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Simple Summary: Breast cancer is the most frequent cancer among women: early diagnosis and
management of breast lesions are crucial to achieve a better prognosis for patients with this diagnosis.
Breast ultrasound (US) is one of the main techniques for the management of breast lesions and it
is important in doubtful findings on mammography and in the evaluation of dense breasts. Unfor-
tunately, US has a high rate of false positive and has high operator dependence. Ultrasound CAD
(computer-aided diagnosis) and radiomics are newly developed tools that can help solve these issues:
this study aims to create a radiomics score from breast US to predict malignancy of a breast lesion,
and to also combine this score with CAD and sonographer performances. Finally, we would like to
create a prediction tool of US radiomics features combined with CAD, clinical parameters, and Breast
Imaging Reporting and Data System evaluation for the prediction of malignancy of breast lesions.

Abstract: The study aimed to evaluate the performance of radiomics features and one ultrasound
CAD (computer-aided diagnosis) in the prediction of the malignancy of a breast lesion detected with
ultrasound and to develop a nomogram incorporating radiomic score and available information
on CAD performance, conventional Breast Imaging Reporting and Data System evaluation (BI-
RADS), and clinical information. Data on 365 breast lesions referred for breast US with subsequent
histologic analysis between January 2020 and March 2022 were retrospectively collected. Patients
were randomly divided into a training group (n = 255) and a validation test group (n = 110). A
radiomics score was generated from the US image. The CAD was performed in a subgroup of
209 cases. The radiomics score included seven radiomics features selected with the LASSO logistic
regression model. The multivariable logistic model incorporating CAD performance, BI-RADS
evaluation, clinical information, and radiomic score as covariates showed promising results in the
prediction of the malignancy of breast lesions: Area under the receiver operating characteristic curve,
[AUC]: 0.914; 95% Confidence Interval, [CI]: 0.876–0.951. A nomogram was developed based on these
results for possible future applications in clinical practice.
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1. Introduction

Breast cancer represents the fifth leading cause of death in the global population, with
an estimated 2.3 million cases in 2020, and has recently become the most diagnosed cancer,
surpassing lung cancer. It is currently the most frequent cancer among women, with a
prevalence of 24.5%, and it is the leading cause of mortality (15.5%) [1]. At least one in
eight women receive a breast cancer diagnosis in their lifetime [2].

Considering these critical epidemiological data, an early diagnosis and proper man-
agement of patients with breast lesions appear to be of huge importance. Full-field digital
mammography (FFDM) is the main breast screening method; however, it is known to
have low sensitivity in dense breasts. In those patients, the complementary role of breast
ultrasound can be of great help [3].

Breast ultrasound (US) is one of the leading traditional techniques used for managing
breast lesions and can be used to define doubtful findings of mammography and MRI
better and to manage dense breasts better. Indeed, it has been demonstrated that breast
US could identify additional breast lesions in dense breasts. According to some recent
studies, breast US [4,5] can identify additional cancers in a range from two to seven every
1000 negative mammographs.

One of the main challenges of a breast diagnostic technique is to try to maintain a
proper balance between false-positive and false-negative results. Unfortunately, fewer than
one of ten biopsies prompted by the US turns out to be malignant [6], with unfavorable
consequences for health care costs, waiting list organization, and patient psychological
distress.

The high operator dependence of the US shows that the attribution of the risk of
the malignancy of a breast lesion is highly subjective and dependent on the operator’s
experience [7]. To solve this problem, ultrasound CAD (computer-aided diagnosis) has
been developed recently and has achieved good results in clinical practice, although still
improvable [7]. An ultrasound CAD uses a deep-learning algorithm to evaluate ultrasound
breast lesions. These algorithms analyze the breast lesion from a morphological point of
view and indicate the benignity or malignancy of the lesion itself. The CAD we used in
this study was the Ultrasonic S-Detect (Samsung Medison Co., Ltd., Seoul, Republic of
Korea) [7]. Radiomics can also provide an essential aid in helping to predict the malignancy
of breast lesions: the recent strong development of radiomics in clinical imaging, especially
in the field of oncology, has presented auspicious results [8,9]: radiomics is a quantitative
approach to medical imaging that analyzes the grey values of a radiological image with the
extraction, through a computer algorithm, of quantitative information that is not obtainable
from conventional qualitative analysis [10–12]. Features extracted can be associated with
clinically significant outcomes such as the prediction of malignancy of a breast lesion.

Radiomics, through the aid of artificial intelligence, specifically machine and deep
learning, enables the computational analysis of medical images, with quantitative features
being obtained. These features make it possible to build models that can help improve
diagnosis and treatment in oncology.

Moreover, radiomics can have a key development by combining it with clinical practice.
Indeed, medical imaging information is related to malignancy structure and behavior [13].
Thus, data obtained from the radiomic process can be analyzed and correlated with clinical
events [14,15].

This study aimed to create a radiomics score from the breast US to predict the malig-
nancy of a breast lesion. We also wanted to evaluate whether the performance of this model
could be combined with the ultrasound CAD (S-detect) information to improve the overall
results obtained in predicting the malignancy of a lesion. We finally aimed to create a tool
(nomogram) of ultrasound radiomics features combined with CAD, clinical information,
and US Breast Imaging Reporting And Data System (BI-RADS) [13] evaluations to predict
the malignancy of the breast lesions in clinical practice.
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2. Materials and Methods

This retrospective study was submitted to the Ethics Committee (Identification Num-
ber UID 2793, 27 July 2021) and approved by the Institutional Review Board.

We reviewed a series from an internal database of patients who underwent ultra-
sound core needle breast biopsies for suspicious breast lesions (BI-RADS > 3) between
1 January 2020 and 31 March 2022 of 365 images (corresponding to 365 breast lesions from
362 consecutive patients).

All of the pre-biopsy images of the lesions were acquired with a Samsung RSV80A
or RSV85 Healthcare, Seoul, Republic of Korea. All 365 selected images were used for
radiomic analysis. Manual segmentations were performed with the LifeX program [16] by
three different radiologists, as shown in Figure 1.
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Figure 1. Manual ultrasound image segmentation on LifeX software. (A) Round shape breast lesion
in the US conventional B mode, (B) the manual segmentation with colored ROI obtained with LifeX
software. The histological result of the biopsy was that of a fibroadenoma.

The images were reviewed according to conventional ultrasound BI-RADS [17] by
four different radiologists, two with 5 years of experience in breast imaging and two with
more than 15 years of experience.

According to our clinical practice, BI-RADS < 4a was considered predictive of benign
lesions, and BI-RADS 4b, c, and 5 were considered predictive of malignant lesions [7,17].

S-detect CAD information (Computer Aided Diagnosis of the Samsung RSV80 or
85 machine, Samsung Medison Co., Ltd., Seoul, Republic of Korea) was available for
a subgroup of patients (209). S-Detect (a CAD based on a deep-learning algorithm to
evaluate ultrasound breast lesions) was used to obtain a categorization of the breast lesion
as either “possibly benign” or “possibly malignant.” For each lesion, the radiologist, after
the acquisition of both longitudinal and transverse B mode images, placed a mark in the
center of the lesion: the system automatically provided a region-of-interest (ROI) around
the border of the mass with a “possibly benign or malignant” score, as shown in Figure 2.

The histopathological biopsy result was used as the gold standard [18] for defining
diagnostic accuracy.

Statistical Analysis

Demographic and clinical characteristics were presented with descriptive statistics,
expressed as frequencies and percentages for categorical variables, and as medians and
interquartile ranges for continuous variables. Differences among patients by histopatholog-
ical characteristics were evaluated with Fisher’s exact test for categorical variables or the
Wilcoxon rank sum test for continuous variables. The least Absolute Shrinkage and Selec-
tion Operator (LASSO) logistic regression model was implemented to select the radiomic
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features associated with the malignancy of the tumor. The best lambda parameter was
estimated using 10-fold cross-validation, while the regularization strength was selected as
the minimum value that maximized the area under the curve (AUC).

1 
 

 
Figure 2. CAD software evaluation (S-detect) in the US images. (a) Ultrasound image of the suspicious
hypoechogenic nodule with irregular margins in the right breast (as shown by the arrow). (b) Region-
of-interest (ROI) of the same breast lesion after the S-Detect evaluation. Histological examination of
the biopsy confirmed the presence of a malignant neoplasm (invasive ductal carcinoma).

The radiomic score of each patient was the linear combination of the selected features
weighted by their respective LASSO coefficients. Breast lesions were randomly assigned
to training and test sets to build the models with a 70:30 rate (255 lesions in the training
dataset and 110 lesions in the test dataset). Univariable and multivariable logistic regression
models for predicting the malignancy of the lesion (malignant vs. benign) were fitted on
the training set and evaluated on the test set. The association of each selected radiomic
feature by LASSO with the prediction of malignancy was also evaluated with the Wilcoxon
rank sum test for descriptive purposes. The following models were first implemented:

- The radiomic model including the radiomic score (calculated with LASSO logistic
regression, as described above) as a single covariate;

- The Adjusted Radiomic model including the radiomic score and the clinical variables
as covariates. We included here the clinical variables associated with malignancy
prediction in univariate logistic regression analysis.

Inter-rater agreement among the four radiologists for the BI-RADS score was assessed
both overall [Fleiss’s K] [19] and for pairwise operators (weighted Cohen’s K). Moreover,
each radiologist’s agreement of the BI-RADS score with the gold standard (histopathology
result) was evaluated. The BI-RADS score with the highest agreement with the gold
standard was defined as the “best” BI-RADS and was retained in the following analysis
incorporating the BI-RADS score:

- The Adjusted Radiomic + BI-RADS best model including the radiomic score, the best
BI-RADS, and the clinical variables as covariates. For the subgroup of patients with
information on S-detect, we also calculated:

- The Adjusted Radiomic + S-Detect model including the radiomic score, the S-detect
score, and the clinical variables as covariates;

- The Adjusted Radiomic + S-Detect + BI-Rads best model including the radiomic score,
the S-detect score, the best BI-RADS, and the clinical variables as covariates.

All of the models including the S-detect score as a covariate were estimated, this
included only the subgroup of 209 patients for which the S-detect score was available.
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Due to the sample size constraint, these latter models were built as subgroup analyses
without splitting into testing and training sets.

The predictive performance of the models was evaluated and compared using the area
under the receiver operating characteristics curve (AUC); AUC 95% confidence limits were
calculated with ‘OptimalCutpoints’ R-package v. 1.1-5. Sensitivity (SE) and specificity (SP)
were also calculated using a cut-off that minimized the distance between the ROC plot and
the vertex (0,1). To validate the model’s performance in the training cohort, we considered
the calibration and discrimination metrics. The overall performance was measured by
the Hosmer–Lemeshow test; calibration was assessed considering the intercept and slope
calibration. All of the analyses were performed using R 4.1.2 software, and p values < 0.05
were considered statistically significant.

3. Results

The mean age of the patients was 50 years, and the mean size of the breast masses
was 16 mm. A total of 255 patients belonged to the training group, and 110 belonged
to the test group; 53% of the lesions were malignant (192 cases): specifically, 173 (47%)
were invasive neoplasms, eight (2.2%) in situ lesions, 11 (3%) B3 (uncertain malignant
potential) lesions; 173 (47%) were benign findings (Table 1). Histopathological features
and outcomes according to the training/test group are shown in Table 1. No significant
differences between the histological outcome, age, and lesion size in the training and test
groups were found.

Table 1. Histopathological characteristics in the training and test groups.

Characteristic Overall, N = 365 Test, N = 110 Training, N = 255 p-Value 2

Age 1 median (IQR) 50 (41–63) 52 (40–65) 50 (42–62) 0.8

Lesion size median (IQR) 16 (12–23) 18 (12–26) 16 (11–20) 0.2

Histopathological category >0.9

Benign findings (B2) n (%) 173 (47%) 54 (49%) 119 (47%)

Uncertain malignant potential lesions (B3) n (%) 11 (3.0%) 4 (4%) 7 (3%)

In situ neoplasm (B5a) n (%) 8 (2.2%) 2 (1.8%) 6 (2.4%)

Invasive neoplasm (B5b) n (%) 173 (47%) 50 (45%) 123 (48%)
1 N of subjects with data on age: 362. 2 Fisher’s exact test for categorical variables; Wilcoxon rank sum test for
continuous variables. IQR = interquartile range.

After the radiomic evaluation of the US images, the most relevant features were
selected in the training dataset. The univariate association of each selected radiomic
feature by LASSO with the prediction of malignancy was presented in Table 2: all of the
features except for CONVENTIONAL_std showed a significant univariate association with
the outcome.

The performances of the radiomic models in the training and test sets are summa-
rized in Table 3. The AUC of the crude radiomic model in the training set was 0.773
(95% CI: 0.716–0.831), the SE was 0.705 (95% CI: 0.619–0.782), and the SP was 0.754 (95%
CI: 0.669–0.826). The AUC of the crude radiomic model in the test set was reduced to
0.640 (95% CI: 0.535–0.744), with SE (95% CI): 0.660 (0.517–0.785) and SP (95% CI): 0.614
(0.476–0.740). The AUC of the training-adjusted radiomic model (including age and lesion
size as covariates) was increased to 0.842 (95%CI: 0.792–0.891), with SE (95% CI): 0.775
(0.693–0.844) and SP (95% CI): 0.786 (0.704–0.854). The AUC of the test-adjusted radiomic
model was 0.781 (95% CI: 0.696–0.865), with SE (95% CI): 0.736 (0.597–0.847) and SP (95%
CI): 0.719 (0.585–0.830). Overall, the test and training models showed statistically compa-
rable discrimination performances. The evaluation of good fitting of the radiomic model
with the Hosmer test and training group is shown in Figure S1.
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Table 2. Univariate association between the selected radiomic features and prediction of malignancy.

Characteristic Overall, N = 255 1 0, N = 126 1 1, N = 129 1 p-Value 2

CONVENTIONAL_std 23.4 (20.7, 26.7) 24.1 (20.9, 27.1) 22.9 (20.5, 25.9) 0.10

CONVENTIONAL_Skewness 1.10 (0.74, 1.47) 1.16 (0.84, 1.52) 1.07 (0.64, 1.40) 0.015

CONVENTIONAL_Kurtosis 4.53 (3.47, 5.93) 4.84 (3.75, 6.46) 4.00 (3.23, 5.25) <0.001

DISCRETIZED_ExcessKurtosis 1.02 (0.26, 2.36) 1.44 (0.49, 2.84) 0.73 (0.02, 2.01) <0.001

GLCM_Contrast___Variance 6 (4, 12) 8 (5, 13) 5 (3, 10) <0.001

NGLDM_Busyness 1.53 (0.74, 2.92) 1.30 (0.58, 2.50) 1.83 (0.83, 3.75) 0.019

GLZLM_SZE 0.61 (0.56, 0.67) 0.62 (0.58, 0.68) 0.58 (0.54, 0.66) <0.001
1 Median (IQR). 2 Wilcoxon rank sum test.

Table 3. Performances of the radiomic models.

Model AUC (CI 95%) Sensitivity (CI 95%) Specificity (CI 95%)

Training—Crude 1

Radiomic
0.773 (0.716–0.831) 0.705 (0.619–0.782) 0.754 (0.669–0.826)

Training—Adjusted 2

Radiomic
0.842 (0.792–0.891) 0.775 (0.693–0.844) 0.786 (0.704–0.854)

Test Crude 1

Radiomic
0.640 (0.535–0.744) 0.660 (0.517–0.785) 0.614 (0.476–0.740)

Test—Adjusted 2

Radiomic
0.781 (0.696–0.865) 0.736 (0.597–0.847) 0.719 (0.585–0.830)

1 Crude logistic models include only the radiomic score as a covariate; 2 Logistic model including the radiomic
score, age, and dimension of the lesion as covariates.

The strength of the agreement between the radiologists in the Bi-RADS evaluation
was shown in Table S1. We found an overall good agreement between the four radiologists
(Fleiss’s K 0.74, with K = 1 indicating perfect agreement) and excellent agreement among
radiologists of similar experience (0.879 for the most expert and 0.830 for the less expert
ones). The agreement with the gold standard was good for most expert radiologists (0.62
and 0.66, respectively, for observers 1 and 2) and fair for less expert radiologists (0.37 for
observers 3 and 4, results not shown).

Including the US BI-RADS evaluation increased the performance of the radiomics
models. The crude model including the BI- RADS evaluation (best observer performances
among the four radiologists) showed an AUC = 0.816 (95% CI: 0.769–0.864), the adjusted
radiomic model with BI-RADS evaluation (best observer) showed an AUC = 0.918 (95%
CI: 0.886–0.951). CAD S-Detect also increased the predictive performance of the radiomic
model, although this analysis included only the subgroup of 209 images with scores
available (Table 4). Specifically, the crude radiomic model with S-Detect showed an AUC
of 0.863 (95% CI: 0.811–0.914), while the adjusted radiomics model with S-Detect showed
an AUC of 0.887 (95% CI: 0.840–0.933). For this subgroup of patients, the adjusted radiomic
model with the inclusion of BI-RADS assessment (best reader) reached an AUC of 0.883
(0.839–0.927), slightly lower than the AUC reached in the whole sample. Finally, a single
model including all the predictors shown thus far (clinical information, radiomics, BI-
RADS and S-Detect) was implemented to assess whether the integration of all of these
data performed better than the other sub-models. As shown in Table 4, this final model
obtained an AUC of 0.914 (95% CI: 0.876–0.951), which was the highest AUC reached in
this subgroup of patients. Sensitivity and specificity were also higher than those observed
in the other models.
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Table 4. Performance of adjusted radiomic model with S-Detect, with BI-RADS. Evaluation and
together with S-Detect and BI-RADS evaluation; dataset of N = 209 patients.

Model (Training Group) AUC SE SP

Adjusted Radiomic + S-Detect 0.887 (0.840–0.933) 0.854 (0.771–0.916) 0.802 (0.716–0.873)

Adjusted Radiomic + BI-RADS best 0.883 (0.839–0.927) 0.854 (0.854–0.771) 0.764 (0.672–0.841)

Radiomic + S-Detect + BI-RADS best 0.914 (0.876–0.951) 0.854 (0.771–0.916) 0.849 (0.766–0.911)

Multivariate logistic regression analyses were used to build a nomogram (Figure 3
for predicting breast malignancy using data from this latter complete model (adjusted
radiomic model, S-Detect, and BI-RADS evaluation). In a nomogram, every predictor
assesses the total risk based on their specific value graphically reported on a “scale point”.
The sum of the values of all the “scales point” imports a “ Total point” value that graphically
corresponds to a final “Risk of Outcome”. For example, a patient with a radiomic score value
of 0.5 (approx. 40 points), is 65 years old (approx. 50 points), lesion size 45 mm (approx.
10 points), S-Detect and BI-RADS = Benignant (0 points each) collect total points = 100,
which corresponds to approx. 15% risk of malignancy.
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4. Discussion

The considerable development of diagnostic imaging, which we have witnessed in
recent years, aims to increasingly improve the performance of diagnostic examinations,
making them more objective and less operator dependent. Specifically, in breast imaging,
the goal is to increase lesion detection and identify smaller lesions, but also to increase
specificity and avoid unnecessary biopsies for benign lesions [20,21]. Ultrasound is one of
the fundamental methods for diagnosing breast malignancies, especially in dense breasts
where mammography loses sensitivity [22]. Compared with other breast imaging tech-
niques, it is simple to perform, has no radiation, and allows for a real-time evaluation
of breast lesions. However, ultrasound has shortcomings such as being extraordinarily
operator-dependent and having a narrow field of view [23]. For this reason, it is difficult for
radiologists to analyze an ultrasound image thoroughly and reproducibly [5,6]. Efforts have
been made in recent years to improve the performance of ultrasound with computerized
systems (CAD) [7] and with the application of radiomics to ultrasound images.
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With our research, we demonstrated that radiomics applied to ultrasound, using
some CAD and known clinical knowledge, can improve performance in predicting the
malignancy and benignity of breast lesions.

As in our study, some authors, in a few recently published research papers, have
tried to combine radiomics with other US tools that aim to improve ultrasound perfor-
mance such as shear-wave elastography (SWE) or color-Doppler (CD) [21,24–29]. For
example, Jiang et al., in a study in 2021 on 401 lesions, showed an AUC in the prediction of
malignancy of 0.920, considering the performance of a radiomic model plus shear-wave
elastography [30]. Other studies have combined the radiomic model from US B mode
images with a different US tool such as color-Doppler, but also with clinical information, in
a similar way to our study, like that of Moustafa et al. [31]. They retrospectively analyzed
US images of 159 solid masses from 156 patients to build a model including the analysis of
B mode and color-Doppler US images with clinical data of age, which gave a very good
performance with a calculated AUC of 0.958. Lower but still excellent performance was
obtained in other studies in which only the diagnostic performance of the radiomic model
was considered [32–35]. For example, Mango et al., in a study of 900 lesions, reported an
AUC of 0.870 [35]. Our study is in line with the results of the few recent studies already
published and, to the best of our knowledge, is the first to combine a radiomic model with
an ultrasound CAD such as S-Detect. Our average performance of the combined model
was also excellent with an average AUC value of 0.914; in Table 5, we compared our study
methods and performance, with other similar studies that assessed the use of radiomics in
US images for differentiating between benign and malignant lesions.

Table 5. Performance comparison (AUC) between our study and other similar studies on the
application of radiomics in US images.

STUDY Imaging Data and Other
Combined Analyzed Data Data Size Radiomic

Performance (AUC)

Zhang et al., 2019 [27] B mode US + SWE 227 0.961

Moustafa et al., 2020 [30] B mode US + CD + clinical data 159 0.958

Jiang et al., 2021 [29] B mode US + SWE 401 0.920

Romeo et al., 2021 [31] B mode US 201 0.820

Qian et al., 2021 [28] B mode US + CD 873 0.922

Qian et al., 2021 [28] B mode US + CD + SWE 873 0.955

Current study B mode US + CAD + clinical data 209 0.920

Following the data obtained, radiomics offers excellent results in the prediction of the
malignancy of breast lesions, if combined with clinical variables, with many possibilities for
further development in the near future. Finally, we built a nomogram (Figure 3) that can be
used in clinical practice for the prediction of breast malignancy using data from the adjusted
radiomic model, S-Detect, and BI-RADS evaluation, expressed as these candidate factors:
age, largest lesion diameter, radiomics score, S-Detect score, and US BI-RADS evaluation.

Limitations of our study were the retrospective and single-center nature and the rela-
tively limited number of patients involved. Further studies with a prospective enrolment
are necessary to confirm our promising results.

5. Conclusions

Our radiomic model approach, along with clinically relevant information and the
radiological experience of sonographers, showed excellent results in the prediction of the
malignancy of breast lesions. Adding the CAD ultrasound system’s performance further
increased the prediction accuracy of malignancy.
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