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Simple Summary: This retrospective study aimed to find suitable source domain data in cross-
domain transfer learning to extract robust image features and build a model to preoperatively
distinguish LGN from LAC in SPSNs. The experiment showed that, compared with other source
domains (such as ImageNet and LIDC), the transfer learning signature based on lung whole slide
images as the source domain could extract more robust features (Wasserstein distance: 1.7108).
Finally, a cross-domain transfer learning radiomics model combining transfer learning signatures
based on lung whole slide images as the source domain, clinical factors and subjective CT findings
was constructed. According to the validation cohort results of five centres (AUC range: 0.9074–0.9442),
the cross-domain transfer learning radiomics model that combined multimodal data could assist
physicians in preoperatively differentiating LGN from LAC in SPSNs.

Abstract: Purpose: This study aimed to find suitable source domain data in cross-domain transfer
learning to extract robust image features. Then, a model was built to preoperatively distinguish
lung granulomatous nodules (LGNs) from lung adenocarcinoma (LAC) in solitary pulmonary solid
nodules (SPSNs). Methods: Data from 841 patients with SPSNs from five centres were collected
retrospectively. First, adaptive cross-domain transfer learning was used to construct transfer learning
signatures (TLS) under different source domain data and conduct a comparative analysis. The Wasser-
stein distance was used to assess the similarity between the source domain and target domain data in
cross-domain transfer learning. Second, a cross-domain transfer learning radiomics model (TLRM)
combining the best performing TLS, clinical factors and subjective CT findings was constructed.
Finally, the performance of the model was validated through multicentre validation cohorts. Results:
Relative to other source domain data, TLS based on lung whole slide images as source domain data
(TLS-LW) had the best performance in all validation cohorts (AUC range: 0.8228–0.8984). Meanwhile,
the Wasserstein distance of TLS-LW was 1.7108, which was minimal. Finally, TLS-LW, age, spiculated
sign and lobulated shape were used to build the TLRM. In all validation cohorts, The AUC ranges
were 0.9074–0.9442. Compared with other models, decision curve analysis and integrated discrim-
ination improvement showed that TLRM had better performance. Conclusions: The TLRM could
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assist physicians in preoperatively differentiating LGN from LAC in SPSNs. Furthermore, compared
with other images, cross-domain transfer learning can extract robust image features when using lung
whole slide images as source domain data and has a better effect.

Keywords: lung granulomatous nodule; lung adenocarcinoma; solitary pulmonary solid nodules;
adaptive cross-domain transfer learning; whole slide image

1. Introduction

The detection rate of solitary pulmonary solid nodules (SPSNs) has greatly improved
with the popularization of CT [1]. Lung adenocarcinoma (LAC) is the most common
pathological type of malignant SPSN [2,3]. In contrast, lung granulomatous nodules
(LGNs) are one of the great radiological mimickers of lung cancer and that are a common
infectious disease causing serious medical and social problems [4,5]. LGN presenting as
SPSNs has atypical imaging features, such as lobulated shape, spiculated sign and other
subjective CT signs consistent with LAC, which brings difficulties for diagnostics [6,7]. It
has been reported that the false-positive rate of LGN is in the range of 57.1% to 92.0% [8].
Previous studies have shown that percutaneous needle biopsy has high diagnostic value in
the diagnosis of lung nodules, as invasive tissue sampling approaches are often selected
based on the location of the nodule, comorbidities and the physical condition of patients.
However, needle biopsy is associated with a risk for pneumothorax and haemorrhage [9,10].
Thus, it is of great value to develop an effective preoperative diagnosis method for the
malignant risk of SPSNs. For LAC patients, a more active plan should be used for early
diagnosis and to improve prognoses. Meanwhile, for LGN patients, unnecessary invasive
procedures (such as needle biopsy or surgery) should be avoided because of various
limitations, including cost, training expertise and potential for serious complications, such
as pneumothorax and haemorrhage [3].

In recent years, artificial intelligence (AI) techniques coupled with radiological imag-
ing have played an essential role in automatically predicting the nature of tumours [11].
Multivariate logistic regression analyses were applied to identify independent predictors of
LGN and LAC from clinical characteristics and CT morphological features of lesions and to
construct a model [8]. The CT morphological features of the lesions were obtained by two
experienced chest radiologists. However, interreader variability with respect to manual
nodule size measurement and visual assessment of radiologic features has been reported,
which could lead to misdiagnoses [7]. Furthermore, Zhou et al. and Yang et al. created
a radiomics nomogram combined with clinical features, CT morphological features of
lesions and radiomics signature to differentiate LAC from LGN in patients with pulmonary
solitary solid nodules using multivariate logistic regression analyses, respectively [9,12].
The radiomics features based on fixed calculation formulas were extracted from each
three-dimensional lung nodule on thin-slice CT images, and radiomics signatures were
built using least absolute shrinkage and selection operator logistic regression. However,
radiomics also relies on precise tumour boundary annotation, which requires manual
labelling and many human resources. In addition, radiomics features, where predesigned
features are extracted from a region of interest, lack the specificity and sensitivity required
to differentiate LGN from LAC in patients with SPSNs.

In contrast, advanced artificial intelligence models can overcome these problems
through self-learning strategies, such as convolutional neural networks (CNNs). Deep
learning features extracted using hierarchical convolution operations from the raw medical
image will contain more abstract information about the lesion and may provide greater
predictive insights [10]. CNN models have shown promising performance in assisting lung
cancer analysis [13–15]. However, due to the capacity of CNNs to fit a wide diversity of
nonlinear data points, they require a large amount of training data. This often makes CNNs
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prone to overfitting on small datasets, where the model tends to fit well to the training data
but is not predictive for new data.

CNN based on transfer learning has been widely used because it does not require a
precise delineation of lesions and can automatically extract features related to the target
task in the case of small data [16,17]. Transfer learning seeks to transfer knowledge from
predefined source domain data to a new target task [18]. In the field of medical image
research of pulmonary nodules, the most widely used cross-domain transfer learning
strategy is pretraining with fine-tuning: First, a source network is trained with a large
source domain dataset (e.g., ImageNet: containing 1.3 million images, such as cats, dogs
and flowers); second, the target network is initialized using learned weights of the source
network; finally, the target domain data are used to fine-tune the target network [16,19].

However, the source domain data have a certain influence on the effect of cross-
domain transfer learning. In particular, transfer learning based on fine-tuning is easily
introduces redundant features when the source domain data are quite different from the
target domain data, which leads to negative transfer and overfitting [20–22]. Therefore,
eliminating redundant features in source domain data and adaptively selecting useful
features for target task learning to constrain the training of the target network are crucial
for cross-domain transfer learning [23].

To eliminate the adverse effects of redundant features in the source network on the
target model, an adaptive source domain feature selection network in cross-domain transfer
learning was used to select the features of the source network that are conducive to the
learning of the target network to constrain the training of the target model. Then, we
investigated the impact of the cross-domain transfer learning signature (TLS) based on
different source domain data (e.g., ImageNet, lung whole slide images (WSIs) and CT
images of the lung) on distinguishing LGN from LAC in SPSNs. In addition, a metric was
introduced to measure the cross-domain transfer learning value of different source domain
data to the target task. This technique was first applied to the preoperative differential
diagnosis of LAC and LGN with SPSNs. Finally, a cross-domain transfer learning radiomics
model (TLRM) combining TLS, clinical factors and subjective CT findings was constructed
to assist clinicians in the preoperative diagnosis of LAC and LGN with SPSNs. Multicentre
data were used for verification.

2. Materials and Methods

This study was approved by the institutional review board. The need for informed
consent was waived because this was a retrospective study using preexisting imaging data.

2.1. Patients

The enrolled SPSN patients with complete medical information and CT images were
collected from five medical centres from March 2013 to December 2020. The inclusion
criteria were as follows: (1) radical surgical resected SPSNs with final histopathological
diagnosis confirmed LAC and LGN; (2) the diameter of the SPSNs ≤ 30 mm; (3) primary
thoracic CT images with slice thickness 0.625-3.0 mm in the axial section; and (4) inter-
val between preoperative thoracic CT examination and operation of less than 1 month.
The exclusion criteria were as follows: (1) calcified nodules or solid nodules with a satel-
lited patchy opacity that represented chronic inflammatory disease; (2) subsolid nodules
in the nodule attenuation subtype; (3) thoracic CT images with artifacts that did not
meet the diagnostic requirements; and (4) patients with a malignant tumour history. The
flowchart of participants is shown in Figure 1. The pathological evaluation is shown in
Supplementary S1.
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Figure 1. Flow diagram of the patient inclusion and exclusion process. Note: CT, computed tomogra-
phy; SPSNs, solitary pulmonary solid nodules; LAC, lung adenocarcinoma; LGN, lung granuloma-
tous nodule.

Finally, 841 patients were included and divided into a training cohort that was used to
train the model and four validation cohorts that were used to assess the performance of the
models (Table 1).

In addition, to study the impact of source domain data on cross-domain transfer
learning, the WSIs of lung cancer from the Cancer Genome Atlas (https://portal.gdc.cancer.
gov, accessed on 11 October 2020), ImageNet (https://www.image-net.org, accessed on
3 October 2020) and CT images of pulmonary nodules from LIDC-IDRI (https://wiki.
cancerimagingarchive.net/display/Public/LIDC-IDRI, 7 October 2020) were collected and
separately used as source domain data for cross-domain transfer learning.

All images were preprocessed into three-channel images of 224 × 224 to meet the input
requirements of the cross-domain transfer learning model (Supplementary S2 and Figure S1).

https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
https://www.image-net.org
https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
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Table 1. Basic information of patients enrolled in the study.

Training
Cohort (n = 268)

Internal
Validation

Cohort (n = 214)

External
Validation
Cohort 1
(n = 187)

External
Validation
Cohort 2
(n = 57)

External
Validation
Cohort 3
(n = 115)

Whole
Validation Data

(n = 573)

CT scan time January 2014 to
May 2018

June 2018 to
September 2020

January 2015 to
December 2018

May 2018 to
December 2020

March 2013 to
August 2019

March 2013 to
December 2020

Pathological type
LGN 114 65 44 30 23 162
LAC 154 149 143 27 92 411

Gender
Men 129 122 90 29 62 303

Women 139 92 97 28 53 270
Age

(mean ± SD,
years)

55.75 ± 12.49 58.54 ± 11.72 58.38 ± 10.78 56.37 ± 11.57 58.34 ± 9.98 58.23 ± 11.06

Age range
(years) 20–81 16–79 28–80 31–79 27–75 16–80

Notes: CT, computed tomography; LAC, lung adenocarcinoma; LGN, lung granulomatous nodule; SD, stan-
dard deviation.

2.2. CT Scanning Parameters

The CT scanning parameters were as follows: 16-detector-row CT scanner and dual-
energy Somatom Flash (Siemens Medical Systems, Forchheim, Germany), 64-detector-row
CT scanner Aquilion One (Toshiba Medical Systems, Otawara, Japan), and 64-detector-row
CT scanner GE Discovery (GE Healthcare, Boston, MA, USA). The scanned direction was
caudocranial with the patient in the supine position. The scanned filed was from the
bilateral lung tip to base with deep inhalation breath holding. Scanned parameters: tube
voltage, 120 kVp; automated mAs technique; collimation, 16 × 0.75 mm or 64 × 0.5 mm;
pitch 0.875–1.5; and matrix, 512 × 512. Primary axial CT images were obtained in standard
(B40f) and high resolution (B70f) algorithms with slice thicknesses of 0.625–3.0 mm and
coronal and sagittal planner images with slice thickness of 3.0 mm were reconstructed in
the postprocess workstation.

2.3. Evaluation of Subjective CT Findings

Thoracic CT images were reviewed and recorded by two experienced radiologists from
centre one (one with 12 years’ and another with 25 years’ experience in thoracic radiology);
both were blinded to the medical information and pathological results. Agreement was
reached through consultation when different opinions occurred. Thoracic CT images of
each patient were reviewed in the radiologist workstation using a lung window (width,
1500 HU (Housfield); level, −600 HU) and mediastinal window (width, 300 HU; level,
40 HU). Radiological CT manifestations were recorded according to the glossary of terms
for thoracic imaging by the Fleischner Society were as follows: (1) location; (2) diameter;
(3) regular margin (presence or absence); (4) lobulated shape (presence or absence); and
(5) spiculated sign (presence or absence) [24–26].

2.4. Building the Transfer Learning Signature (TLS)
2.4.1. Transfer Learning Feature Extraction Based on an Adaptive Cross-Domain Transfer
Learning Model

An adaptive cross-domain transfer learning model was used to extract the robust
transfer learning features of SPSNs from CT images. As shown in Figure 2, this model has
three parts: a pretrained source network, a target network and a source domain feature
selection network. First, the pretrained source network was trained using source domain
data to construct an intermediate feature space. Then, a source domain feature selection
network was proposed. In the source domain feature selection network, two meta-networks
were proposed to eliminate redundant features in source domain data and adaptively select
useful features for target task learning to constrain the training of the target network
in the constructed feature space. Finally, under the constraint of beneficial features, the
target network was trained using CT images to obtain task-related robust transfer learning
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features. More details of the adaptive cross-domain transfer learning model are provided
in Supplementary S3 and Figure S2.
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parts: a pretrained source network; a target network; and a source domain feature selection network.

When the target network was well trained, the convolution kernels of the target
network were used as feature extractors to extract transfer learning features from the CT
images of SPSNs (Figure S3). Finally, 3904 transfer learning features were extracted for
each patient.

2.4.2. Building the TLS Based on Transfer Learning Features

First, the Mann-Whitney U test was used to select transfer learning features that were
significantly different. Second, the sparse Bayesian extreme learning machine
(Supplementary S4 and Figure S4) was proposed to select features related to the target
task and to build TLS [27].

2.4.3. TLS Comparison Based on Different Source Domain Data

To comprehensively evaluate the TLS under different source domain data, four TLS
were constructed and compared to each other. These TLS were based on lung cancer WSIs
(TLS-LW), ImageNet (TLS-ImageNet) and LIDC-IDRI (TLS-LIDC) as source domain data.
In addition, to evaluate the effect of cross-domain transfer learning, TLS under different
source domain data were compared with a nontransfer learning signature (Non-TLS). For
Non-TLS, we only trained the target network using CT images of the training cohort to
extract features without pretraining.

2.5. Building the TLRM
2.5.1. Building the TLRM

To comprehensively analyse patient information, the clinical factors (including gender
and age), subjective CT findings (including size, location, margin, lobulated shape, spic-
ulated sign) and the best performing TLS were combined to build the TLRM. First, the
Cohen’s kappa test was used to analyse interreader agreements (Reader 1 and Reader 2) of
subjective CT findings. Second, the Wilcoxon rank-sum test, Pearson’s chi-square test or
Fisher’s exact test were performed to identify significantly different features. Third, the
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sparse Bayes-based least absolute shrinkage and selection operator (Supplementary S4)
was used to select features with independent risk factors and build the TLRM.

2.5.2. TLRM Evaluation and Comparison

To comprehensively evaluate the TLRM under a multicentre scenario, we compared the
TLRM with two other methods: (1) a clinical model combining clinical factors and subjective
CT findings (Supplementary S5), and (2) the best performing TLS. Furthermore, the TLRM
was calibrated by performing calibration curve analysis. Stratification analyses of patient
characteristics and CT scan protocols were carried out to evaluate the generalizability of
the TLRM.

2.6. Prospective Clinical Validation

To further validate the performance of the model, a prospective validation cohort of
99 cases from medical centre 1 between January 2021 and December 2021 was collected to
evaluate the robustness of the model.

2.7. Model Evaluation Index

The receiver operating characteristic curve, area under the curve (AUC), sensitivity,
specificity, accuracy, positive probability value (PPV), and negative probability value (NPV)
were calculated to evaluate the performance of the models. The DeLong test was used to
evaluate significant differences between the AUCs of the models.

The Wasserstein distance between the source domain data and target domain data
was calculated for each cross-domain transfer learning model to assess the similarity of the
distribution between the two-domain data. The integrated discrimination improvement
(IDI) was used to evaluate whether the new model could outperform the old model.
Decision curve analysis was used to calculate the net benefit of the clinical utility of the
model. All statistical analyses were two-tailed. A p value < 0.05 was statistically significant.

3. Results
3.1. Clinical Factors and Subjective CT Findings Analysis

The demographics and subjective CT findings of all cohort data are presented in
Table 2. In the training cohort, the nodule size, nodule margin, lobulated shape, and
spiculated sign showed good interobserver agreements (k = 0.837, 0.735, 0.743, and 0.755,
respectively). The LAC and LGN groups differed significantly in characteristics, including
gender, age, nodule size, nodule margin, lobulated shape, and spiculated sign (p < 0.05).

Table 2. Clinical factors and subjective CT findings from SPSNs in the LAC and LGN groups.

Training Cohort (n = 268) Internal Validation Cohort (n = 214) External Validation Cohort 1 (n = 187)

LGN (114) LAC (154) p Value LGN (65) LAC (149) p Value LGN (44) LAC (143) p Value

Gender
Men 64 65 0.0240 * 48 74 0.0010 * 28 62 0.0186 *Women 50 89 17 75 16 81

Age (mean ± SD, years)
50.96 ± 13.16 59.29 ± 10.70 <0.0001 # 51.66 ± 12.65 61.54 ± 9.94 <0.0001 # 56.20 ± 11.73 59.05 ± 10.31 0.1176 #

Nodule size (mean ± SD, mm)
13.07 ± 8.00 17.31 ± 8.40 <0.0001 # 12.05 ± 5.30 17.79 ± 8.57 <0.0001 # 13.56 ± 8.11 21.74 ± 8.57 <0.0001 #

Location
LUL 27 44

0.0811 *

21 38

0.2682 *

10 35

0.6573 &
LLL 14 33 5 28 8 22
RUL 35 45 21 48 12 52
RML 11 12 5 13 4 13
RLL 27 20 13 22 10 21

Margin
Irregular 64 133 <0.0001 * 33 129 <0.0001 * 25 135 <0.0001 *Regular 50 21 32 20 19 8

Lobulated shape
Absence 67 23 <0.0001 * 38 27 <0.0001 * 32 18 <0.0001*Presence 47 131 27 122 12 125

Spiculated sign
Absence 100 74 <0.0001 * 53 83 0.0003 * 40 73 0.0005 *Presence 14 80 12 66 4 70
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Table 2. Cont.

External Validation Cohort 2 (n = 57) External Validation Cohort 3 (n = 115) Whole Validation Data (n = 573)

LGN (30) LAC (27) p Value LGN (23) LAC (92) p Value LGN (162) LAC (411) p Value

Gender
Men 14 15 0.5027 * 12 50 0.8516 * 102 201 0.0024 *Women 16 12 11 42 60 210

Age (mean ± SD, years)
51.53 ± 10.54 61.74 ± 10.37 <0.0001 # 55.52 ± 10.99 59.04 ± 9.65 0.1436 # 53.42 ± 11.99 60.13 ± 10.08 <0.0001 #

Nodule size (mean ± SD, mm)
8.54 ± 4.07 18.14 ± 6.80 <0.0001 # 16.52 ± 6.61 17.33 ± 5.56 0.3311 # 12.45 ± 6.66 18.91 ± 7.65 <0.0001 #

Location
LUL 6 5

0.3856 &

6 25

0.9844 &

43 103

0.3856 *
LLL 5 5 4 12 22 67
RUL 6 9 6 24 45 133
RML 5 6 2 11 16 43
RLL 8 2 5 20 36 65

Margin
Irregular 16 26 0.0002 * 19 82

0.4747 & 93 372 <0.0001 *Regular 14 1 4 10 69 39
Lobulated shape

Absence 20 8 0.0052 * 9 7
0.0005 & 99 60 <0.0001 *Presence 10 19 14 85 63 351

Spiculated sign
Absence 21 15 0.2590 * 19 28 <0.0001 * 133 199 <0.0001 *Presence 9 12 4 64 29 212

Clinical Validation Cohort (n = 99)

LGN (37) LAC (62) p Value

Gender
Men 25 29 0.0444 *Women 12 33

Age (mean ± SD, years)
55.03 ± 10.32 60.76 ± 10.90 0.0103 #

Nodule size (mean ± SD, mm)
12.73 ± 5.72 16.11 ± 6.16 0.0048 #

Location
LUL 6 13

0.9734 *
LLL 5 7
RUL 13 20
RML 3 6
RLL 10 16

Margin
Irregular 21 52 0.0030 *Regular 16 10

Lobulated shape
Absence 20 18 0.0133 *Presence 17 44

Spiculated sign
Absence 30 6 <0.0001 *Presence 7 56

Notes: * Pearson’s chi-square test; & Fisher’s exact test; # Wilcoxon rank-sum test. CT computed tomography;
SPSNs solitary pulmonary solid nodules; LAC lung adenocarcinoma; LGN lung granulomatous nodule; SD
standard deviation; LUL left upper lobe; LLL left lower lobe; RUL right upper lobe; RML right middle lobe; RLL
right lower lobe; TLS-LW transfer learning signature based on lung cancer WSI.

3.2. Comparison and Selection of TLS Based on Different Source Domain Data
3.2.1. TLS Based on Different Source Domain Data vs. Non-TLS

The model details of TLS-LW, TLS-ImageNet, TLS-LIDC and Non-TLS are shown in
Table S1. The results of these models are shown in Table 3 and Figure S5. In the whole
validation data, the AUCs of TLS-LW, TLS-ImageNet, TLS-LIDC and Non-TLS were 0.8395,
0.7755, 0.7030, and 0.7156, respectively. Furthermore, the Delong test and IDI indicated that
TLS-LW had significantly better predictive performance than Non-TLS in whole validation
data (Delong test: p < 0.05; IDI = 0.0312 (p < 0.05), Table S2).

Table 3. Performance of transfer learning models based on different transfer sources (Non-TLS,
TLS-LIDC, TLS-ImageNet, and TLS-LW) for the LAC and LGN groups among patients with SPSNs in
the training cohort, four validation cohorts and whole validation data.

Dataset Models AUC (95% CI) Sensitivity Specificity Accuracy PPV NPV

Training cohort
(n = 268)

Non-TLS 0.9216
(0.8906–0.9526)

0.7597
(117/154)

0.9386
(107/114)

0.8358
(224/268)

0.9435
(117/124)

0.7431
(107/144)

TLS-LIDC 0.9245
(0.8941–0.9549)

0.9026
(139/154)

0.8070
(92/114)

0.8619
(231/268)

0.8634
(139/161)

0.8598
(92/107)

TLS-ImageNet 0.9136
(0.8814–0.9458)

0.8701
(134/154)

0.7807
(89/114)

0.8321
(223/268)

0.8428
(134/159)

0.8165
(89/109)

TLS-LW 0.9260
(0.8964–0.9556)

0.8571
(132/154)

0.8509
(97/114)

0.8545
(229/268)

0.8859
(132/149)

0.8151
(97/119)
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Table 3. Cont.

Dataset Models AUC (95% CI) Sensitivity Specificity Accuracy PPV NPV

Internal validation
cohort

(n = 214)

Non-TLS 0.7949
(0.7295–0.8604)

0.7315
(109/149)

0.7846
(51/65)

0.7477
(160/214)

0.8862
(109/123)

0.5604
(51/91)

TLS-LIDC 0.7740
(0.7048–0.8431)

0.6980
(104/149)

0.7385
(48/65)

0.7130
(152/214)

0.8595
(108/121)

0.5161
(48/93)

TLS-ImageNet 0.8050
(0.7440–0.8659)

0.7450
(111/149)

0.7385
(48/65)

0.7430
(159/214)

0.8672
(111/128)

0.5581
(48/86)

TLS-LW 0.8769
(0.8308–0.9231)

0.6846
(102/149)

0.8769
(57/65)

0.7430
(159/214)

0.9273
(102/110)

0.5481
(57/104)

External validation
cohort 1
(n = 187)

Non-TLS 0.6465
(0.5458–0.7472)

0.9021
(129/143)

0.4091
(18/44)

0.7861
(147/187)

0.8323
(129/155)

0.5625
(18/32)

TLS-LIDC 0.7972
(0.7195–0.8749)

0.8182
(117/143)

0.7045
(31/44)

0.7914
(148/187)

0.9000
(117/130)

0.5439
(31/57)

TLS-ImageNet 0.7600
(0.6756–0.8445)

0.6084
(87/143)

0.8409
(37/44)

0.6631
(124/187)

0.9255
(87/94)

0.3987
(37/93)

TLS-LW 0.8984
(0.8519–0.9450)

0.8392
(120/143)

0.8409
(37/44)

0.8396
(157/187)

0.9449
(120/127)

0.6167
(37/60)

External validation
cohort 2
(n = 57)

Non-TLS 0.8123
(0.7029–0.9218)

0.7778
(21/27)

0.7667
(23/30)

0.7719
(44/57)

0.7500
(21/28)

0.7931
(23/29)

TLS-LIDC 0.6778
(0.5390–0.8166)

0.6667
(18/27)

0.6333
(19/30)

0.6491
(37/57)

0.6207
(18/29)

0.6786
(19/28)

TLS-ImageNet 0.7519
(0.6236–0.8801)

0.5556
(15/27)

0.8667
(26/30)

0.7193
(41/57)

0.7895
(15/19)

0.6842
(26/38)

TLS-LW 0.8951
(0.8085–0.9816)

0.8519
(23/27)

0.9000
(27/30)

0.8772
(50/57)

0.8846
(23/26)

0.8710
(27/31)

External validation
cohort 3
(n = 115)

Non-TLS 0.6541
(0.5276–0.7805)

0.8804
(81/92)

0.3913
(9/23)

0.7826
(90/115)

0.8526
(81/95)

0.4500
(9/20)

TLS-LIDC 0.5416
(0.4257–0.6574)

0.2609
(24/92)

0.9565
(22/23)

0.4000
(46/115)

0.9600
(24/25)

0.2444
(22/90)

TLS-ImageNet 0.7902
(0.6942–0.8862)

0.6196
(57/92)

0.8696
(20/23)

0.6696
(77/115)

0.9500
(57/60)

0.3636
(20/55)

TLS-LW 0.8228
(0.7150–0.9306)

0.9348
(86/92)

0.6522
(15/23)

0.8783
(101/115)

0.9149
(86/94)

0.7143
(15/21)

Whole validation
data

(n = 573)

Non-TLS 0.7156
(0.6687–0.7625)

0.8273
(340/411)

0.6235
(101/162)

0.7696
(441/573)

0.8479
(340/401)

0.5872
(101/172)

TLS-LIDC 0.7030
(0.6569–0.7491)

0.6399
(263/411)

0.7407
(120/162)

0.6684
(383/573)

0.8623
(263/305)

0.4478
(120/268)

TLS-ImageNet 0.7755
(0.7374–0.8167)

0.6569
(270/411)

0.8086
(131/162)

0.6998
(401/573)

0.8970
(270/301)

0.4816
(131/272)

TLS-LW 0.8395
(0.8058–0.8732)

0.8054
(331/411)

0.8395
(136/162)

0.8168
(468/573)

0.9272
(331/357)

0.6296
(136/216)

Clinical validation
cohort
(n = 99)

Non-TLS 0.6866
(0.5770–0.7961)

0.8871
(55/62)

0.4324
(16/37)

0.7172
(71/99)

0.7237
(55/76)

0.6957
(16/23)

TLS-LIDC 0.6844
(0.5662–0.8026)

0.7742
(48/62)

0.5946
(22/37)

0.7071
(70/99)

0.7619
(48/63)

0.6111
(22/36)

TLS-ImageNet 0.7162
(0.6118–0.8207)

0.4516
(28/62)

0.8919
(33/37)

0.6162
(61/99)

0.8750
(28/32)

0.4925
(33/67)

TLS-LW 0.9076
(0.8503–0.9649)

1
(62/62)

0.6486
(24/37)

0.8687
(86/99)

0.8267
(62/75)

1
(24/24)

Notes: Numbers in parentheses were used to calculate percentages. SPSNs, solitary pulmonary solid nodules;
LAC, lung adenocarcinoma; LGN, lung granulomatous nodule; CI, confidence interval; PPV, positive predictive
value; NPV, negative predictive value; Non-TLS, nontransfer learning signature; TLS-LIDC, transfer learning
signature based on LIDC; TLS-ImageNet, transfer learning signature based on ImageNet; TLS-LW, transfer
learning signature based on lung whole slide images.

3.2.2. Comparison and Selection of TLS Based on Different Source Domain Data

The scores of TLS-LW, TLS-ImageNet, TLS-LIDC and Non-TLS in the whole validation
cohort are shown in Figure S6. The Delong test and IDI indicated that TLS-LW had
significantly better predictive performance than TLS-ImageNet and TLS-LIDC in whole
validation data. The p values of the DeLong test were all less than 0.05, and the IDI values
were 0.0162 and 0.0341, with p values were all less than 0.05 (Table S2). Therefore, the
TLS-LW was selected to build the TLRM.

Tumours with different statuses can activate different signaling pathways in the model
and can be encoded into different valued features. To explore the association between
transfer learning features and lesion images, two lesion images from two patients (one LGN
and one LAC) were fed into TLS-LW, and different responses were observed (Figure 3). The
positive filter had strong responses to lesions of patients with LAC and weak responses to
lesions of patients with LGN. The negative filter had strong responses to lesions of patients
with LGN and was nearly shut down in lesions of patients with LAC. The visualization
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method is shown in Supplementary S6. In addition, the predicted value of TLS-LW revealed
a significant difference between the LGN and LAC groups in all cohort data (p < 0.05;
Table 2).
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Figure 3. Visualization of two patient samples for TLS-LW. In the second and fourth columns, the
heatmaps of the two convolution kernels are noted for two patients. In the third and fifth columns, the
combination maps of two convolution kernel heatmaps and input data are noted for two patients. The
red region represents a larger weight, which shows that the model focuses on the area of the CT image.
Note: TLS-LW, transfer learning signature based on lung cancer WSI; LAC, lung adenocarcinoma;
LGN, lung granulomatous nodule.

Furthermore, the Wasserstein distance was used to assess the similarity between the
source domain and target domain data. A smaller Wasserstein distance represented a more
similar distribution between the two-domain data [28]. The specific definition of the Wasser-
stein distance is shown in Supplementary S8. The distances of TLS-LW, TLS-ImageNet,
and TLS-LIDC were 1.7108, 3.3567 and 3.6323, respectively. The Wasserstein distance of
TLS-LW was minimal. In contrast, TLS-LIDC had the largest Wasserstein distance.

3.3. TLRM Construction and Evaluation
3.3.1. TLRM Construction

The results of the sparse Bayesian least absolute shrinkage and selection operator
showed that age, lobulated shape, spiculated sign and TLS-LW were independent risk
factors in distinguishing LGN and LAC lesions, and were used to develop the TLRM.
The calculation formula of the risk prediction value based on the TLRM is shown in
Supplementary S7. The risk prediction value of TLRM revealed a significant difference
between the LGN and LAC groups in all validation cohorts (Figure 4). The AUCs of TLRM
were 0.9268, 0.9442, 0.9074, 0.9324 and 0.9074 in the four validation cohorts and whole
validation data, respectively (Table 4 and Figure 5).

The Hosmer-Lemeshow test yielded no significant difference between the predictive
calibration curve and the ideal curve for risk status prediction in the four validation
cohorts and whole validation data (Chi-square value range: 2.9224–4.9919, p value range:
0.7584–0.9391; Figure 6A,B)
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Figure 5. The receiver operating characteristic curves of the clinical model, TLS-LW, and TLRM in the
training cohort (A), internal validation cohort (B), external validation cohort 1 (C), external validation
cohort 2 (D), external validation cohort 3 (E) and whole validation data (F). Note: TLS-LW, transfer
learning signature based on lung cancer WSI; TLRM, transfer learning radiomics model; AUC, area
under the curve.
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Table 4. Performance of the clinical model, TLS-LW, and TLRM for the LAC and LGN groups among
patients with SPSNs in the training cohort, four validation cohorts and whole validation data.

Dataset Models AUC (95% CI) Sensitivity Specificity Accuracy PPV NPV

Training
cohort

(n = 268)

Clinical model 0.8535
(0.8066–0.9004)

0.8247
(127/154)

0.7719
(88/114)

0.8022
(215/268)

0.8301
(127/153)

0.7652
(88/115)

TLS-LW 0.9260
(0.8964–0.9556)

0.8571
(132/154)

0.8509
(97/114)

0.8545
(229/268)

0.8859
(132/149)

0.8151
(97/119)

TLRM 0.9502
(0.9274–0.9731)

0.9091
(140/154)

0.8684
(99/114)

0.8918
(239/268)

0.9032
(140/155)

0.8761
(99/113)

Internal
validation

cohort
(n = 214)

Clinical model 0.7531
(0.6798–0.8263)

0.8926
(133/149)

0.5692
(37/65)

0.7944
(170/214)

0.8261
(133/161)

0.6981
(37/53)

TLS-LW 0.8769
(0.8308–0.9231)

0.6846
(102/149)

0.8769
(57/65)

0.7430
(159/214)

0.9273
(102/110)

0.5481
(57/104)

TLRM 0.9268
(0.8923–0.9613)

0.9195
(137/149)

0.7846
(51/65)

0.8785
(188/214)

0.9073
(137/151)

0.8095
(51/63)

External
validation
cohort 1
(n = 187)

Clinical model 0.8543
(0.7926–0.9160)

0.8392
(120/143)

0.7045
(31/44)

0.8075
(151/187)

0.9023
(120/133)

0.5741
(31/54)

TLS-LW 0.8984
(0.8519–0.9450)

0.8392
(120/143)

0.8409
(37/44)

0.8396
(157/187)

0.9449
(120/127)

0.6167
(37/60)

TLRM 0.9442
(0.9067–0.9817)

0.9930
(142/143)

0.7500
(33/44)

0.9358
(175/187)

0.9281
(142/153)

0.9706
(33/34)

External
validation
cohort 2
(n = 57)

Clinical model 0.7111
(0.5755–0.8467)

0.4815
(13/27)

0.9000
(27/30)

0.7018
(40/57)

0.8125
(13/16)

0.6585
(27/41)

TLS-LW 0.8951
(0.8085–0.9816)

0.8519
(23/27)

0.9000
(27/30)

0.8772
(50/57)

0.8846
(23/26)

0.8710
(27/31)

TLRM 0.9074
(0.8314–0.9834)

0.7407
(20/27)

0.9333
(28/30)

0.8421
(48/57)

0.9091
(20/22)

0.8000
(28/35)

External
validation
cohort 3
(n = 115)

Clinical model 0.7966
(0.6962–0.8969)

0.6957
(64/92)

0.9130
(21/23)

0.7391
(85/115)

0.9697
(64/66)

0.4286
(21/49)

TLS-LW 0.8228
(0.7150–0.9306)

0.9348
(86/92)

0.6522
(15/23)

0.8783
(101/115)

0.9149
(86/94)

0.7143
(15/21)

TLRM 0.9324
(0.8839–0.9809)

0.8152
(75/92)

0.9130
(21/23)

0.8348
(96/115)

0.9740
(75/77)

0.5526
(21/38)

Whole
validation

data
(n = 573)

Clinical model 0.7930
(0.7529–0.8332)

0.8029
(330/411)

0.7160
(116/162)

0.7784
(446/573)

0.8777
(330/376)

0.5888
(116/197)

TLS-LW 0.8395
(0.8058–0.8732)

0.8054
(331/411)

0.8395
(136/162)

0.8168
(468/573)

0.9272
(331/357)

0.6296
(136/216)

TLRM 0.9074
(0.8825–0.9324)

0.9100
(374/411)

0.8210
(133/162)

0.8848
(507/573)

0.9280
(374/403)

0.7824
(133/170)

Clinical
validation

cohort
(n = 99)

Clinical model 0.8745
(0.8079–0.9410)

0.7903
(49/62)

0.8378
(31/37)

0.8081
(80/99)

0.8909
(49/55)

0.7045
(31/44)

TLS-LW 0.9076
(0.8503–0.9649)

1
(62/62)

0.6486
(24/37)

0.8687
(86/99)

0.8267
(62/75)

1
(24/24)

TLRM 0.9429
(0.9016–0.9842)

0.8065
(50/62)

1
(37/37)

0.8788
(87/99)

1
(50/50)

0.4551
(37/49)

Notes: Numbers in parentheses were used to calculate percentages. SPSNs, solitary pulmonary solid nodules;
LAC, lung adenocarcinoma; LGN, lung granulomatous nodule; CI, confidence interval; PPV, positive predictive
value; NPV, negative predictive value; TLS-LW, transfer learning signature based on lung whole slide images;
TLRM, transfer learning radiomics model.

3.3.2. TLRM vs. TLS-LW and Clinical Model

The clinical model was built using multivariable logistic regression, gender, age,
lobulated shape and spiculated sign were independent factors associated with LAC. The
specific parameters of the clinical model are shown in Table S3.

The diagnostic performances of the clinical model, TLS-LW, and TLRM are shown in
Table 4. The AUCs of the clinical model were 0. 7531, 0.8543, 0.7111, 0.7966 and 0.7930 in the
four validation cohorts and whole validation data, respectively. The AUCs of TLS-LW were
0.8769, 0.8984, 0.8951, 0.8228 and 0.8395 in the four validation cohorts and whole validation
data, respectively. The Delong test and IDI indicated that the TLRM had significantly better
predictive performance than the clinical model and TLS-LW in the whole validation cohort
(Delong test, p < 0.05; IDI = 0.0385 (p < 0.05), and Delong test, p < 0.05; IDI = 0.0222 (p < 0.05)
Table S4).
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Figure 6. Calibration curves and decision curve analysis. (A) The calibration curves of TLRM in the
training cohort and whole validation data. (B) The calibration curves of TLRM in the four validation
cohorts. (C) Decision curve analysis of the clinical model, TLS-LW, and TLRM in whole validation
data. The results showed that the net benefit of TLRM was greater than that of the clinical model
and TLS-LW (range, 0.01–1.00). Note: TLS-LW, transfer learning signature based on lung cancer WSI;
TLRM, transfer learning radiomics model.

Specifically, the false-positive rate of the clinical model was 28.40% (46/162) across
whole validation data, while the false-positive rate of TLRM was only 17.90% (29/162),
TLRM had the best effect.

3.3.3. Stratified Analysis of TLRM

Using stratified analysis, the TLRM performance was found to be unaffected by the
gender, age and image slice thickness of patients (Delong test, all p > 0.05). Stratification
analysis was performed based on patient characteristics (gender and age) and CT slice
thickness to evaluate the robustness of the TLRM. The AUC of TLRM in the overall cohort
(n = 841) was 0.9248 (95% CI: 0.9071–0.9424).

Part 1: Stratified analysis of gender. The patients were divided into two groups:
women (n = 409) and men (n = 432). The AUCs were 0.9301 (95% CI: 0.9042–0.9560) and
0.9167 (95% CI: 0.8914–0.9419), respectively, and the p values were 0.7382 and 0.6075,
respectively, when the two groups and the overall cohort were compared using the DeLong
test. The ROC curves are shown in Figure S7A.

Part 2: Stratified analysis of age. The patients were divided into two groups: age < 60 years
(n = 433) and age ≥ 60 years (n = 408), with respective AUCs of 0.9229 (95% CI: 0.8987–0.9471)
and 0.9182 (95% CI: 0.8899–0.9466). The P values were 0.9047 and 0.7014, respectively, when
the two groups and overall cohort were compared using the DeLong test. The ROC curves
are shown in Figure S7B.

Part 3: Stratified analysis of CT slice thickness. The patients were divided into two
groups: thickness ≤ 1.5 mm (n = 536) and 1.5 < thickness ≤ 3 mm (n = 305), with AUCs
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of 0.9308 (95% CI 0.9091–0.9525) and 0.9091 (95% CI: 0.8772–0.9409), respectively. The p
values were 0.6736 and 0.3978, respectively, when the two groups and overall cohort were
compared using the DeLong test. The ROC curves are shown in Figure S7C.

The results showed that the characteristics of patients, and CT slice thickness had less
impact on the stability and robustness of the proposed model.

3.3.4. Clinical Use

The decision curve analysis indicated, in the threshold probability range of 0.01–1.00,
a higher net benefit for TLRM in the whole validation data in differentiating the LAC and
LGN groups than the clinical model and TLS-LW (Figure 6C).

3.4. Prospective Clinical Validation

Demographic information and tumour characteristics of the prospective clinical vali-
dation cohort (n = 99) are listed in Table 1. When our TLS-LW was applied to a prospective
clinical validation cohort (n = 99), the AUC was 0.9076, which was better than the re-
sults of Non-TLS, TLS-LIDC and TLS-ImageNet (Table 3 and Figure 7). Similarly, the
AUC of TLRM in the prospective clinical validation set was 0.9429, which showed good
performance (Table 4 and Figure 7).
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4. Discussion

The diagnosis of LGN in patients with SPSNs can be difficult for clinicians since LGN
shares some presupposed malignant morphological features with LAC. Currently, CNN
is a promising tool in medical imaging research. However, it is prone to overfitting in the
case of small data. In this retrospective study, we developed a TLRM based on adaptive
cross-domain transfer learning in preoperatively distinguishing LGN from LAC in patients
with SPSNs, which enabled early diagnosis and appropriate treatment for patients with
LAC and minimization of unnecessary interventions and procedures for those with LGN.

Concerning the clinical factors, in the whole validation data, this study found that
women were at higher risk for LAC, with 210 women with LAC and 60 women with LGN.
The patients with LGN tended to be younger (mean age: 53.42 ± 11.99 years) than those
with LAC (mean age: 60.13 ± 10.08 years), similar to previous studies [29,30]. Previous
articles have shown that malignant nodules often manifest with irregular, spiculated
and ill-defined margins whereas benign nodules have well-defined smooth edges [31].
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Unfortunately, overlapping radiologic features based on CT images among LGN and
LAC are inevitable phenomena. The lobulated shape histologically caused by chronic
inflammatory cell infiltration and irregular interstitial fibrosis can also be seen in 25% of
benign nodules [32]. Therefore, a significant proportion remains indeterminate, requiring
follow-up or triggering invasive diagnostic procedures [33]. In our study, multivariate
logistic regression analysis showed that age, gender, lobulated shape and spiculated sign
were useful morphological features for differentiating LGN from LAC. However, the AUC
and false-positive rate of the clinical model in the whole validation data were 0.7930 and
0.2840, respectively.

In recent years, some researchers have used artificial intelligence techniques coupled
with radiological imaging to preoperatively differentiate LGN from LAC in SPSNs. Zhang
et al. [8] selected age, sex and lobulated shape through multivariate logistic regression to
build the model. The AUC of this model was as high as 0.956. However, this study only
had 61 cases of data and was not a validation set. Yang et al. [12] constructed a combined
radiomics model consisting of 19 radiomics features based on CT and five clinical risk
factors. The AUCs of the combined radiomics in the training set (n = 221 cases) and
validation test (n = 91 cases) were 0.92 and 0.84, respectively. Zhou et al. [9] constructed a
radiomics nomogram consisting of six clinical features (spiculated sign, vacuole, minimum
diameter of nodule, mediastinal lymphadenectasis, sex and age) and a radiomics signature
based on 15 radiomics parameters. The AUCs of the radiomics nomogram in the training set
(n = 220 cases) and validation test (n = 93 cases) were 1.00 and 0.99, respectively. Although
combined radiomics and radiomics nomograms have shown good performance, their data
are from a single centre and therefore cannot be used to evaluate model performance in
the case of multicentre data. In addition, radiomics features, where predesigned features
are extracted from a region of interest, lack the specificity and sensitivity required to
differentiate LGN from LAC in patients with SPSNs.

CNN has excellent feature learning ability that can have specific features for tasks
according to learning and does not require time-consuming tumour boundary annotations.
However, CNNs are prone to overfitting on small datasets. In this study, we developed a
Non-TLS. Unfortunately, the Non-TLS had the problem of overfitting (AUC of the training
cohort: 0.9216, AUC of the whole validation data: 0.7156), perhaps because the training
cohort data were relatively small when building the Non-TLS (3283 CT images).

Therefore, this study combined a convolutional neural network with cross-domain
transfer learning. A source domain feature selection network was proposed to adaptively
select features that were beneficial to target task learning to constrain training of the target
network. In addition, we developed three cross-domain transfer learning signatures based
on different source domain data: TLS-LW, TLS-LIDC and TLS-ImageNet. The results
showed that the performances of TLS-LIDC and TLS-ImageNet were lower than that of
TLS-LW. Compared with TLS-LIDC and TLS-ImageNet, the IDI of TLS-LW was 0.0341
(p < 0.05) and 0.0162 (p < 0.05) in the whole validation data, respectively. Interestingly,
the Wasserstein distance of TLS-LW was minimal. In contrast, TLS-LIDC had the largest
Wasserstein distance. These results indicate that for a small training dataset to truly take
advantage of the transfer of learning the source domain data should be as similar as possible
to the target domain data [20,34]. In addition, TLS-LW had better diagnostic performance
than Non-TLS, and the IDI of TLS-LW was 0.0312 (p < 0.05) in whole validation data. The
results showed that the transfer learning strategy helps to alleviate the overfitting problem
of CNNs in the case of small samples.

Finally, age, lobulated shape, spiculated sign and TLS-LW were independent risk
factors for distinguishing LGN and LAC lesions, which were used to develop TLRM. The
decision curve analysis and IDI also indicated that TLRM had better performance than
TLS-LW and the clinical model. Therefore, the TLRM combined with multimodal data has
better diagnostic performance than image-based TLS alone and a clinical model based on
clinical factors and subjective CT findings.
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Despite encouraging results, the current study has several limitations. First, a selection
bias may exist because of the retrospective nature of the study. Second, we only evaluated
the difference between LAC and LGN, and other pathological types of lung nodules also
need further investigation, such as lung squamous cell carcinoma, even metastatic lesions
and other benign lesions [35]. Further work is needed to focus on incorporating other
benign and malignant nodules into the classifier and validating it on a larger multisite
dataset. Third, the chest CT images and WSIs of LAC came from different patients. The
performance of diagnostic models based on CT images and WSIs of the matched patients
needs to be further investigated.

5. Conclusions

The TLRM combined with multimodal data can assist physicians in preoperatively
differentiating LGN and LAC presenting as SPSNs. We also found in this study that,
compared with using other images as source domain data, cross-domain transfer learning
has a better effect when using lung WSIs as source domain data.
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