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Simple Summary: This study develops an arithmetic optimization algorithm with deep-learning-
based histopathological breast cancer classification (AOADL-HBCC) technique for healthcare decision
making. The AOADL-HBCC technique employs noise removal based on median filtering (MF) and a
contrast enhancement process. In addition, the presented AOADL-HBCC technique applies an AOA
with a SqueezeNet model to derive feature vectors. Finally, a deep belief network (DBN) classifier
with an Adamax hyperparameter optimizer is applied for the breast cancer classification process.

Abstract: Histopathological images are commonly used imaging modalities for breast cancer. As
manual analysis of histopathological images is difficult, automated tools utilizing artificial intelli-
gence (AI) and deep learning (DL) methods should be modelled. The recent advancements in DL
approaches will be helpful in establishing maximal image classification performance in numerous ap-
plication zones. This study develops an arithmetic optimization algorithm with deep-learning-based
histopathological breast cancer classification (AOADL-HBCC) technique for healthcare decision
making. The AOADL-HBCC technique employs noise removal based on median filtering (MF) and a
contrast enhancement process. In addition, the presented AOADL-HBCC technique applies an AOA
with a SqueezeNet model to derive feature vectors. Finally, a deep belief network (DBN) classifier
with an Adamax hyperparameter optimizer is applied for the breast cancer classification process. In
order to exhibit the enhanced breast cancer classification results of the AOADL-HBCC methodology,
this comparative study states that the AOADL-HBCC technique displays better performance than
other recent methodologies, with a maximum accuracy of 96.77%.

Keywords: decision making; healthcare; breast cancer classification; histopathological images;
deep learning

1. Introduction

Cancer is one of the most serious health concerns that threaten the health and lives of
individuals [1]. The mortality rate and incidence of breast cancer seem to be increasing in
recent times. Early precise diagnosis is considered to be a key to enhancing the chances
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of survival. The primary step in initial diagnosis is a mammogram, but it can be diffi-
cult to identify tumors in dense breast tissue, and X-ray radiation imposes a risk to the
radiologist’s and the patient’s health [2]. The precise diagnosis of breast cancer requires
skilled histopathologists, as well as large amounts of effort and time for task completion.
Furthermore, the diagnosis outcomes of various histopathologists are not the same, because
they mainly depend on the former knowledge of each histopathologist [3]. The average
diagnosis precision is just 75%, which leads to low consistency in diagnoses. The term
histopathology can be defined as the process of detailed evaluation and microscopic inspec-
tion of biopsy samples carried out by a pathologist or expert to learn about cancer growth
in tissues or organs [4]. Common histopathological specimens have more structures and
cells that can be dispersed and surrounded haphazardly by distinct types of tissues [5].
The physical analysis of historic pictures, along with the visual observation of such images,
consumes time. This necessitates expertise and experience. In order to raise the predictive
and analytical capabilities of histopathological images, the utility of computer-based image
analysis represents an effective method [6]. This form of analysis is even efficient for
histopathological images because it renders a dependable second opinion for consistent
study, which increases output. This could aid in curtailing the time it takes to identify an
issue. Thus, the burden on pathologists and the death rate can be minimized [7].

Today, machine learning (ML) is fruitfully enforced in text classification, image recog-
nition, and object recognition. With the progression of computer-aided diagnosis (CAD)
technology, ML is effectively implemented in breast cancer diagnosis [8]. Histopathological
image classification related to conventional ML techniques and artificial feature extraction
demands a manual model of features; however, it does not need an apparatus with more
efficiency, and it has benefits in the computing period [9]. However, histopathological im-
age classification related to deep learning (DL), particularly convolutional neural networks
(CNNs), frequently needs a large number of labelled training models, whereas the labelled
data are hard to gain [10]. The labeling of lesions is laborious and time-consuming work,
even for professional histopathologists.

This study develops an arithmetic optimization algorithm with deep-learning-based
histopathological breast cancer classification (AOADL-HBCC) technique for healthcare
decision making. The presented AOADL-HBCC technique mainly aims to recognize the
presence of breast cancer in HIs. At the primary level, the AOADL-HBCC technique
employs noise removal based on median filtering (MF) and a contrast enhancement process.
In addition, the presented AOADL-HBCC technique applies an AOA with a SqueezeNet
model to derive feature vectors. Finally, a deep belief network (DBN) classifier with an
Adamax hyperparameter optimizer is applied for the breast cancer classification process.
In order to exhibit the enhanced breast cancer classification results of the AOADL-HBCC
approach, a wide range of simulations was performed.

2. Related Works

Shankar et al. [11] established a new chaotic sparrow search algorithm including a
deep TL-assisted BC classification (CSSADTL-BCC) technique on histopathological images
(HPIs). The projected technique mostly concentrated on the classification and detection of
BC. To realize this, the CSSADTL-BCC system initially carried out a Gaussian filter (GF)
system for eradicating the presence of noise. In addition, a MixNet-oriented extracting
feature system was utilized for generating a suitable group of feature vectors. Furthermore,
a stacked GRU (SGRU) classifier system was utilized for allotting classes. In [12], TL and
deep extracting feature approaches were employed that adjusted a pretraining CNN system
to the current problem. The VGG16 and AlexNet methods were considered in the projected
work for extracting features and AlexNet was employed for additional finetuning. The
achieved features were then classified by SVM.

Khan et al. [13] examined a new DL infrastructure for the classification and recognition
of BC from breast cytology images utilizing the model of TL. Generally, DL infrastructures
demonstrated that certain problems were accomplished in isolation. In the presented
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structure, features in images were extracted employing pretrained CNN infrastructures
such as ResNet, GoogLeNet, and VGGNet that are provided as fully connected (FC) layers
to classify benign and malignant cells employing an average pooling classifier. In [14], a
DL-related TL system was presented for classifying histopathological images automatically.
Two famous and present pretrained CNN techniques, DenseNet161 and ResNet50, were
trained as well as tested via grayscale and color images.

Singh et al. [15] examined a structure dependent upon the concept of TL for addressing
this problem and concentrated their efforts on HPI and imbalanced image classifiers.
The authors utilized common VGG19 as the base method and complemented it with
different recent approaches for improving the entire efficiency of the technique. In [16], the
conventional softmax and SVM-classifier-related TL systems were estimated for classifying
histopathological cancer images in a binary BC database and a multiclass lung and colon
cancer database. For achieving optimum classifier accuracy, a procedure that assigns an
SVM technique to an FC layer of softmax-related TL techniques was presented. In [17], the
authors’ concentration on BC in HPI was attained by utilizing microscopic scans of breast
tissues. The authors proposed two integrated DCNNs for extracting well-known image
features utilizing TL. The pretrained Xception and Inception techniques were utilized in
parallel. Afterwards, feature maps were integrated and decreased by dropout before they
provided the final FC layer to classify.

3. The Proposed Model

In this work, an automated breast cancer classification method, named the AOADL-
HBCC technique, was developed using HIs. The presented AOADL-HBCC technique
mainly aims to recognize the presence of breast cancer in HIs. It encompasses a series
of processes, namely SqueezeNet feature extraction, AOA hyperparameter tuning, DBN
classification, and an Adamax optimizer. Figure 1 shows a block diagram of the AOADL-
HBCC mechanism.
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Figure 1. Block diagram of AOADL-HBCC system.

3.1. Design of AOA with SqueezeNet Model

In this study, the presented AOADL-HBCC technique utilized an AOA with a Squeeze-
Net model to derive feature vectors. Presently, GoogLeNet, ResNet, VGG, AlexNet, etc.,
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are signature techniques of DNN [18]. However, deep networks might lead to remarkable
performance; this method is trained and recognition speed is reduced. Since the residual
architecture does not enhance the module variable, the complexity of the trained degra-
dation and gradient disappearance is effectively mitigated, and the convergence efficacy
of the module is improved. Thus, the SqueezeNet architecture was applied as a backbone
network to extract features. Figure 2 showcases the framework of the SqueezeNet method.

Cancers 2023, 15, x 4 of 19 
 

 

Figure 1. Block diagram of AOADL-HBCC system. 

3.1. Design of AOA with SqueezeNet Model 

In this study, the presented AOADL-HBCC technique utilized an AOA with a 

SqueezeNet model to derive feature vectors. Presently, GoogLeNet, ResNet, VGG, 

AlexNet, etc., are signature techniques of DNN [18]. However, deep networks might lead 

to remarkable performance; this method is trained and recognition speed is reduced. Since 

the residual architecture does not enhance the module variable, the complexity of the 

trained degradation and gradient disappearance is effectively mitigated, and the conver-

gence efficacy of the module is improved. Thus, the SqueezeNet architecture was applied 

as a backbone network to extract features. Figure 2 showcases the framework of the 

SqueezeNet method.  

 

Figure 2. Architecture of SqueezeNet model. 

Compared with AlexNet and VGGNet, the SqueezeNet architecture has a smaller 

number of parameters. The fire module was the primary approach from SqueezeNet. This 

approach was classified into expand and squeeze structures. The squeeze encompasses 

1 × 1 convolutional kernels. The expand layer includes 3 × 3 and 1 × 1 convolutional 

kernels. The number of 3 × 3 convolutional kernels is 𝐸3×3 and the number of 1 × 1 

convolutional kernels is 𝐸1×1. The model must satisfy < (𝐸1×1 + 𝐸3×3). Thus, 1 × 1 con-

volution is added to each inception module, the number of input networks and the 

Figure 2. Architecture of SqueezeNet model.

Compared with AlexNet and VGGNet, the SqueezeNet architecture has a smaller
number of parameters. The fire module was the primary approach from SqueezeNet. This
approach was classified into expand and squeeze structures. The squeeze encompasses
1× 1 convolutional kernels. The expand layer includes 3× 3 and 1× 1 convolutional kernels.
The number of 3× 3 convolutional kernels is E3×3 and the number of 1× 1 convolutional
kernels is E1×1. The model must satisfy < (E1×1 + E3×3). Thus, 1 × 1 convolution is
added to each inception module, the number of input networks and the convolutional
kernel variable are decreased, and the computation difficulty is reduced. Lastly, a 1× 1
convolutional layer is added to enhance the number of channels and feature extraction.
SqueezeNet changes 3 × 3 convolution with a 1 × 1 convolutional layer to reduce the
variable count to one-ninth. Image feature extraction depends on a shared convolutional
layer. The lowest-level features, such as edges and angles, are detached from the basic
network. The higher-level features explain that the target form is eliminated at the highest



Cancers 2023, 15, 885 5 of 19

level. For demonstrating the ship target on scale, the FPN was determined to extend the
backbone network; viz., it was especially efficient in the detection of smaller targets. The
topmost-level feature of FPN architecture is integrated with basic features by up-sampling
via each layer predicting the feature map.

To adjust the hyperparameters of the SqueezeNet method, an AOA was implemented
in this work. The AOA starts with a number of arbitrary populations of objects as candidates
(immersed objects) [19]. Here, the object was initialized through arbitrary location from the
fluid. The initial location of each object was accomplished as follows:

x(i) = xl(i) + rand× (xu(i)− xl(i))i = 1, 2, . . . , N (1)

In this expression, x(i) describes the ith object from a population with N objects, along
with xu(i) and xl(i), which indicate the upper and lower boundaries of the solution space,
respectively. In addition, the following indicates the location, AOA initialized density (D),
acceleration (A), and volume (V), to ith object numbers:

V(i) = rand (2)

D(i) = rand (3)

A(i) = xl(i) + rand× (xu(i)− xl(i)) (4)

Next, the cost value of the candidate is evaluated and stored as Vbest, Dbest, or Abest,
based on the population. Then, the candidate is upgraded through the parameter model
as follows:

Vt+1(i) = Vt(i) + rand×
(

Vbest −Vt(i)
)

(5)

Dt+1(i) = Dt(i) + rand×
(

Dbest − Dt(i)
)

(6)

In this case, ybest and Dbest denote the density and volume, respectively, associated with
the best object initiated before, and rand indicates the arbitrary number that is uniformly
distributed. The AOA applies a transfer operator (TF) to reach exploration–exploitation:

TF = exp
(

t− tmax

tmax

)
(7)

In Equation (7), TF slowly steps up from the period still accomplishing 1, and t and
tmax indicate the iteration value and maximal iteration count, respectively. Likewise, a
reduction factor of (d) density is used to offer a global–local search:

Dt+1 = exp
(

tmax − t
tmax

)
−

(
t

tmax

)
(8)

In Equation (8), Dt+1 is reduced with time that offers the ability to converge. This
term renders a proper trade-off between exploitation and exploration. The exploration was
stimulated on the basis of collision among objects. When TF ≤ 0.5, a random material (mr)
was preferred for upgrading acceleration of the object to t + 1 iteration:

At+1 =
Dmr + Vmr × Amr

Dt+1(i)×Vt+1(i)
(9)

Here, A(i), V(i), and D(i) denote the acceleration, volume, and density of the ith object.
The exploitation was stimulated based on no collision among objects. When TF > 0.5, the
object is then upgraded as follows:

At+1(i) =
Dbest + Vbest × Abest

Dt+1(i)×Vt+1(i)
(10)
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where Abest indicates the optimal object acceleration. The subsequent step to normalize
acceleration for assessing alteration percentage is as follows:

At+1(i
)
= u× At+1(i)−min(A)

max(A)−min(A)
+ l (11)

Here, At+1(i) refers to the percentage of steps, and l and u correspondingly imply the
normalized limit that is fixed to 0.1 and 0. 9, respectively. When TF ≤ 0.5, the location of
the ith object to the succeeding round is accomplished as follows:

xt+1(i) = xt(i) + c1 × rand× At+1(i
)
× D×

(
xrand − xt(i)

)
(12)

In Equation (12), C1 denotes the constant corresponding to 2. In addition, when
TF > 0.5, the location of the object is upgraded:

xt+1(i) = xbestt
+ F× c2 × rand× At+1(i

)
× D×

(
T × xbest − xt(i)

)
(13)

In this expression, c2 denotes a constant number corresponding to 6. T enhances with
time from a range [c3 × 0.3, 1] and obtains a determined percentage in the best location.
This percentage slowly enhances to diminish the variance among optimum and present
locations to offer an optimal balance between exploration and exploitation. F shows the
flag for changing the motion path as

F =

{
+1, i f P ≤ 0.5
+1, i f P > 0.5

(14)

while
P = 2× rand− c4 (15)

Finally, the value of each object was assessed through a cost function and returned the
optimal solution once the end state was satisfied.

The AOA method extracts a fitness function (FF) to receive enhanced classifier out-
comes. It sets a positive value that signifies the superior outcome of the candidate’s
solutions. In this work, the minimized classifier error rate is indicated as the FF, as provided
in Equation (16).

f itness(xi) = Classi f ierErrorRate(xi)

= number o f misclassi f ied samples
Total number o f samples ∗ 100

(16)

3.2. Breast Cancer Classification Using Optimal DBN Model

Finally, an Adamax optimizer with the DBN method was applied for the breast cancer
classification process (Algorithm 1). A DBN is a stack of RBM, excluding the primary RBM
that has an undirected connection [20]. Significantly, this network architecture creates DL
possibilities and reduces training complexity. The simple and effective layer-wise trained
method was developed for DBN by Hinton. It consecutively trains layers and greedily
trains by tying the weight of unlearned layers, applying CD to learn the weight of a single
layer and iterating until all the layers are trained. Then, the network weight was finetuned
through a two-pass up-down model, and this illustrates that the network learned without
pretraining, since this phase implemented as regular and assisted with the supervised
optimized problem. The energy constrained from the directed approach was calculated
where the maximal energy was upper-bounded and accomplished equivalence, whether
the network weight was tied or not, as follows:

E
(

x0, h0
)
= −

(
log p

(
h0
)
+ log p

(
x0
∣∣∣h0

))
(17)
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log p
(

x0
)
≥ ∑
∀h0

Q(h0|x0)( log p
(

h0
)
+ log p(x0|h0))−∑

∀h0

Q(h0|x0) log Q(h0|x0) (18)

∂ log p
(
x0)

∂ξn,m
= ∑
∀h0

Q
(

h0
∣∣∣x0

)
log p

(
h0
)

(19)

Then, iteratively learning the weight of the network, the up-down approach was used
to finetune the network weight. The wake-sleep approach is an unsupervised algorithm
applied to train NNs from two phases: the “wake” phase was implemented on the feedfor-
ward path to compute weight and the “sleep” phase was executed on the feedback path.
The up-down approach was executed to network for decreasing underfit that could usually
be detected by a greedily trained network. Particularly in the primary phase, the weight
on the directed connection was from named parameters or generative weight that can be
adjusted by updating the weight utilizing CD, calculating the wake-phase probability, and
sampling the states. Then, the prior layer was stochastically stimulated with top-down con-
nections called inference weights or parameters. The sleep-stage probability was calculated,
the state was sampled, and the result was estimated.

For optimizing the training efficacy of the DBN, the Adamax optimizer was employed
for altering the hyperparameter values [21]:

wi
t = wi

t−1 −
η

vt + ε
· m̂t (20)

where
m̂t =

mt

1− βt
1

(21)

vt = max(β2·vt−1, |Gt|) (22)

mt = β1mt−1 + (1− β1) G (23)

G = ∇wC(wt) (24)

In this expression, η denotes the learning rate, wt represents the weight at t step, C(.)
indicates the cost function, and ∇wC(wt) specifies the gradient of the wt weight variable.
βi is exploited to select the data needed for the old upgrade, where βi ∈ [0, 1]. mt and vt
represent the first and second moments.

Algorithm 1. Pseudocode of Adamax

η: Rate of Learning
β1, β2 ∈ [0,1): Exponential decomposing value to moment candidate
C(w): The cost function with variable w
w0: Primary parameter vector
m0 ← 0
u0 ← 0
i← 0 (Apply time step)
while w does not converge apply
i← i + 1
mi ← β1·mi−1 + (1− β1)· ∂C

∂w (wi)

ui ← max
(

β2·ui−1,
∣∣∣ ∂C

∂w (wi)
∣∣∣)

wi+1 ← wi −
(

η/
(

1− βi
1

))
·mi/ui

end while
displaying wi (end variable)
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4. Experimental Validation

This section examines the breast cancer classification results of the AOADL-HBCC
model on a benchmark dataset [22]. The dataset holds two sub-datasets, namely the
100× dataset and the 200× dataset, as represented in Table 1. Figure 3 illustrates some
sample images.

Table 1. Dataset details.

Class
No. of Images

100××× 200×××
Benign 644 623

Malignant 1437 1390

Total No. of Images 2081 2013
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Figure 3. Sample images.

The proposed model was simulated using Python 3.6.5 tools on PC i5-8600k, GeForce
1050Ti 4 GB, 16 GB RAM, 250 GB SSD, and 1 TB HDD. The parameter settings were
given as follows: learning rate: 0.01, dropout: 0.5, batch size: 5, epoch count: 50, and
activation: ReLU.

The confusion matrices of the AOADL-HBCC model on the 100× dataset are reported
in Figure 4. This figure implies the AOADL-HBCC method proficiently recognized and
sorted the HIs into malignant and benign classes in all aspects.

Table 2 reports the overall breast cancer classification outcomes of the AOADL-HBCC
method on the 100× database. The outcomes indicate that the AOADL-HBCC approach
recognized both benign and malignant classes proficiently. For example, in the 80% TR
database, the AOADL-HBCC method revealed an average accuy of 94.59%, sensy of 94.36%,
specy of 94.36%, Fscore of 93.75%, and MCC of 87.55%. Simultaneously, in the 20% TS
database, the AOADL-HBCC method exhibited an average accuy of 96.40%, sensy of 95.93%,
specy of 95.93%, Fscore of 95.83%, and MCC of 91.67%. Concurrently, in the 70% TR database,
the AOADL-HBCC approach displayed an average accuy of 95.60%, sensy of 93.19%, specy
of 93.19%, Fscore of 94.62%, and MCC of 89.56%.
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Figure 4. Confusion matrices of AOADL-HBCC system under 100× dataset: (a,b) TR and TS
databases of 80:20, and (c,d) TR and TS databases of 70:30.

The TACC and VACC of the AOADL-HBCC technique under the 100× dataset are
inspected on BCC performance in Figure 5. This figure indicates that the AOADL-HBCC
method displayed enhanced performance with increased values of TACC and VACC. It is
noted that the AOADL-HBCC algorithm gained maximum TACC outcomes.

The TLS and VLS of the AOADL-HBCC approach under the 100× dataset are tested on
BCC performance in Figure 6. This figure shows that the AOADL-HBCC method exhibited
better performance with minimal values of TLS and VLS. It is noted the AOADL-HBCC
approach resulted in reduced VLS outcomes.
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Table 2. BCC outcomes of AOADL-HBCC approach with various measures under 100× dataset.

Class Accuracy Sensitivity Specificity F-Score MCC

Training/Testing (80:20)

Training Phase

Benign 94.59 93.76 94.96 91.44 87.55

Malignant 94.59 94.96 93.76 96.05 87.55

Average 94.59 94.36 94.36 93.75 87.55

Testing Phase

Benign 96.40 94.66 97.20 94.30 91.67

Malignant 96.40 97.20 94.66 97.37 91.67

Average 96.40 95.93 95.93 95.83 91.67

Training/Testing (70:30)

Training Phase

Benign 95.60 87.07 99.31 92.31 89.56

Malignant 95.60 99.31 87.07 96.92 89.56

Average 95.60 93.19 93.19 94.62 89.56

Testing Phase

Benign 96.16 90.64 98.82 93.88 91.21

Malignant 96.16 98.82 90.64 97.20 91.21

Average 96.16 94.73 94.73 95.54 91.21
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A clear precision–recall investigation of the AOADL-HBCC methodology under the
test database is given in Figure 7. This figure exhibits that the AOADL-HBCC system
enhanced precision–recall values in every class label.
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A brief ROC analysis of the AOADL-HBCC approach under the test database is shown
in Figure 8. The fallouts show that the AOADL-HBCC methodology exhibited its capacity
in classifying different classes in the test database.
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The confusion matrices of the AOADL-HBCC approach on the 200× database are
given in Figure 9. This figure indicates that the AOADL-HBCC approach proficiently
recognized and sorted the HIs into malignant and benign classes in every aspect.

Table 3 shows the overall breast cancer classification results of the AOADL-HBCC ap-
proach on the 200× dataset. The results indicate that the AOADL-HBCC model recognized
both benign and malignant classes proficiently. For example, in the 80% TR database, the
AOADL-HBCC technique exhibited an average accuy of 96.40%, sensy of 96.18%, specy of
96.18%, Fscore of 95.91%, and MCC of 91.83%. Concurrently, in the 20% TS database, the
AOADL-HBCC approach displayed an average accuy of 96.77%, sensy of 96.88%, specy of
96.88%, Fscore of 95.85%, and MCC of 91.80%. Simultaneously, in the 70% TR database, the
AOADL-HBCC technique displayed an average accuy of 93.04%, sensy of 90.03%, specy of
90.03%, Fscore of 91.51%, and MCC of 83.45%.

The TACC and VACC of the AOADL-HBCC method under the 200× dataset are
inspected on BCC performance in Figure 10. This figure shows that the AOADL-HBCC
methodology displayed enhanced performance with increased values of TACC and VACC.
It is noted that the AOADL-HBCC technique attained maximum TACC outcomes.
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Figure 9. Confusion matrices of AOADL-HBCC system under 200× dataset: (a,b) TR and TS
databases of 80:20, and (c,d) TR and TS databases of 70:30.

The TLS and VLS of the AOADL-HBCC approach under the 200× dataset are tested on
BCC performance in Figure 11. This figure indicates that the AOADL-HBCC methodology
revealed superior performance with minimal values of TLS and VLS. It is noted that the
AOADL-HBCC method resulted in reduced VLS outcomes.

A clear precision–recall inspection of the AOADL-HBCC methodology under the test
database is shown in Figure 12. This figure indicates that the AOADL-HBCC method
enhanced precision–recall values in every class label.
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Table 3. BCC outcomes of AOADL-HBCC approach with various measures under 200× dataset.

Class Accuracy Sensitivity Specificity F-Score MCC

Training/Testing (80:20)

Training Phase

Benign 96.40 95.58 96.79 94.49 91.83

Malignant 96.40 96.79 95.58 97.32 91.83

Average 96.40 96.18 96.18 95.91 91.83

Testing Phase

Benign 96.77 97.09 96.67 93.90 91.80

Malignant 96.77 96.67 97.09 97.81 91.80

Average 96.77 96.88 96.88 95.85 91.80

Training/Testing (70:30)

Training Phase

Benign 93.04 82.22 97.85 87.90 83.45

Malignant 93.04 97.85 82.22 95.12 83.45

Average 93.04 90.03 90.03 91.51 83.45

Testing Phase

Benign 95.03 89.47 97.58 91.89 88.38

Malignant 95.03 97.58 89.47 96.42 88.38

Average 95.03 93.53 93.53 94.16 88.38
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A brief ROC study of the AOADL-HBCC system under the test database is given
in Figure 13. The outcomes exhibited by the AOADL-HBCC method reveal its ability in
classifying different classes in the test database.
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A detailed comparative study of the AOADL-HBCC model with recent DL models
is reported in Table 4 and Figure 14 [23]. The simulation values representing the Incep.
V3, VGG16, and ResNet-50 models reported lower accuy of 81.67%, 80.15%, and 82.18%,
respectively. Next, the Incep. V3-LSTM and Incep. V3-BiLSTM models attained reasonable
accuy of 91.46% and 92.05%, respectively.

Table 4. Comparative analysis of AOADL-HBCC system with current approaches.

Methods Accuracy

AOADL-HBCC 96.77

DTLRO-HCBC 93.52

Incep.V3 81.67

Incep.V3-LSTM 91.46

Incep.V3-BiLSTM 92.05

VGG16 Model 80.15

ResNet-50 Model 82.18

Although the DTLRO-HCBC model reached near-optimal accuy of 93.52%, the AOADL-
HBCC model gained maximum accuy of 96.77%. These results ensured the enhanced
outcomes of the AOADL-HBCC model over other models.
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5. Conclusions

In this work, an automated breast cancer classification model, named the AOADL-
HBCC technique, was developed on HIs. The presented AOADL-HBCC technique mainly
aims to recognize the presence of breast cancer in HIs. At the primary level, the AOADL-
HBCC technique exploited MF-based noise removal and a contrast enhancement process.
In addition, the presented AOADL-HBCC technique utilized an AOA with a SqueezeNet
model to derive feature vectors. Lastly, an Adamax optimizer with a DBN model was
applied for the breast cancer classification process. In order to exhibit the enhanced breast
cancer classification results of the AOADL-HBCC methodology, a wide range of simulations
were performed. A comparative study indicated the better performance of the AOADL-
HBCC technique over other recent methodologies, with a maximum accuracy of 96.77%.
Therefore, the AOADL-HBCC technique can be employed for timely and accurate BC
classification. In the future, ensemble-learning-based DL classifiers can be involved to boost
the overall performance of the AOADL-HBCC technique. In addition, the performance of
the proposed model can be tested on large-scale real-time databases.
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