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Simple Summary: Histology sample images are usually diagnosed definitively based on the radi-
ologist’s extensive knowledge, yet, owing to the highly gritty visual appearance of such images,
specialists sometimes differ on their evaluations. Automating the image diagnostic process and
decreasing the analysis time may be achieved via the use of advanced deep learning algorithms.
Diagnostic objectivity may be improved with the use of more effective and accurate automated
technologies by lessening the differences between the humans. In this research, we propose a CNN
model architecture for cancer image classification by accumulating layers closer together to further
merge the semantic and spatial features. Regarding precision, our suggested cutting-edge model
improves upon the current state-of-the-art approaches.

Abstract: The definitive diagnosis of histology specimen images is largely based on the radiologist’s
comprehensive experience; however, due to the fine to the coarse visual appearance of such images,
experts often disagree with their assessments. Sophisticated deep learning approaches can help to
automate the diagnosis process of the images and reduce the analysis duration. More efficient and
accurate automated systems can also increase the diagnostic impartiality by reducing the difference
between the operators. We propose a FabNet model that can learn the fine-to-coarse structural and
textural features of multi-scale histopathological images by using accretive network architecture that
agglomerate hierarchical feature maps to acquire significant classification accuracy. We expand on
a contemporary design by incorporating deep and close integration to finely combine features across
layers. Our deep layer accretive model structure combines the feature hierarchy in an iterative
and hierarchically manner that infers higher accuracy and fewer parameters. The FabNet can
identify malignant tumors from images and patches from histopathology images. We assessed the
efficiency of our suggested model standard cancer datasets, which included breast cancer as well
as colon cancer histopathology images. Our proposed avant garde model significantly outperforms
existing state-of-the-art models in respect of the accuracy, F1 score, precision, and sensitivity, with
fewer parameters.

Keywords: artificial intelligence; deep learning; pattern recognition; computer-assisted diagnosis;
convolutional neural networks; breast cancer; colon cancer; histopathological images

1. Introduction

Breast cancer is the most prevalent types of cancer in women, affecting 2.1 million
women annually, and it is responsible for the bulk of cancer-related deaths globally [1].
It has been estimated that the prevalence rates of breast cancer range from 19.3 per
100,000 African women to 89.7 per 100,000 European women [2]. Breast cancer is a fatal
condition that can occur in nearly any bodily region or tissue when irregular cells abnor-
mally spread, infiltrate, or move into adjacent tissues. The number of reported cases has
increased in recent years, and it is projected to reach 27 million by 2030 [3–7]. Considering
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the high cancer mortality rate, colonoscopy and computer tomography are recommended
for regular tests [8]. A biopsy examination is used to diagnose abnormalities in the breast
and colon if suspicious cells are found. Hematoxylin and eosin (H&E) are often used to
stain the isolated sample. When Hematoxylin interacts with Deoxyribonucleic Acid (DNA),
it dyes the nuclei purple or blue, while Eosin stains other structures pink when it reacts
with proteins [9].

The diagnosis of all cancer types, including breast and colon cancers, is based on
histopathological images, which are considered to be essential. Histopathological examina-
tion, contrastingly, is a long-winded clinical practice, with the key impediment to successful
image processing being a difference in the visibility in th H&E-colored regions. Various con-
siderations, such as laboratory technique anomalies, discrepancies in sample positioning,
operator-related heterogeneity, device diversity, and the usage of different fluorophores for
staining, may all influence the diagnosis [10]. For even seasoned oncologists, recognizing
and evaluating these discrepancies during a diagnosis could be challenging. As a result,
there is a significant necessity for intelligent automated diagnostic systems to provide
oncologists with reliable evaluations and improve the diagnostic performance.

Deep-learning-based approaches are currently the course of the research, and they
have a profound impact on clinical trials and even the evolution and progress of targeted
treatment methods. With the advancement in digital imaging technology, the automated
diagnosis and detection of cancer types in whole slides images have received a great
deal of interest. Several methods for analyzing histological images have been adopted,
ranging from conventional to machine-learning-based ones [11]. Deep learning (DL) ap-
proaches have increasingly outperformed traditional machine learning (ML) algorithms
in terms of end-to-end processing automation [12,13]. Deep learning-based techniques
such as convolutional neural networks (CNN) have been successfully used in medical
imaging to detect diabetic retinopathy [14], diagnose bone osteoarthritis [15], and for other
purposes [16]. CNN-based histological image analysis methods have previously been
shown to be effective for breast cancer diagnosis [17] and micro-level pathological image
analysis [18,19].

The advent of the use convolutional neural networks as the basis of several visual
tasks for different applications has made architecture searching a key driver in sustaining
advancement with the right task extensions and data [20–22]. Because of the growing size
and sophistication of networks, more effort is being put into developing the architecture
motifs of nodes and nodes connectivity strategies that can be integrated systematically. This
has resulted in wider and deeper networks; however, there is a need for more closely linked
networks. To overcome these obstacles, various blocks or units have been integrated to
match and change the network sizes, such as bottlenecks for reducing the dimensions [23,24]
or residual, concatenated connections for features propagation [25,26].

In this paper, we suggest a CNN model design by accumulating layers that are even
more close together to further fuse the semantic and spatial details for cancer image
classification. Our accretive architecture incorporates more depth and sharing by expand-
ing the existing approaches’ “shallow” skip connections [27] and focuses on merging
the features from all of the layers and channels. Our contributions to this research are
as follows:

1. We proposed a FabNet model that can learn the fine-to-coarse structural and textural
features of multi-scale histopathological images by accretive network architecture that
agglomerate hierarchical feature maps to acquire significant classification accuracy.

2. To preserve and integrate the features, our model links convolutional blocks in
a closely coupled tree-based architecture. This method employs every layer of the
network from the shallowest to the deepest layers to learn about the rich patterns that
occupy a large portion of the feature pile.

3. We assessed the FabNet model using two publicly available standard datasets that
are related to breast cancer and colorectal cancer and noticed that it outperforms the
current state-of-the-art models in terms of accuracy, F1 score, sensitivity, and precision
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when we evaluated our model at different magnification scales of both binary and
multi classification.

The rest of this article is structured as follows: Section 2 addresses the related work.
Section 3 defines the design of the proposed FabNet model. We define the experimental
setup, datasets, training, and implementation descriptions, and provide a detailed analysis
of the performance in Section 4. The discussion, conclusions, and possible future research
directions are all contained in Section 5.

2. Related Works

There has been extensive work that has been conducted in the literature to establish
strategies for classifying and recognizing breast and colon cancers from histopathology
images. The majority of the current approaches utilize computer-aided diagnosis (CAD)
techniques to identify breast-cancer-related tumors that include benign and malignant
ones. Before the deep learning breakthrough, the data were examined using conventional
machine learning techniques based on supervised learning methods [28] to obtain the
data features.

2.1. Conventional Learning Methods

The bulk of the research in this area has concentrated on a small data sample taken
mostly from proprietary datasets. In 2013, several algorithms were used to classify the
nuclei from a dataset containing five hundred images from fifty patients, including Gaus-
sian mixture models and fuzzy C-means clustering techniques. This study reported
96% accuracy for two category classifications [29], suggesting that such machine learning-
based approaches allowed adequately comprehensive and precise research and were con-
sidered to be useful for supporting breast cancer diagnostics. Spanhol et al. [30] published
yet another study in which they achieved 85.1 % accuracy on a breast cancer dataset.
They applied support vector machines for a patient-level analysis. Using a database of
ninety-two specimens, George et al. [31] proposed a breast cancer classification method by
applying neural nets with a support vector machine, which achieved 94 percent accuracy.
Zhang et al. [32] suggested a cascading approach with a refusal alternative. This procedure
was evaluated on a dataset with 361 specimens [33]. This study [34] suggested the appli-
cation of different classifiers such as support vector machines and the k-nearest neighbor
for breast cancer histology image classification. They achieved 87 % accuracy by utilizing
assembling voting using the mentioned techniques. In this study [35], adaptive sparse
support vector machine-based techniques were applied on a dataset at a 40× magnifi-
cation level. They reported 94.97% accuracy. There have been a couple of other studies
on histopathological representations for carcinoma classification; these studies specifi-
cally explain the dichotomies and shortcomings of various publicly accessible benchmark
data [36,37].

2.2. Deep Learning Approaches

Deep learning has ushered in a new era in the domain of general object classification
and detection. The classification of cancer histopathological images (i.e., breast and colon)
has been a significant field of study due to advances in medical computer vision and deep
learning. Because of the elevated histopathological image resolutions, the conventional
machine learning algorithms and deep neural network models used to explicitly view the
WSI have resulted in very complex network designs that are a challenge to training [38].
The number of samples used in the classification cancer histopathology images is limited,
and the image size is large, making the training of CNN models challenging. Furthermore,
image compression of the entire oncology image array to the CNN’s input size would result
in a loss of the richness of the detailed feature data. As a result, some researchers suggested
the classification of images based on patches to alleviate the challenge. In this study [39], the
author used a technique to achieve the arbitrary extraction of patches based on a window
slithering approach to extract image patches from the BreakHis dataset. AlexNet [40]
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was trained on the extracted patches, and then, integrated the outcomes to classify into
relevant categories. Another study by Arajo et al. [3] suggested a convolutional neural
network for automatic feature extraction from a dataset that contained 512 × 512 size
patches. The images were grouped into four classes during training, which were used for
multi-classification, as well as two classes, which were used for binary classification.

Because of the image patches extraction process, CNN became capable of training
whole slide images with reasonable details. This study [41] suggested a convolutional neu-
ral network with a two-level model for high-resolution WSIs classification. The first model
is based on a minimal anomaly model that can distinguish between patterns automatically
during training on image patches, and a second model that classifies the results by an SVM
classifier. In another study, Alom et al. [2] suggested the merging of three models to classify
breast cancer histology images. A CNN-based methodology achieved 77.8 percent accuracy
for multi-classification, while it found an 83.3 percent accuracy for binary classification on
the breast histology 2015 dataset [3].

Han et al. [42] recently suggested a class structure-based deep convolutional neural
network that achieved 93.2 percent accuracy on the BreakHis dataset. Table 1 elaborates on
the details of recent advancements in the cancer research domain.

Table 1. A review of supervised learning models. The staining abbreviations stand for H&E (hema-
toxylin and eosin); PHH3 (Phosphohistone-H3).

Reference Local/Global Cancer Type Staining Method Dataset

Ceresin et al.
(2013) [43] Local-level Breast Hematoxylin and eosin CNN ICPR2012 (50 images)

Wang et al.
(2014) [44] Local-level Breast Hematoxylin and eosin Rippled integration

of CNN ICPR2012 (50 images)

Raza et al.
(2016) [45] Local-level Colorectal Hematoxylin and eosin

Cell detection Spatially
constrained CNN +

handcrafted features

Private CRC dataset
(15 images)

Tellez et al.
(2019) [46] Local-level Breast Hematoxylin and

eosin; PHH3 CNN TNBC (36 images);
TUPAC (814 images)

Ehteshami et al.
(2017) [47] Global-level Breast Hematoxylin and eosin

Stacked CNN
incorporating

contextual information

Private set
(221 images)

Ehteshami et al.
(2018) [48] Global-level Breast Hematoxylin and eosin Integration of

DHACNN & LSTM
BreakHis

(7909 images)

Even though the preceding studies demonstrate that patch-based image classifica-
tion approaches are commonly used in different breast cancer histopathology datasets,
histopathology images contain a large number of fine details that need to be extracted
with utmost accuracy and precision. We present FabNet, a CNN model that ensembles
every fine-to-coarse detail for more accurate learning. This method employs every layer
of network from the shallowest to the deepest layers to learn about the rich patterns that
occupy a large portion of the feature pile.

3. FabNet: Features Agglomeration Approach

We define agglomeration as the combination or merging of network layers in a closely
coupled manner. In the proposed model FabNet, as shown in Figure 1, we are particularly
focused on the productive accumulation of depth, dimensions, and resolutions. We define
an agglomeration sequence as deep if it is holistic, discrete, and the initial agglomerated
layer moves features through several agglomerations. Since our network has multiple layers
and connections, we designed modular architecture that tends to reduce the complexity
by grouping and replication. The proposed network layers are subdivided into blocks, for
example, B1, which are further subdivided into stages based on the feature resolution. This
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design is focused on agglomerating the blocks to preserve and combine the feature channels.
In Figure 2, a conv block (i.e., B1) is shown, which comprises two convolutional layers
with 5 × 5 and 3 × 3 filter window sizes. Both of the convolutional layer activation maps
are concatenated, and then transferred to another convolutional layer with 1 × 1 filter size
window to reduce the optimal channels. Agglomeration starts on the smallest, shallowest
scale and gradually merges on the deeper, wider scales in a repetitive manner. In this
manner, the shallow features are redefined as they progress over to deeper blocks of layers.
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For a sequence of blocks {B1, B2, B3 . . . ..Bn}, we formulated the function < for such
a repetition below.

<(B1, B2, B3 . . . ..Bn) = <(ΣB1, B2, B3 . . . ..Bn) (1)
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In Equation (1), n is the number of blocks. To increase the depth of the network and
the performance, we merge or fuse blocks in a tree-like closely coupled structure. We pass
an agglomerated node’s feature map back to the baseline as the input feature map to the
next sub-module, instead of forwarding intermediate agglomerations further up the tree.
This spreads the agglomerations of all of the previous modules, rather than the preceding
module only, to help the best preservation of features. We combine the parent and left child
nodes of the same depth in the performance.

Our model consists of conv blocks, which are the basic building block of each node.
The input of a conv block in the case of B1 accepts an input of 224 × 224 × 3. This input is
passed to two different convolutional layers simultaneously for convolutional operations
to be performed. Both of the convolutional layers apply 16 kernels with filter window
sizes of 3 × 3 and 5 × 5 each with nonlinearity (ReLU), which aims to alleviate the issue
of vanishing gradients, as well as improve the network’s training speed. To generate
an optimal feature map, the feature maps of these two convolutional layers are combined,
and thereafter, transferred to a 1 × 1 convolutional layer. In each convolutional layer that
is discussed above, we use zero padding, which preserves the original image size, while
also providing valuable knowledge about feature learning, which aids in the extraction of
low-level features for the subsequent layers. Following that, we apply batch normalization,
which balances the inferences of the preceding activation layer by subtracting the batch
mean and dividing the batch division, thereby increasing the network stability.

The output of conv block B1 is fed into B2, which has a similar internal architecture
to that of B1, as depicted in Figure 2, except for the number of kernels. Conv B2 contains
32 convolution filters. The feature maps of both of the conv blocks are then concatenated,
which results in an enhanced collective feature map. We apply an average pooling operation
with an average pooling layer with 2 × 2 patches of the feature map with a stride of two.
This layer down-samples the estimation complexities and parameters from the evaluated
image by dividing it into rectangular pooling window areas, which is proceeded by a mean
value estimation for every region. The inference of the average pooled image propagates
to the next block as an input to conv block B3, which is fed into the final stage C5. As it
was mentioned earlier, B3 contains the same internal architecture as those of conv blocks
B1 and B2, but the number of convolution filters is 32. The output feature map of B3 is fed
into conv block B4 as an input. The internal convolutional layers of conv block B4 apply
64 convolution filters to learn the features. The feature maps of B3 and B4 are fused to
generate an extended feature map, which is proceeding by average pooling for down-
sampling. The average pooled value feeds into the next conv block B5. Conv block B6 is
fed to B5 as an input. B6 utilizes 128 convolution filters.

The feature maps of conv block B5 are conv block B6 which is concatenated to fuse the
feature, which results in an enhanced feature map with detailed data information. This step
is preceded by an average pooling operation to obtain half of the image size. The result
of the pooled value is fed into conv block B5. The network repeats the same operation
until it reaches conv block B10. The only difference is between the blocks is the number of
convolution filters, which is 256 for B8 and 512 for B10. Until it reaches B10, the feature
maps of the entire network resulted in optimized propagation from the shallower to the
deeper layers and blocks, which makes the proposed network compact and closely bind the
entire network. The best features of every block and stage are collected and fused at stage
C5 by the extensions from C1 to C5 and by bridging the adjacent blocks The C5 is subjected
to the global average pooling function, which significantly reduces the number of data,
and thus, the classification layers by measuring the average results of every feature map
in the preceding layer. The output layer, which is the last dense layer, includes neurons
for each class that have been normalized with the Softmax function; the amount of them
varies based on the classification category. We used binary and multi-class classifications in
this study.
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4. Methodology

As seen in Figure 3, the proposed method consists of three main steps. Firstly, we
obtain training samples by applying the extraction of patches technique to the dataset.
Secondly, stain normalization preprocessing of the dataset is performed to resolve the stain
variation in the images. For stain normalization, several methods have been suggested in
these studies [49–51]. DL-based approaches for classifying cancer histopathology images
employs a training set to detect a wide range of enhancements to distinguish variations
within, as well as across, the categories. A wide range of color inconsistencies in the
histopathological images may occur due to the color response of the automated scanners,
stain supplier materials and processing units or due to various staining procedures in
different laboratories. Therefore, stain normalization is a basic step during histopathological
image preprocessing. The key benefit of using image patches for each type of training
is that it preserves the local characteristic information from the histopathology images,
helping the model to learn the local characteristics features. Thirdly, we train our proposed
model with these extracted images to classify and differentiate between the benign and
malignant tumors. Furthermore, we outline the datasets, image preprocessing, model
training, and implementation details below.
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4.1. Dataset

To evaluate our proposed model, we used the two main, public cancer histology
image datasets. Such datasets were considered with three motives: firstly, the diversity
of cancer types represented in the histology slides, such as breast cancer and colorectal
cancer; secondly, their amount; thirdly, the existence of multiple magnification factors
that helped us to carry different tests with the restricted equipment, while modifying
different parameters.

4.1.1. BreaHis

In this study, we assessed our model with BreakHis, a publicly available breast-cancer-
related histologic dataset [30]. Samples were created using breast tissue biopsy slides
that were colored with H&E staining. There are reportedly 7909 histopathological biopsy
images of 700× 460 pixels in the BreakHis dataset from eighty-two individuals. The dataset
consists of two main categories: one of them is benign, and the other one is malignant,
which are further subdivided into 4 subclasses as per each category. Table 2 shows the
statistical specifics of this dataset, and Figure 4, shows a few illustrations of the histological
images. For our tests, we randomly divided the entire dataset in into training/testing
subgroups at a 70:30 ratio. To assess our model’s efficiency in clinical settings, we kept
a patient-based distinction between the training and test data. For stain normalization,
we adopted the technique suggested in [50]: an innovative composition-preserving color
normalization (SPCN) scheme is used in this process.
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Table 2. BreakHis dataset categorization at patient level at four magnifications (40×, 100×, 200×,
and 400×).

Category Subtypes
Magnification Sum Individuals

40× 100× 200× 400×

Benign

Phyllodes Tumor (PHT) 149 150 140 130 569 7
Fibroadenoma (FID) 253 260 264 237 1014 10

Adenosis (ADE) 114 113 111 106 444 4
Tubular Adenona (TUA) 109 121 108 115 453 3

Malignant

Papillary Carcinoma (PAC) 145 142 135 138 560 6
Ductal Carcinoma (DUC) 864 903 896 788 3451 38
Lobular Carcinoma (LOC) 156 170 163 137 626 5

Mucinous Carcinoma (MUC) 205 222 196 169 792 9
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The illustration of stain normalized images is shown in Figure 5.
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4.1.2. NCT-CRC-HE-100K

This dataset includes publicly available 100 K images of human colorectal cancer
(CRC), as well as normal tissues [52]. To stain normalize this dataset, in which the image
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size was 224 × 224 pixels, the Macenko approach [53] was used. We used this color nor-
malization technique because the initial images had subtle variations between red and blue
tones, resulting in a misleading classification. Figure 6 shows descriptive representations
of the sample images. This dataset is divided into nine subclasses, which are adipose
tissue (ADI), lymphocytes (LYM), background (BACK), mucus (MUC), smooth muscle
(MUS), normal (NORM), debris (DEB), cancer-associated stroma (STR), and tumor (TUM)
ones. To improve the variance in this training set, normal tissue samples were obtained
primarily from clinical specimens, as well as from gastrectomy samples (such as upper
gastrointestinal smooth muscle). The number of distributed training set images in each
group was nearly equal, while the test samples contained 7180 images.
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4.2. Image Representation and Patch Extraction

Table 2 shows that the BreakHis dataset has a data imbalance problem, which was
calculated as 0.42 at the case image scale and 0.44 at the patient scale. The data disparity
problem can cause a discriminating performance of computer-aided diagnosis (CAD)
models against the majority class in classification problems. Equation (2) determines the
patch amount obtained from the dataset image of the ith class.

Ni =
⌈(

∑n
i=1 xi

/
n
∣∣∣xi

)
× β

⌉
(2)

Equation (2) depicts a mathematical representation of Ni patches derived from the i(th)
category, xi is the i(th) category’s number, xth is the i(th) category’s number, β is a constant
value, and n represents the classes. The fixed parameter (β) was set to 32. After that, each
class has nearly the same number of patches. The primary benefit of utilizing patches
during training for every individual class is that it preserves the regional distinctive details
in the histological image, which enables the model to learn the spatial information [54].
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To obtain an image classification, first, we use a patch classifier to compare several
distinct magnifications of patches, and afterward, we average the effects for the complete
image patches. The extraction and learning of similar features, for instance, the entire
tissue composition, nucleus state, and texture features are used to classify the images to
the desired categories. We inferred that 224 × 224, as well as 700 × 460-pixel patches,
would be sufficient to justify the proper cell formation of various tissues. We deduced that
700 × 460, as well as 224 × 224 px size for images, would be ample to explain the relevant
composition of different tissues.

5. Experimental Results
5.1. Model Training

We assessed the proposed model’s efficiency in two areas: (1) sample classification
based on binary and multi-class classification, and (2) sample classification based on patient-
and image-level classification. We used the datasets discussed in the study. These datasets
were subdivided into training validation sets. To find the optimal parameters for our model,
we use a five-fold cross-validation scheme. We assess our model with assessment metrics
such as accuracy, sensitivity, and precision, and F1 score in the performance assessment.
On an NVIDIA GTX 1080Ti, we used the Keras framework to implement the method. The
metrics of five successful completed trial experiments are reported. We compared our
model’s efficiency to that of cutting-edge models such as DenseNet 121 [55], VGG16 [56],
and ResNet 50 [57].

5.2. Implementation Details

FabNet model assimilates the fine-to-coarse structural and textural features of multi-
scale histopathological images by accretive network architecture that agglomerate hierar-
chical feature maps to perform significant learning. Our model propagates the features
from block to block, and overall, from stage to stage to ensemble the best feature map for
learning. We tuned the following hyperparameters in our model, which are a number of
convolutional blocks (the internal architecture is defined in Figure 2), epochs, learning rate,
optimizer, size of batch, and batch normalization. The epochs were set to 20, 50, 70, and
100, respectively, while 0.01, 0.001, 0.0001, and 10−4 learning rates were evaluated. We used
a batch size of 16, 32, and 64 due to hardware limitations. We tested the model with
different optimizers such as Adadelta, Adamax, SGD, RMSprop, and Nadam, but Adam
provided the optimal accuracy. The detailed optimized hypermeters are shown in Table 3.

Table 3. Optimized hyper-parameters for FabNet, Densenet121, DNet, VGG16, and ResNet50.

Dataset Parameters FabNet DenseNet121 VGG16 ResNet50

BreakHis

Epochs 100 100 100 100
Learning Rate 10−3 10−3 10−3 10−3

Batch Size 16 16 16 16
Number of layers 30 121 16 50

Optimizer Adam Adam Adam Adam
Number of parameters 3239 K 7138 K 14,765 K 23,788 K

NCT-CRC-HE-100K

Epochs 100 100 100 100
Learning Rate 10−3 10−3 10−3 10−3

Batch Size 64 64 64 64
Number of layers 30 121 16 50

Optimizer Adam Adam Adam Adam
Number of parameters 3239 K 7138 K 14,765 K 23,788 K

The proposed BreakHis and NCT-CRC-HE-100K datasets intended to serve as
a standard for breast and colon cancer CAD systems. Before discussing the results, we
define the evaluation matrices, which were used to assess the proposed model. The ex-
perimental procedure for evaluating the proposed approach for the BreakHis dataset is



Cancers 2023, 15, 1013 11 of 20

similar to that which was used in the previous study [39]. The authors defined two types
of accuracies, in which the first one reflects the performance accuracy achieved on the
patient scale.

If we suppose Np represents the images of the patient, while Nc is the patient images
that are accurately categorized and Nt are the total patients, the score for an individual
patient can be calculated as

Patient Score =
Np

Nc
(3)

While the global patient accuracy can be calculated as,

Patient Level Accuracy =
∑ Patient Score

Nt
(4)

The second case for the evaluation of classification accuracy is image-level accuracy.
If we let Ntb be the test image samples for breast cancer and Ncb be the images that are
classified by CAD system accurately, according to labeled classes, the image level accuracy
can be defined as follows,

Image Level accurcy =
Ntb
Ncb

(5)

The obtained accuracy at the image and patient levels for different magnification
levels is shown in Table 4. Largely, a malignant case is considered to be positive during
cancer diagnosis, whereas a benign case is considered to be negative. In clinical diagnosis,
sensitivity (also known as recall) is more significant for medical professionals. Therefore, in
this study, the proposed model is evaluated based on metrics defined below,

Precision =
True Possitive

True Possitive + False possitive
(6)

Recall =
True Possitive

True Possitive + False Negative
(7)

F1 score = 2× Precision× Recall
Precision + Recall

(8)

Table 4. Performance comparisons in terms of accuracy for BreakHis dataset.

Accuracy (%) Method
Magnification Level

40× 100× 200× 400×

Patient Level
DenseNet 121 [55] 92.02 90.21 81.94 80.09
MSI-MFNet [58] 93.04 88.34 92.12 89.19
Proposed FabNet 99.01 89.26 98.38 96.96

Image Level
DenseNet 121 [55] 94.26 92.71 83.90 82.75
MSI-MFNet [58] 94.12 89.25 92.45 90.27
Proposed FabNet 99.03 89.68 98.51 97.10

Table 4 depicts the performance of the proposed model, which outperformed DenseNet
121 and MSI-MFNET in terms of test accuracy at each magnification level using the BreakHis
dataset. The model showed superior test accuracy at 40×, 200×, and 400×magnifications.
At the 100×magnification level, the model slightly lags behind Dense121, which achieves
90.21% accuracy at the patient level, while it achieves 92.71 for the image-level classifications.

The experiments are performed largely focused on binary and multiclass classification.
The patch-wise binary and multi-classification outcomes are shown in Table 5. The results
are shown using important metrics such as test accuracy and sensitivity (recall) using the
200× magnified image patches. The results are compared with those of two benchmark
models, which are DenseNet121 and MSI-MFNet. The experimental results that are ob-
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tained by the proposed FabNet were better than the mentioned models were, with a larger
margin in terms of test accuracy for binary classification as well as multi-class classification.

Table 5. Patch wise classification results of FabNet for BreakHis dataset on magnification level 200×
in terms of accuracy and sensitivity metrics.

Class Model Accuracy
Sensitivity

Benign Malignant

Binary

DenseNet [55] 0.92 0.75 0.97

MSIMFNet [58] 0.92 0.76 0.98

FabNet 0.99 0.989 0.990

ADE FIB PHT TAD DUC LOC MUC PAC

Multi

DenseNet121 [55] 0.84 0.60 0.84 0.72 0.84 0.86 0.85 0.97 0.91

MSIMFNet [58] 0.88 0.60 0.87 0.79 0.89 0.96 0.75 0.98 0.92

FabNet 0.97 1.00 0.88 1.00 1.00 0.804 0.89 0.784 0.865

In Table 6, the detailed results that are obtained from the proposed model are presented.
It is evident that the model exhibited better accuracy for binary classification, as well as
multi-classification at contrasting magnifications, for instance, 40×, 100×, 200×, and 400×.
The model showed better performance for binary classification, for instance, the accuracy
at the 40× magnification scale the model achieved 99 percent accuracy. The model showed
better performance for many classed as well.

Table 6. Detailed classification results of FabNet on BreakHis dataset based at different
magnification levels.

Class Magnification Level Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Binary

40× 99.00 98.991 98.986 98.989
100× 89.26 89.128 89.262 89.195
200× 99.00 98.352 98.355 98.354
400× 97.96 97.541 97.521 97.551

Multi

40× 91.26 90.635 89.126 88.289
100× 97.00 96.531 96.427 95.912
200× 97.05 85.972 85.526 85.748
400× 97.20 89.947 89.851 88.899

Table 7 depicts the classification results of the proposed FabNet for the NCT-CRC-
HE-100 K dataset. It is evident that the model exhibited an outstanding performance in
terms of test accuracy and sensitivity compared to those of the benchmark models such as
VGG16, DenseNet 121, and ResNet50.

In Table 8, detailed class-wise scores for important matrices such as precision, sensitiv-
ity, and recall are given to elaborate the efficiency using the NCT-CRC-HE-100K dataset.

The ROC curve is a graphical determination of the classification model’s results. It
is determined by plotting the true positive rate (TPR) against the false positive rate (FPR)
at various discriminatory thresholds, where TPR stands for sensitivity or recall, and FPR
stands for false positive rate (1-specificity). The ROC curve for a classification algorithm
would be a diagonal line from (0,0) to (1,1). Any curve above the diagonal line indicates
a decent classification model that randomly outperforms, and any curve below the diagonal
line indicates a model that randomly underperforms. The region under the ROC curve,
which is often between 0 and 1, is referred to as the AUC. A high AUC means that the
classification model is accurate according to the ROC curve concept. The ROC curve graph
can be seen for the binary classification of the BreakHis dataset in Figure 6, where class
0 indicates a benign tumor, and class 1 represents a malignant tumor. Figures 7 and 8 depict
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the ROC curve graph for the multi-classification performance using the BreakHis and NCT-
CRC-HE-100K datasets. The confusion matrix for the binary classification of the BreakHis
dataset at different magnification scales is shown in Figure 9. As can be seen in the cases of
different magnification levels, 40×, 100×, and 200×, our model tends to produce better
results for binary classification. Because of the diverse and significant areas in the images,
the representation of the confusion matrix results shows that binary scenarios performed
better than multi-classification scenarios did. The higher magnification of features give
further structural information to the model, which helps it to acquire a decent depiction of
patches with labels.

Table 7. Detailed classification results by FabNet on NCT-CRC-HE-100K dataset concerning bench-
mark models in terms of accuracy and sensitivity.

Model
Accuracy
(%)

Sensitivity

ADI BACK DEB LYM MUC MUS NORM STR TUM

VGG16 [56] 96.0 0.95 0.93 0.94 0.88 0.96 0.89 0.98 0.91 0.90
ResNet50 [56] 95.9 0.94 0.90 1.00 0.89 0.92 0.88 0.89 0.95 0.98
Dense Net 121 [55] 96.1 0.96 0.70 0.98 0.97 0.92 0.91 0.96 0.93 0.94
FabNet 98.2 0.96 0.98 1.00 1.00 1.00 0.98 0.99 0.94 0.99

Table 8. Class-wise results representation of FabNet in terms of precision, F1 score, and recall using
the NCT-CRC-HE-100K dataset.

Class Precision F1 Score Recall

Adipose Tissue 1.00 0.98 0.96
Background 1.00 0.99 0.98
Colorectal Cancer 0.98 0.99 1.00
Debris 1.00 1.00 1.00
Lymphocytes 0.95 0.97 1.00
Mucus 0.94 0.96 0.98
NC Tumor 0.99 0.99 0.99
Colon Mucosa 1.00 0.97 0.94
Cancer Stroma 0.99 0.99 0.99Cancers 2023, 15, x FOR PEER REVIEW 15 of 22 
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The confusion matrix results for multi-classification in the case of NCT-CRC colon
cancer are shown in Figure 10.
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Figure 10. Confusion matrix of FabNet, which shows the best score in the NCT-CRC-HE-100K dataset
testing set among 5-fold cross-validation.

Tables 9 and 10 shows the results of proposed model in comparison with benchmarks
related to breast and colon histology models.

Table 9 shows the mean and standard deviation of our results by experimenting with
satin and without stain normalization to better understand the use of the FabNet model in
studying cancer histopathology images.
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Table 9. A comparison of FabNet performance with existing studies on BreakHis histology dataset.

Dataset Author Year Preprocessing Model
Accuracy (%) Magnification Level

40× 100× 200× 400×

Br
ea

k
hi

s
D

at
as

et

Spanhol et al. [30] 2016 None PFTAS
QDA 83 ± 4.1 82.1 ± 4.9 85.1 ± 3.1 82 ± 3.8

Spanhol et al. [39] 2016 Image Resize Pre-Trained
AlexNet 88 ± 5.6 84.5 ± 2.4 85.3 ± 3.8 81 ± 4.9

Spanhol et al. [59] 2017 None DeCAF Model 84 ± 6.9 83.9 ± 5.9 86.3 ± 3.5 82 ± 2.4

Kumar et al. [60] 2018 Image Resize Newly Designed CNN 83 ± 3.2 81.0 ± 4.2 84.2 ± 3.4 81 ± 1.3

Sudharshan et al. [61] 2019 None PLTAS
NPMIL 92 ± 5.9 89.1 ± 5.2 87.2 ± 4.3 82 ± 3.0

Gour et al. [62] 2020 Data
augmentation ResHist Model 82 ± 3.3 88.1 ± 2.7 92.5 ± 2.8 87 ± 2.4

Lingqiao Li et.al [42] 2018 Data
Augmentation, Transfer learning NDCNN 92.8 ± 2.1 93.9 ± 1.9 93.7 ± 2.2 92.9 ± 1.8

Gandomkar et.al [63] Data
Augmentation, ResNET152 94.18 ± 2.1 93.2 ± 1.4 94.7 ± 3.6 93.5 ± 2.9

Proposed 2021 Stain Normalization FabNet 99 ± 0.2 89.51 ± 1.7 97.41 ± 1.4 96 ± 1.0

Table 10. A comparison of FabNet performance with existing studies on Colorectal histology dataset.

Dataset Author Year Preprocessing Model Evaluation Matrices

C
ol

on
(N

C
T-

C
R

C
-

H
E-

10
0K

)d
at

as
et Accuracy Precision F1 Score Sensitivity

Wang et al. [64] 2017 None BCNN 92.6 91.2 92.8 90.5
Sari et al. [65] 2018 None SSAE/SCAE 93.6 93.4 93.2 92.3

Kather et al. [66] 2019 Stain Normalization TL+CNN (VGG) 94.3 92.1 93.5 94.1
Gosh et al. [67] 2021 None Ensemble DNN 92.8 92.6 92.2 93.1

Proposed 2021 None FabNet 98.3 98.3 98.2 98.2
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The model outperformed some of the one in the most current research studies. For
example, in [68], they obtained 97.58% and 97.45% accuracy rates with 7.6 million training
parameters, whereas we reached a 99.03% accuracy with 3239 K training parameters. De-
spite having fewer training parameters, our model achieved a higher degree of accuracy.
In another study [2], the authors proposed the Inception Recurrent Residual Convolu-
tional Neural Network (IRRCNN) network, which obtained 97.95% accuracy for image
classification and 97.65% accuracy for patient classification. Unlike IRRCNN, FabNet ob-
tained a 99.01% patient-level accuracy and 99.03% picture-level accuracy using this dataset.
The authors obtained 99.05% accuracy for binary classification and 98.59% accuracy for
multiclassification using data augmentation. We obtained comparable outcomes without
applying data augmentation. Data augmentation enables a learning model to overcome
important training constraints such as overfitting, hence improving its accuracy and gener-
alization capabilities. In the case of our model, we think that its ability for generalization
is strengthened despite the absence of data augmentation. A similar accuracy was shown
by Rui Man et al. [55] at the 40× magnification level, however our model achieved bet-
ter results at the 200× and 400× magnification levels. The authors proposed the use of
DenseNet121-ino, which has substantially more training parameters than FabNet does.

6. Conclusions

In this paper, we suggested the FabNet model that can learn the fine-to-coarse struc-
tural and textural features of multi scale histopathological images by accretive network
architecture, which agglomerates hierarchical feature maps to acquire significant classi-
fication accuracy. We expanded upon the conventional convolutional neural network
architecture by incorporating deeper integration to finely fuse information across layers.
This layer expansion had a small impact on the model’s depth; however, it made the model
more tightly linked with a compact form, ensuring that any piece of detail was transferred
to the deeper layers for better learning. Despite having fewer parameters, this lightweight
network architecture yielded better classification accuracy than the state-of-the-art models did.

Our model yields improved classification probabilities at both the patch as well as
the image levels. The efficiency and reliability of the FabNet were assessed using two
public datasets that included breast and colon cancer data based on several experiments,
for instance, multi- and binary classifications. The suggested FabNet improved upon
the existing state-of-the-art models when they were evaluated using both of the public
benchmark datasets. The experimental parameters were kept the same for the benchmark
models, as well as for the proposed model to precisely conclude the performance. The
proposed model achieved 99% accuracy and a 98.9% F1 score in the case of the binary
classification of BreakHis at the 40×magnification scale. The model achieved 98.2% test
accuracy and a 98.23% F1 score for NCT-CRC-HE-100K colon cancer dataset without
employing any data augmentation technique.

We believe that the model can reduce the cancer screening time for pathologists, as
well as oncologists. In diverse circumstances, oncologists and researchers working in the
field of cancer detection and diagnostics using histological images will benefit from the
proposed model’s high sensitivity and accuracy. Although the closely coupled architecture
tackled the imbalance in the dataset issue, which ultimately resulted in minor effects on the
model’s performances, since the data imbalance is so prominent in the clinical histology,
we intend to look at certain strategies for coping with this problem in the future. We will
also look at which feature map combinations which are most significant for classification.
The proposed model can be used to perform a variety of tasks related to histological
image-based classification in clinical environments.
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