli that activate MAPKs [69]. Interestingly, NF-κB
signaling has yet to be studied in cannabinoid-mediated epigenetic effects, even though
its association with MAPKs and its ability to induce epigenetic modifications support its
involvement [69,70]. The NF-κB family consists of five structurally related transcription
factors that form homo- and heterodimers with one another [71]. Inactivated NF-κB dimers
are located in the cytoplasm in association with inhibitory proteins called inhibitors of kB
(IkB) [72]. A plethora of factors can induce the phosphorylation and subsequent ubiquitin-
dependent degradation of IkB, enabling the translocation of its associated NF-κB subunits
to the nucleus, where they can regulate the transcription of many genes [72].

Notably, many studies have demonstrated the role of NF-κB in epigenetic regula-
tion [70]. In human acute myeloid leukemia (AML) cells, Tage et al. demonstrated that
NF-κB complexes with MUC1-C, a transmembrane oncoprotein at the DNMT1 promoter,
drive DNMT1 transcription [73]. A different study supported these results by demonstrat-
ing that the introduction of a proteasome inhibitor known to inhibit NF-κB translocation
caused the transcriptional repression of the DNMT1 gene, leading to the reduced expres-
sion of the DNMT1 protein [74]. Ultimately, this induced global DNA hypomethylation,
enabling the re-expression of epigenetically silenced genes in AML cells [74].

Furthermore, NF-κB can modulate histone acetylation and methylation [75,76]. Numer-
ous studies have demonstrated that can recruit and position chromatin modifiers, such as
acetyltransferases and deacetylases, to the regulatory regions of different genes [70,76–78].
Additionally, one study revealed that the direct binding of NF-κB to the promoter of Jumonji
domain-containing protein-3 (Jmjd3) is necessary to induce the expression of this histone
demethylase [75]. The Jmjd3 demethylase erased the trimethylation marker of lysine 27 on
histone H3 (H3K27me3) and was found to induce the expression of specific genes control-
ling cell fate and differentiation [75]. Another relevant study investigated the involvement
of NF-κB in the epigenetic changes induced by the Epstein-Barr virus (EBV) during the
transformation of resting B-lymphocytes into permanently growing lymphoblastoid cell
lines [79]. This study demonstrated that the NF-κB pathway is essential to EBV-mediated hi-
stone methylation changes, including H3K27me3 and H3K4me3 [79]. Additionally, NF-κB
was found to bind directly to the transcription start site of upregulated and downregulated
miRNAs [79]. In this way, NF-κB directly mediates the expression of miRNAs that control
the translation of mRNA transcripts involved in the growth transformation of B-cells [79].

Existing literature confirms the involvement of NF-κB in the mediation of specific
epigenetic modifications; thus, it is an exciting candidate that may contribute to the epige-
netic changes induced by cannabis. What is intriguing about the effects of cannabis on the
NF-κB pathway is that certain cannabinoids act antagonistically to inhibit this pathway
while others induce its activation [80]. Generally, studies have found that the interaction of
CBD with CB1 and CB2 receptors inhibits the translocation of NF-κB to the nucleus, pre-
venting it from exerting its effects on gene expression [49,81–84]. In contrast, most studies
demonstrate that THC enhances NF-κB translocation to the nucleus [85–88]. One study
showed that treatment with THC induced the phosphorylation of IkB-alpha in dendritic
cells in a CB1- and CB2-dependent manner, enabling the release of NF-κB subunits and
their translocation to the nucleus [85]. The literature suggests that specific components of
cannabis can activate the signaling pathway, which may lead to epigenetic modifications;
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however, it has yet to be elucidated how these CB1 and CB2 ligands can induce opposing
effects on the NF-κB pathway.

Nevertheless, the discovery of biased GPCR agonism may provide unprecedented
insights into the opposing effects mediated by cannabinoids [89]. Upon ligand binding,
GPCRs undergo a conformational change that leads to the activation of the heterotrimeric
G-protein and its dissociation into the Gα subunit and Gβ/y heterodimer [90]. These
subunits interact with many effectors, leading to complex G-protein-mediated signaling
pathways [90]. Biased GPCR agonism refers to the ability of GPCR ligands to activate
distinct intracellular signaling pathways by preferentially stabilizing different active con-
formational states of the receptor [91]. Both orthosteric ligands, such as THC, and allosteric
ligands, such as CBD, tend to induce biased signaling at GPCRs [91]. Importantly, biased
agonism and allosteric modulation have been observed at the CB1 receptor; however, to our
knowledge, biased modulation of NF-κB signaling has yet to be studied in the context of CB
receptors [91]. Cannabinoids may induce epigenetic modifications through the activation of
these glycosylated receptors and the subsequent initiation of NF-κB; however, cannabinoids
do not activate these receptors directly [92]. Rather, the binding of cannabinoids to CB
receptors, as depicted in Figure 1, can stimulate the activity of RTKs, TNFRs, and TLRs
through a process known as transactivation [93–95].
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Figure 1. Bradykinin (BR2) and angiotensin II receptor type I (AT2R) are tethered within a multimeric
receptor IRβ, receptor (TLR) transactivation-signaling axis, mediated by Neu1 sialidase and the
glycosylation modification of TLRs. CB1 cannabinoid receptor with modeled N-terminus and the
locations of orthosteric and allosteric binding sites. Cannabidiol (CBD)—An allosteric ligand, and
∆9-tetrahydrocannabinol (∆9-THC)—an orthosteric ligand of CB1R. According to Lapraire et al., [96]
and Sabatucci et al., [97], CBD ligands very likely bind to the allosteric site 1. The biased GPCR-
signaling platform here potentiates Neu1 and MMP-9 cross-talk on the cell surface, which is essential
for the transactivation of TLRs and subsequent NFκB cellular signaling and inducing epigenetic
rewiring. Notes: TLR ligand, as well as GPCR agonists, can potentiate biased NMBR-TLR signal-
ing and subsequently induce MMP-9 activation and Neu1 sialidase activity. Activated MMP-9 is
proposed here to remove the EBP as part of the molecular multienzymatic complex that contains
β-galactosidase/Neu1 and PPCA. Activated Neu1 then hydrolyzes α-2,3 sialyl residues of TLR
at the ectodomain to remove steric hindrance to facilitate TLR association and subsequent recruit-
ment of MyD88 and downstream signaling. Citation: Taken in part from Qorri et al., (2018) [98],
Jakowiecki et al., (2021) [99], (The article is open access article distributed under the terms and conditions
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of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/
(accessed on 23 April 2021)) and Reber et al., (2009) [100]. (This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are
properly credited).

Matrix metalloproteinase-9 plays a crucial role in the remodeling of the extracellular
matrix. With the novel discovery of receptor transactivation or GPCR agonist-bias signal-
ing, MMP-9 has been shown to play a more prominent role in ECM remodeling. Through
activation of associated GPCRs, such as the angiotensin AT1R and bradykinin receptors,
MMP-9 is activated to induce activation of RTKs such as the TrkA receptor, EGFR, and
IR as well as Toll-like receptors in the complex with NMBR, IR, and Neu1 in naïve (un-
stimulated) and stimulated RAW-blue macrophage cells. Here, a molecular link regulating
the interaction and signaling mechanism(s) between these molecules on the cell surface
uncovers a biased GPCR agonist-induced cell surface and intracellular Toll-like receptor
(TLR) transactivation-signaling axis, mediated by Neu1 sialidase and the glycosylation
modification of TLRs. The biased GPCR-signaling platform here potentiates Neu1 and
MMP-9 cross-talk on the cell surface, which is essential for the transactivation of TLRs and
subsequent cellular signaling.

The initiation of NF-κB signaling can begin with the activation of a variety of glyco-
sylated transmembrane receptors, including receptor tyrosine kinases (RTKs), receptors
for tumor necrosis factor (TNFR), and Toll-like receptors (TLRs) [101–103]. The signaling
pathways induced by these receptors can all lead to the phosphorylation of IkBα, enabling
the translocation of NF-κB to the nucleus [101]. Cannabinoids may induce epigenetic
modifications by activating these glycosylated receptors and initiating NF-kB; however,
cannabinoids do not activate these receptors directly [92]. Rather, the binding of cannabi-
noids to CB receptors can stimulate the activity of RTKs, TNFRs, and TLRs through a
process known as transactivation, as depicted in Figure 1 [94,95,104].

The factors controlling the transactivation of glycosylated receptors by CB receptor
agonists remain poorly understood. To this end, the biased NMBR-MMP9-Neu1 signaling
axis highlighted throughout this review may be essential to transacting RTKs and TLRs by
CB receptor ligands. A series of published studies demonstrated the involvement of this
signaling axis in the transactivation of various receptors, including the insulin receptor [105],
Trk receptors [106], and Toll-like receptors [107]. Notably, one study demonstrated that the
GPCR agonist bombesin could induce TLR4 transactivation via this signaling paradigm,
leading to the activation of NF-κB in BMC-2 and RAW-blue macrophage cells [107].

4.3. Future Directions of Cannabis-Induced Epigenetic Rewiring Research

The literature is conclusive that cannabis can evoke epigenetic modifications; however,
the research on the pathways that mediate these epigenetic changes is still in its infancy [58].
A promising candidate for mediating the epigenetic effects induced by cannabis is NF-
κB [108]. Existing literature demonstrates that certain cannabinoids, including THC and
WIN 55, 212-2, enhance the activation of this pathway, while others, such as CBD, suppress
its activation [80,87,109,110]. This finding supports the involvement of a ligand-biased
signaling paradigm [91]. Specifically, the biased GPCR-Neu1-MMP9 signaling axis, as
depicted in Figure 2, may control the transactivation of RTKs by the cannabinoid receptors,
ultimately leading to the downstream activation of NF-κB and the induction of epige-
netic reprogramming. Interestingly, Rozenfeld et al., [111] found heteromers of type I
cannabinoid GPCR receptor (CB1R) with angiotensin II receptor type 1 (AT1R) mediat-
ing enhancement of angiotensin II-mediated signaling. Haxho et al., [105] found that
angiotensin II GPCR receptor type I forms heteromers with NMBR in a multimeric receptor
complex with Neu1, IRβ, and NMBR in naïve (unstimulated) and stimulated HTC-IR cells
with insulin, bradykinin, angiotensin I and angiotensin II (Figure 2).

http://creativecommons.org/licenses/by/4.0/
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Figure 2. Angiotensin II receptor type I (AT2R) forms a multimeric receptor complex with neu-
romedin B GPCR (NMBR), insulin receptor β subunit (IRβ), and neuraminidase-1 (Neu1) in naïve
(unstimulated) and stimulated HTC-IR cells [105]. Here, the interaction and signaling mechanism(s)
of these molecules uncover a biased GPCR agonist-induced IRβ trans-activation signaling axis,
mediated by Neu1 sialidase with the modification of insulin receptor glycosylation. The biased G
protein-coupled receptor (GPCR)-signaling platform potentiates Neu1 and matrix metalloproteinase-
9 (MMP-9) cell surface cross-talk that is essential for the activation of the IRβ tyrosine kinases. Notes:
Insulin-binding receptor α subunits (IRα) as well GPCR agonists potentiate a biased NMBR-IRβ
signaling and MMP-9 activation to induce Neu1 sialidase. Activated MMP-9 is proposed to remove
the elastin-binding protein (EBP) as part of the molecular multi-enzymatic complex that contains
β-galactosidase/Neu1 and protective protein cathepsin A (PPCA). Activated Neu1 hydrolyzes α-2,3
sialyl residues of IRβ to remove steric hindrance to facilitate IRβ subunits association and tyro-
sine kinase activation. Activated phospho-IRβ subunits phosphorylate insulin receptor substrate-1
(pIRS1), which initiates intracellular insulin signaling via the Ras-MAPK and the PI3K-Akt pathway,
among others, such as NFκB. Abbreviations: PI3K: phosphatidylinositol 3-kinase; GTP: guanine
triphosphate; IRS1: insulin receptor substrate-1; p: phosphorylation. Citation: Taken in part from
Haxho et al., (2018) [105], Alghamdi et al., (2014) [112], Bordoni et al., (2019) [113], 2019 Elsevier
B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). Open access under CC
BY-NC-ND license. This is an Open Access article which permits unrestricted non-commercial use,
provided the original work be properly cited.

These innovative research findings have the potential to elucidate an entirely new
signaling process for these receptors and cell responses. To gain a deeper understanding of
how cannabinoids evoke epigenetic modifications, we must ascertain a more comprehen-
sive understanding of the activity of the cannabinoid receptor itself and its interactions at
the cell surface.



Cancers 2023, 15, 1030 9 of 27

5. Neuraminidase-1
5.1. The Neuraminidase-1 Complex

Neuraminidase-1 (Neu-1) is a sialidase expressed in all mammalian tissues and is
active on sialylated glycoproteins [114]. Recent research has found that Neu-1 is involved
in a nerve growth factor (NGF)-induced TrkA receptor involving neuromedin B (NMBR)
GPCR-signaling process in complex with MMP-9 to form a multimeric enzymatic axis
with Neu-1 sialidase, which has a critical role in ligand-induced activation of RTKs and
TLRs [115,116]. NMBR-MMP-9-Neu-1 cross-talk occurs when ligand-binding its receptor
such as epidermal growth factor receptors (EGFR) [106], nerve growth factor TrkA [116],
and insulin receptor (IR) [112]. Upon binding to an RTK or TLR, a ligand-dependent
GPCR signaling occurs where NMBR GPCR signaling through a Gαi-protein subunit
activates MMP-9 to induce Neu-1 activity [117]. The activation of Neu-1 is mediated
by MMP-9, which removes the elastic binding protein (EBP) in complex with both Neu-
1 and a protective protein cathepsin A. Neu-1 hydrolyzes α-2,3-sialic acid residues on
glycosylated receptors to allow receptor activation and dimerization by removing steric
hindrance [118]. Upon activation, downstream signaling occurs, resulting in conditions
such as tumorigenesis and insulin resistance (Figure 1), which will be discussed in this
review [112,115,116].

5.2. Neuraminidase-1′s Impact on Cancer and Diabetes Progression

There are many cellular mechanisms by which cancer and diabetes may occur. How-
ever, recently, glycosylation has been a critical factor in cancer metastasis. A review
by Vajaria et al., [119] discussed that the glycosylation of proteins on a cell surface and
the loss of E-cadherin due to MUC alterations has a significant role in tumor metasta-
sis as it contributes to metastasis, angiogenesis, proliferation, and growth suppressor
evasion. Moreover, since glycosylation plays an essential role in cancer, therapies tar-
geting the mechanisms of these receptors’ glycosylation would likely have significant
therapeutic potential.

The IR, a highly glycosylated receptor, has 18 glycosylation sites [120] and has impli-
cations for insulin resistance, diabetes, and cancer if the insulin-induced IR activation is
not functioning correctly [121–123]. A study by Arabkhari et al. determined that when rat
skeletal L6 myoblast cells were treated with Neu1 sialidase, desialylation of IR occurred,
resulting in an increased proliferative response to lower insulin doses [124]. These findings
indicate that glycosylation of the insulin receptor increases the receptor’s sensitivity when
the ligand binds. Previous studies identify a novel cross-talk between Neu-1 and MMP-9
along with the neuromedin B GPCR, showing that Neu-1, MMP-9, and neuromedin B
GPCR (NMBR) form a complex with IRβ subunits on a cell’s surface as neuromedin B is
critical for insulin-induced IR activation [112]. The study’s results highlight that Neu-1
activation plays a role in the activation of the IR, supporting Fischoeder et al.’s findings
that insulin mediates increases in MMP-9 via IR activation [125]. These findings high-
light Neu-1′s importance in IR signaling and how overexpression of Neu-1 may result in
overexpression of IR, therefore causing insulin resistance, diabetes, and cancer.

The EGFR is an ErbB RTK receptor that is a critical pathway involved in cell growth,
regulation, proliferation, and differentiation of cells [126]. The EGFR is activated along with
cytoplasmic tyrosine kinase activity when the EGF binds to the extracellular domain of the
EGFR [127]. It is well known that EGFR is often mutated or overexpressed in various cancer
types and is a target for anti-cancer therapies [128]. Moreover, the receptor exists as a single,
highly glycosylated subunit, making it susceptible to overexpression and cancer. A study by
Gilmour et al. found Neu-1 and MMP-9 cross-talk with EGF receptors on EGFR-expressing
cells and human pancreatic MiaPaCa-2 and PANC-1 cancer cells, which is critical for EGF
activation of EGFRs and eventual cellular signaling [116]. The cross-talk likely occurs from
EGFR’s activation of NMBR as it activates the Gαi-protein, triggering the activation of
MMP-9 and the removal of the EBP, which activates Neu-1 [129]. The activated EGFRs can
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then promote tumorigenesis by activating the JAK/STAT (Janus kinase/signal transducers
and activators of transcription), PI3K/Akt, and MAPK signaling pathways [106,130,131].

Neu-1′s involvement in regulating glycosylated growth factors receptors such as
IR, EGFR, and TrkA indicates it impacts a tumor’s characteristics, such as cell growth,
proliferation, and differentiation [106]. Moreover, Neu-1, a regulator of these receptors, is
a novel targeted approach for cancer therapeutics. Haxho et al., [132] reported a review
on the role of mammalian Neu1 in complex with MMP-9 and G protein-coupled receptors
tethered to RTKs and TLRs as a major target in multistage tumorigenesis. The therapeutic
efficacy of targeting Neu1 may disrupt several molecular signaling pathways. Given the
ability of oseltamivir phosphate (OP) to increase E-cadherin expression and decrease N-
cadherin and VE-cadherin expression, as previously reported [133], tumors treated with
this OP drug may become more adherent to the surrounding tissue and not metastasize.
Haxho et al., [132] proposed a graphical illustration (Figure 3) depicting a Snail-MMP9
signaling axis [134], maintaining several important cancer growth factor receptor signaling
platforms in promoting Neu1-MMP9 cross-talk in complex with glycosylated receptors. OP
treatment strategies under dose dependence would have a horizontal targeted approach,
in which different oncogenic signaling pathways involved in tumorigenesis are targeted
with promising therapeutic intent.
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Figure 3. Neu1-MMP9-GPCR signaling platform in the regulation of RT K and the molecular targeting
of multistage tumorigenesis. Neuraminidase-1 (Neu1) and matrix metalloproteinase-9 (MMP9) cross-
talk in alliance with G protein-coupled receptor(s) (GPCR) regulates receptor tyrosine kinases (RTKs)
and extracellular and intracellular Toll-like (TLR) receptors in cancer cells. This process sets the
stage for multistage tumorigenesis. Citation: Taken in part from: Abdulkhalek et al., (2013) [118],
Abdulkhalek et al., (2014) [134]. Publisher and licensee Dove Medical Press Ltd. These are an
Open Access articles which permits unrestricted non-commercial use, provided the original work is
properly cited.

5.3. Inhibition of the Neu-1 Complex as a Potential Therapeutic to Cancer

Cancer treatments aim to modulate cellular pathways essential for cancer survival
and growth, such as RAS, EGFR, vascular endothelial growth factor VEGF, and MMPs.
Moreover, identifying and inhibiting complexes influencing these pathways, such as Neu-1
and MMP-9, is a beneficial approach to decreasing tumorigenesis [135]. An essential aspect
of utilizing therapies that target different molecular pathways is that the risk of drug
resistance is mitigated [136–138]. Oseltamivir phosphate (OP), also known pro-drug of
Tamiflu, is a licensed medication that targets the neuraminidase protein [139]. Many studies
have highlighted the efficacy and therapeutic potential of OP on various types of cancers,
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such as breast and pancreatic cancer [116,133,140]. Studies performed by Amith et al., [141]
and Abdulkhalek et al., [142] found that OP specifically targeted and inhibited Neu-1
activity. Following Neu-1 inhibition, OP exerted its anti-cancer effects through increased E-
cadherin expression and decreased VE-cadherin and N-cadherin in human pancreatic cells
(PANC1) as EMT and E-cadherin loss [133]. Cell-to-cell adhesion promotes metastasis and
tumor progression [133]. OP inhibition of Neu-1 inhibition was also found to downregulate
EGFR pathways such as the JAK/STAT, PI3K/Akt, and MAPK [133], all of which are
involved in tumorigenesis [106,130,131].

A significant issue regarding cancer therapies is the occurrence of chemo and drug re-
sistance. A study performed by Zhang et al., [143] repurposed the drug aspirin (ASA) as it is
an inhibitor of NF-κB signaling, which is involved in the upregulation of MMP-9 [144,145].
The study found that ASA increases the efficacy of gemcitabine, a chemotherapy medi-
cation, by inhibiting inflammatory proteins such as NF-κB and reducing the self-renewal
potential of cancer stem-like cells (CSCs). They also found that ASA has a preventive
effect on the development of pancreatic ductal adenocarcinoma (PDA) and targets highly
aggressive PDA cells [143], indicating that ASA has strong therapeutic potential in treating
cancer. A recent discovery found that ASA and celecoxib, a selective COX-2 inhibitor, dose-
dependently inhibit EGF-induced sialidase activity in PANC1 and MiaPaCa-2 cells through
the inhibition of Neu-1 cleavage of the α-2,3-sialic acid [146]. Using this information as a ra-
tionale, Sambi et al., [147] utilized the triple combination of ASA, metformin (Met), and OP
treatment with tamoxifen on breast cancer cell lines. They found that the cocktail reduced
cell proliferation, upended tamoxifen chemoresistance, and increased apoptotic activity
in MDA-MB-231 triple-negative breast cancer cells and their tamoxifen-resistant variant.
These results suggest a therapeutic approach to multistage tumorigenesis in triple-negative
breast cancer.

Recently, Qorri et al., [148,149] investigated the therapeutic potential of OP, ASA,
and the chemotherapeutic agent gemcitabine (GEM) in pancreatic ductal adenocarcinoma
cancer (PDAC) cells. They found that ASA+OP+GEM upended MiaPaCa-2 and PANC-1
pancreatic cell survival mechanisms, including viability, promoting apoptosis, and express-
ing extra-cellular matrix proteins. Moreover, it is a novel approach to targeting the survival
mechanisms of pancreatic cancer metastasis.

In preclinical studies, Qorri et al., [149] reported that a continuous therapeutic target-
ing of Neu-1 using parenteral perfusion of oseltamivir phosphate (OP) and aspirin (ASA)
with gemcitabine (GEM) treatment significantly disrupted tumor progression, critical com-
pensatory signaling mechanisms, EMT program, cancer stem cells (CSC), and metastases
in a preclinical mouse model of human pancreatic cancer. In addition, they demonstrated
that ASA- and OP-treated xenotumors significantly inhibited the metastatic potential when
transferred into animals.

6. MMP-9 as a Therapeutic Target of Cancer
6.1. MMP-9 and Its Interaction with the Neu-1 Complex

As mentioned previously, MMP-9 has an essential role with Neu-1 as it forms a trimeric
complex involved in ligand-induced activation of RTKs [115,116]. Snail’s transcription
factor mediates ovarian tumor neovascularization and is closely associated with MMP-9
expressions in invasive tumors due to similarities in extra-cellular matrix remodeling dur-
ing invasive processes [134,150]. Jorda et al., [151] found that Snail can up-regulate the
expression of MMP-9 by activating the MAPK and PI3K signaling pathways, indicating
a link between them. The connection suggests that the Snail-MMP-9 signaling axis is the
missing component in promoting growth factor glycosylation modification that results in
Neu-1-MMP-9 cross-talk at the ectodomain of RTKs [134]. From there, downstream signal-
ing occurs, involving various pathological conditions, including tumorigenesis and insulin
resistance, making MMP-9 a viable target for cancer and diabetes therapies [112,115,116].



Cancers 2023, 15, 1030 12 of 27

6.2. Inhibition of the NF-κB Pathway Results in Downregulation of MMP-9

NF-κB is a transcription factor that regulates innate and adaptive immune functions.
Moreover, its activation induces pro-inflammatory gene expression, such as cytokines and
chemokines [71]. NF-κB activates in response to infectious agents and pro-inflammatory
cytokines from the IκB kinase complex. Studies have found that the deletion of the inhibitor
kappa-B kinaseβ (IKKβ) in epithelial cells decreases tumor incidence, and the deletion
of IKKβ in myeloid cells decreases tumor size, indicating that inactivating the IKK/NF-
κB alters the formation of inflammation-associated tumors [152]. Moreover, the NF-κB
pathway has a strong association with cancer. Various studies have shown that the promoter
region of the MMP-9 gene includes binding sites for NF-κB and activator protein-1. MMP-9
expression requires both transcription factors to be present [153–157]. A study inhibiting
the expression of NF-κB in CT26 colon cancer cells through the overexpression of the IκB-α
super-repressor found a decrease in MMP-9 expression, highlighting a link between the
two [158].

Cancer, a metabolic disease, often has metabolic alterations in cancerous cells, such as
an increase in glycolytic metabolism rate known as the “Warburg effect” [159]. Interestingly,
therapies such as the ketogenic diet (KD) have been developed to create a metabolic shift
towards fatty acid utilization and develop antitumor activity [160], as recent research has
shown that a KD may inhibit tumor progression by altering the activity of inflammatory
responses [161]. A study by Zhang et al., [162] examined the impact of the limited carbo-
hydrate KD on growth and apoptosis in CT26+ colon cancer cells and the role of protein
expression, such as the NF-κB pathway. They found that KD treatment slows colon cancer
progression by significantly reducing the protein expression of NF-κB 65, phosphor NF-κB
p65, and MMP-9. The results indicate KD downregulates phosphor NF-κB expression,
inhibiting the protein levels of their downstream targets such as MMP-9 [162].

Nitric oxide (NO) is also a regulator of MMP-9 activation [163–167]. In-vitro studies
show murine macrophages secreting increased levels of MMP-9 during exposure to low
NO concentrations due to suppressing the tissue inhibitor of metalloproteinase 1. However,
increasing NO concentrations in guanylyl-cyclase-dependent and independent signaling
pathways decreased MMP-9 activity [166]. Several studies have observed that the differ-
ences in MMP-9 expression from varying NO treatments also involve the regulation of
NF-κB as its activation increases or decreases depending on low or high concentrations of
NO [167,168], suggesting NO affects NF-κB function. Reports indicate that opioid agonists
can induce apoptosis in cancer cells and inhibit angiogenesis [168–171]. Morphine, an opi-
ate, has been shown to impact tumor progression from its effects on MMP-9 expression and
increase NO production [169,170,172–174]. A study by Roy et al., [175] found that morphine
modulates NF-κB transcription factor and has opioid functions in various cells, indicating
morphine regulates MMP-9 production by interfering with NF-κB binding to the promoter
region of MMP-9 via opioid receptor-mediated and NO-dependent mechanisms [175,176].
Moreover, morphine as an anti-cancer drug through MMP-9 inhibition shows therapeutic
potential. However, despite determining that morphine’s anti-cancer properties, its acti-
vation and inhibition vary with cancer and cell types, the dose of morphine, and other
experimental factors, suggesting more information is needed on the mechanisms of these
receptors and pathways [173,177–182].

Epigenetics is the interaction between the genome and the environment as changes to
one’s environment result in modifications such as DNA methylation, histone modification,
and altering chromatin structure, resulting in changes in gene expression [50]. These
changes have been thought to have the potential to silence genes promoting cancer, making
epigenetics a promising area of research for novel cancer therapeutics [183]. A study by
Sung et al., [184] found that anacardic acid inhibits the acetylation of p65, a subunit of
NF-κB, by suppressing histone acetyltransferase (HAT) activity, thereby impeding TNF
induced NF-κB activation. The suppression of HAT activity prevents the addition of acetyl
groups which typically promote gene expression. They also found that anacardic acid
decreases MMP-9 activation due to NF-κB being unable to bind to the promoter of MMP-9.
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These results are supported by other studies [185] and prove that inhibition of the NF-κB
pathway decreases the expression of MMP-9 and suggests epigenetic changes may be used
in cancer therapeutics. MicroRNAs, another epigenetic modulator, are single-stranded,
non-coding sequences of RNA that are involved in gene expression regulation at the post-
transcriptional and translational levels [186,187]. NF-κB regulates four miRNAs, miR-10b,
miR-17, miR-21, and miR-9, which are involved in tumor growth and metastasis [188–191].
Using the luciferase reporter assay, Li et al., [192] found that p65 NF-κB directly regulates
miR-10b, miR-17, miR-21, and miR-9 and that the NSAID, sulindac (SS) inhibits the nuclear
translocation of NF-κB by decreasing the phosphorylation of IKKβ and IκB. As a result,
SS inhibits tumor cell invasion by hindering the NF-κB pathway and miRNAs involved in
tumorigenesis. SS inhibiting NF-κB increases the likelihood that MMP-9 is decreased as
reduced NF-κB expression is associated with a reduction in MMP-9. However, research
needs to be conducted to determine this hypothesis.

6.3. Inhibition of the COX-2 Decreases MMP-9 Activity

Cyclooxygenase (COX) -1 and -2 are the most well-known oxygenases involved in
catalyzing molecular oxygen into organic compounds. COX-1 is typically expressed in
most tissues, whereas COX-2 responds to cytokines and growth factors. They catalyze
the reduction of arachidonic acid to prostaglandin G2 (PG) and PGE2 [193]. PGH2 often
undergoes metabolism by enzymes to form PGs, which exert their effects through GPCR
mechanisms [194]. Research has found that several cancers, including breast, colon, and
pancreatic cancers, have increased levels of PG [195–197]. Additionally, a 2001 study
by Surh et al., [197] found that the NF-κB pathway modulates the expression of COX-2,
resulting in metastasis and tumorigenesis, highlighting a link between the NF-κB, COX-2,
and cancer. Several studies have found that MMP-9, COX-2, and VEGF expressions exist
in many tumor tissues [198,199]. One study found that VEGF expression in colon cancer
increases following transfection with COX-2 and that NS398, a COX-2 inhibitor, reduces its
effect, indicating COX-2 stimulates tumor angiogenesis through the VEGF pathway [200].
Studies by Larkins et al., [201] and others [202] support the previous findings as they found
that selective inhibitors of COX-2 down-regulate MMP-9, -2, and VEGF expression, thereby
reducing head and neck squamous cell viability. Moreover, the inhibition of COX-2 is a
promising therapeutic in inhibiting MMP-9 and the Neu-1 complex.

The non-steroidal anti-inflammatory drug (NSAID) aspirin inhibits COX-1 and -2
isoforms, exerting anti-inflammatory, antipyretic, and analgesic effects. However, the exact
mechanism needs to be studied further, but COX-dependent and independent mechanisms
have been proposed [203]. One COX-dependent mechanism proposed is that ASA inhibits
COX-2, resulting in the downregulation of phosphatidylinositol 3-kinase (PI3K) signal-
ing [204]. The PI3K pathway is involved in MMP-9 expression [205], which explains why
regular ASA use following a colorectal diagnosis increases survival among patients with
PIK3CA tumors [204]. ASA also acts through COX-independent pathways to inhibit IKKβ,
preventing NF-κB activation and contributing to ASA’s anti-cancer effects [205]. A study by
Xue et al., [206] found that aspirin decreases COX-2 mRNA expression, thereby reducing
MMP-9 content in macrophages derived from THP-1 cells due to a decrease in mPGES-1
mRNA. They verified that MMP-9 formation was through the COX-2/mPGES-1 pathway
when MMP-9 expression increased following increases in mPGES-1 production due to
PGE2 stimulation [205].

Curcumin, a naturally occurring polyphenol derived from turmeric, demonstrates
anti-cancer properties through modulating various molecular targets such as STAT3, EGFR,
PI3KAkt/mTOR, E-cadherin, MMPs, and COX-2 [207]. Curcumin downregulates COX-2
and EGFR expressions since PGE2 transactivates the EGFR pathway to promote cancer cell
motility, indicating a cross-talk between the two pathways. The association between the
two pathways is a reduction in extracellular signal-regulated kinase (ERK) activity, thereby
increasing apoptosis and decreasing cell survival [208]. Again, COX-2 downregulation
through curcumin is associated with inhibiting the NF-κB pathway. Here curcumin sup-
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presses IKK, inhibiting phosphorylation and degradation of IKB-kinase alpha and nuclear
translocation of p65 [209]. MMP-9 protein levels decreased following curcumin treatment
through downregulating ERK signaling pathways that have been established to involve
COX-2 [210]. However, not every cancer cell contains COX-2, as studies have found that
MiaPa-Ca-2 pancreatic cancer cells have absent levels of COX-1 and -2, and PANC-1 cells
have high COX-1 expression and little COX-2 expression [148]. The reduction of COX in
pancreatic cancer cells does create problems regarding treatment as the use of NSAIDs
becomes cell and dose-dependent to ensure proper treatment.

Additionally, more research can be conducted on the mechanisms of COX on cancers
to help determine the exact mechanisms of COX inhibitors such as ASA and celecoxib [146].
However, these findings support COX-2′s role in the Neu-1 complex through its ability to
inhibit MMP-9 through the NF-κB pathway. Moreover, COX-2′s role in MMP-9 inhibition
indicates its potential as an anti-cancer therapeutic.

7. Effects of Biased GPCR Agonists on the Insulin Receptor (IR)
Bias GPCR Agonism and the Insulin Receptor

The IR is a tyrosine kinase transmembrane signaling protein that regulates cell differ-
entiation, growth, and metabolism. The IR is a ligand-activated receptor whose primary
function is metabolic regulation [211]. The receptor comprises two α and two β subunits
linked through disulfide bridges [212–214]. Insulin receptor binding induces a conforma-
tional change, activating IR-β kinase activity [215]. As a result, the downstream effects
of IR signaling occur, such as glucose homeostasis for various cell types [216,217]. How-
ever, insulin resistance may occur when normal or increased insulin levels produce a
reduced biological response, usually when there is reduced insulin sensitivity [218,219].
Although it is suggested that insulin resistance occurs due to the downregulation of the
IR, or insulin receptor substrate (IRS) proteins, the precise mechanism of insulin resistance
is unknown [123,220]. Insulin resistance has clinical implications in many pathological
conditions, including cancer, type 2 diabetes (metabolic syndrome), cardiovascular disease,
hypertension, and polycystic ovary syndrome (PCOS) [220]. Blaise et al., [221] found that
κ-elastin (kE) exposure decreases sialic activity on the β-chain of the IR, suggesting that
Neu-1 desialylates the IR. This study’s results confirm the findings from others [222] that
Neu-1 has a significant role in IR regulation, as mice with a Neu-1 deficiency develop
hyperglycemia and insulin resistance twice as fast as the wild-type when exposed to a
high-fat diet.

Moreover, a neuromedin B GPCR-MMP-9-Neu-1 complex is tethered to IRβ subunits,
indicating that MMP-9-Neu-1 cross-talk occurs after insulin binding to its receptor initiates
GPCR signaling/MMP-9 activation to induce Neu-1 [112]. Evidence of this was found in a
study by Schlien et al., [223], where insulin binding to its receptor induces a conformational
change at the C-terminus domain. Given that GPCR agonists positively regulate the insulin
receptor, and MMP-9 and Neu-1 are associated with the IR, biased GPCR agonism of these
GPCRs likely affects the receptor. A study by Haxho et al., [105] found that bradykinin,
angiotensin I, and II dose-dependently induce sialidase activity in HTC-IR cells, indicating
they exist in a multimeric receptor complex with Neu-1, IRβ, and NMBR. These findings
confer that Neu-1-mediated desialylation of the IRβ subunits transactivates insulin recep-
tors following GPCR agonism and IR glycosylation. Moreover, the results confirm findings
from previous literature [112] of NMBR’s regulatory role in inducing Neu-1 sialidase and
MMP-9 cross-talk for IRβ desialylation and receptor activation. Studies show that IR and
GPCR cross-talk regulate various cellular processes, and the dysfunction between the
two receptors results in diseases such as metabolic syndrome, type 2 diabetes, and can-
cer [224]. The dysfunction between the receptors can be caused by GPCR agonists, which
can positively regulate IR signaling despite the absence of insulin [105]. A study by Isami
et al., [225] confirms Haxho et al.’s, [105] findings that GPCR agonism mediated by Neu-1
transactivates the IR without insulin, possibly enabling various pathological diseases.
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8. Bias GPCR Agonism on the IR and Cancer

Many studies have implicated that the insulin-like growth factor (IGF) and insulin
signaling pathways influence carcinogenesis and tumor progression [226,227]. IGF-1 binds
to both the IGF-1 receptor (IGF1R) and IR and, as a result, promotes mitogenic signaling
events, inhibits apoptosis, and increases cell proliferation [227]. For example, analyses of
specific IR ELISAs found that 80% of breast cancers have significantly higher IR expres-
sion than normal breast tissue. The study also found that 20% of the cancer tissue had
IR expression ten times the mean value of normal breast tissue [226]. IR overexpression
in cancers makes the IGF1R, IR, and the pathways they activate promising therapeutic
targets [228–230]. For example, when IGF-1 binds to IGF1R and IR, the PI3K-AKT-TOR and
RAF-MAPK pathways activate, promoting cell survival and proliferation [227,231]. These
pathways are also involved in MMP-9/Neu-1 cross-talk, highlighting that transactivation
of the IR is likely mediated by Neu-1 to promote signaling pathways involved in tumori-
genesis, and its downregulation will likely lead to a decrease in cancer viability [231–233].
Further evidence of Neu-1′s involvement in IR signaling is that in-vitro and in-vivo studies
have concluded that insulin affects tumor progression by acting on the IR and not solely
by IGF-1R cross-talk [234,235]. GPCR agonists support these conclusions by indirectly
transactivating insulin receptors via Neu-1 mediated desialylation of IRβ subunits without
insulin, highlighting that the IR plays a critical role in maintaining the vitality of cancer
cells and creates a therapeutic target for the treatment of these diseases [224].

Experimental studies have shown that OP and NMBR inhibitor BIM-23127 inhibits
independent autophosphorylation of IRβ and IRS-1 in HTC-IR cells, blocking Neu-1-
mediated transactivation of the IR, which may be used as a therapeutic target for can-
cer [112]. A study by Rozengurt et al., [235] found that the mammalian target of rapamycin
(mTOR) complex 1 (mTORC1) is critical for IR/IGF-1R and GPCR signaling. Metformin,
an antidiabetic drug, induces AMP kinase activation, negatively regulating mTORC1 and
suppressing the growth of PANC1 cells [236,237], showing that IGF-1R disruption decreases
tumorigenesis as IR/IGF-1R cross-talk is disabled. Linsitinib, a small-molecule tyrosine
kinase inhibitor (TKI), blocks autophosphorylation of IGF1R/IR and exerts promising
anti-tumor activity [238]. However, clinical trials evaluating its efficacy in metastatic breast
cancer found that toxicities such as hyperglycemia would occur as IR disruption would
impact proper glucose homeostasis [239]. Similarly, BMS-754807, an ATP-competitive TKI
of IGF1R and IR, inhibits pancreatic cancer cell lines. However, like Linsitinib, clinical trials
were halted following patients reporting side effects such as impaired glucose tolerance,
fatigue, and nausea likely due to excessive IR inhibition [240]. Although discouraging,
these results promise that proper targeting of the IR and IGF-1R will inhibit cancer cell
vitality and growth. Bromo- and extra-terminal domain (BET) proteins, such as BRD2,
BRD3, BRD4, and BRDT, are epigenetic regulators that connect chromatin modifications to
the transcriptional activation of genes. They have a critical role in homeostasis, and cell
survival, as their dysfunction plays a role in cancer. BET proteins regulate EMT (Snail),
which has a significant role in MMP-9 expression and Neu-1 activation [240]. BET protein
action and the IGF system are connected as the IGF1R gene directly targets BRD4 in various
cancer cell lines. Treatment of RKO-1, PC-3, and MCCL-357 cells with BET inhibitors JQ1
or MS417 reduces BRD4 binding to IGF1R, reducing mRNA expression, and inhibiting
the PI3K/Akt pathway [241]. PI3K and BET inhibition hinders the PI3K pathway, thereby
reducing cell growth and vitality in cell models [241]. However, more research must be
conducted on BET inhibition and MMP-9/Neu-1 activation.

The insulin receptor substrate (IRS) proteins play a pivotal role in metabolism and
cancer. Under normal physiological conditions, these proteins are involved in IR/IGF-1R-
mediated metabolic regulation by amplifying the PI3K signaling pathway to activate the
serine-threonine kinase AKT [242,243]. Evidence of this is that IRS proteins have multiple
PI3K binding motifs to recruit and activate PI3K via SH2-domains [244]. Additionally, IRS
proteins are signaling intermediates in insulin-regulated glucose homeostasis by promoting
glucose uptake [245]. However, dysregulation and overexpression of these proteins lead to
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pathological conditions such as cancer and diabetes. Many studies have found that IRS-1
negatively regulates tumor progression, whereas IRS-2 promotes tumor behavior through
metabolism regulation [246]. As a result, targeting these proteins may have strong potential
in novel cancer therapeutics. A study by Zhao et al., [247] found that miR-766, a miRNA,
directly targets IRS2 and inhibits activation of the PI3K/Akt pathway to reduce papillary
thyroid cancer (PTC) malignancy. However, a limitation of the study is that the association
between miR-766 and the prognosis of PTC patients was not analyzed, making its clinical
implications unclear. Another study found that long noncoding adipogenesis regulatory
factor-antisense RNA 1 (ADIRF-AS1) is overexpressed in osteosarcoma (OS).

Moreover, ADIRD-AS1 impedes tumor growth and is a competitive endogenous RNA
for miR-761 as it is removed from IRS1, leading to increased IRS1 overexpression. The
study’s results suggest that reducing miR-761 in OS cells neutralizes the effect of ADIRF-
AS1 as IRS1 is restored and no longer overexpressed [248]. These two studies highlight
the therapeutic potential of miRNAs and how their use may be efficacious in reducing IR
expression in cancer [159,160]. Another miRNA, miR-30e, is downregulated in many cancer
cell lines [249,250]. A study by Liu et al., [251] found that miR-30e recognizes the 3′-UTR of
IRS1 transcripts, indicating that miR-30e expression impacts IRS1 expression. Evidence of
this is that cells expressing miR-30e abolish IRS1 in breast cancer cells, thereby suppressing
breast cancer cell growth [251]. A preclinical study by Garofalo et al., [252] supports the
evidence of inhibiting IRS-1 and -2 in treating cancer. They found that NT157, a selective
inhibitor of IRS-1 and -2, decreases the expression of these proteins and downregulates
IGF-1R-mediated AKT activation. As a result, NT157 treatment leads to cell cycle arrest,
apoptosis, and reduced cell motility in OS cells, thereby reducing OS metastasis [252].

9. Conclusions

Here, we reviewed reports demonstrating that GPCR agonists bombesin, bradykinin,
angiotensin I, and angiotensin II, each significantly and dose-dependently induced sialidase
activity in live IR [105,112], EGFR [116], Trk [106], and TLR [107,115,141,142] expressing
cells, in vitro. If Neu1 sialidase activity is required for these glycosylated receptor activa-
tions in a mechanism dependent on GPCR Gαi signaling and subsequent MMP9 activation,
this led us to hypothesize that GPCR agonists may indirectly transactivate receptors via
Neu1-mediated desialylation process and downstream signaling. The reported data sup-
port this hypothesis. Furthermore, GPCR agonist-induced sialidase activity in these cells
resulted in receptor ligand-independent signaling in these cells. This process is blocked
by Neu1 inhibitor oseltamivir phosphate and the neuromedin B GPCR (NMBR) inhibitor
BIM-23127. These findings are consistent with our previous report describing the regu-
latory role of NMBR in inducing Neu1 sialidase and MMP9 cross-talk required for IRβ
desialylation and receptor activation [112]. The capability of GPCR agonists to positively
regulate glycosylated receptor signaling in the absence of their ligands presents a role of
cannabinoid receptors CB1 and CB2 signaling in activating numerous receptor tyrosine
kinases and Toll-like receptors in the induction of altered epigenetic landscape(s) in cancer
cells which might transmogrify cancer metabolism and epigenetic reprogramming to a
metastatic phenotype.

10. Future Research Directions and Limitations

The gaps in our knowledge regarding how CB cannabinoids are implicated in host
metabolism via GPCR receptors reinforce the importance of research needed to understand
the mechanistic action of these drugs on the body as promising metabolic candidates. The
specific mechanisms and details of the effects of CB cannabinoids on host metabolism and
energy homeostasis still remain to be elucidated. It is likely that future research in the area
of cannabinoid pharmacology will be directed at:
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• Exploring the structure-activity relationships of ligands that target the CB1 allosteric
site or that behave as neutral CB1 and/or CB2 receptor antagonists.

• Assessing the therapeutic potential of CB1 and/or CB2 receptor allosteric modulators
and neutral antagonists.

• CB1 and/or CB2 receptor allosteric modulators and neutral antagonists modulate for
or against the presence of endocannabinoid mechanisms in mammalian cells.

• Validating and characterizing non-CB1 and non-CB2 targets such as RTK and TLR
receptors for particular cannabinoids and developing compounds that can selec-
tively activate or block such targets with reasonable potency for metabolic health and
related diseases.

• Validating and characterizing that cannabinoid receptors may exist as homodimers or
form heterodimers or oligomers with one or more classes of the non-cannabinoid receptor.

• Validating and characterizing the role played by the endocannabinoid system in
ameliorating the symptoms and/or the underlying pathology of certain disorders.
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