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Simple Summary: Osimertinib, a third-generation epidermal growth factor receptor (EGFR) tyrosine
kinase inhibitor, is currently indicated as first-line therapy in patients with non-small-cell lung
cancer (NSCLC) and sensitizing EGFR mutations; as second-line therapy in patients who present the
resistance-associated mutation T790M after treatment with previous EGFR-TKIs; and as adjuvant
therapy for patients with early stage, resected NSCLC, harboring EGFR mutations. Understanding the
patterns of resistance, including both on-target and off-target mechanisms, as well as their therapeutic
potential, represents an unmet need in thoracic oncology. Differential resistance mechanisms develop
when osimertinib is administered in a first-line versus second-line setting. Standard therapeutic
approaches after progression to osimertinib include other targeted therapies—when a targetable
genetic alteration is detected—and cytotoxic chemotherapy with or without antiangiogenic and
immunotherapeutic agents. Research should also be focused on the standardization of liquid biopsies
in order to facilitate the monitoring of molecular alterations after progression to osimertinib.

Abstract: The development of tyrosine kinase inhibitors (TKIs) targeting the mutant epidermal
growth factor receptor (EGFR) protein initiated the success story of targeted therapies in non-small-
cell lung cancer (NSCLC). Osimertinib, a third-generation EGFR-TKI, is currently indicated as
first-line therapy in patients with NSCLC with sensitizing EGFR mutations, as second-line therapy
in patients who present the resistance-associated mutation T790M after treatment with previous
EGFR-TKIs, and as adjuvant therapy for patients with early stage resected NSCLC, harboring EGFR
mutations. Despite durable responses in patients with advanced NSCLC, resistance to osimertinib,
similar to other targeted therapies, inevitably develops. Understanding the mechanisms of resis-
tance, including both EGFR-dependent and -independent molecular pathways, as well as their
therapeutic potential, represents an unmet need in thoracic oncology. Interestingly, differential
resistance mechanisms develop when osimertinib is administered in a first-line versus second-line
setting, indicating the importance of selection pressure and clonal evolution of tumor cells. Standard
therapeutic approaches after progression to osimertinib include other targeted therapies, when a
targetable genetic alteration is detected, and cytotoxic chemotherapy with or without antiangiogenic
and immunotherapeutic agents. Deciphering the when and how to use immunotherapeutic agents in
EGFR-positive NSCLC is a current challenge in clinical lung cancer research. Emerging treatment
options after progression to osimertinib involve combinations of different therapeutic approaches
and novel EGFR-TKI inhibitors. Research should also be focused on the standardization of liquid
biopsies in order to facilitate the monitoring of molecular alterations after progression to osimertinib.
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1. Introduction

Activating mutations of the epidermal growth factor receptor (EGFR) gene are detected
in 15–20% of patients with non-small-cell lung cancer (NSCLC), predominantly in patients
with adenocarcinomas, without a smoking history, in women, and Asian patients [1]. The
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kinase domain of the protein EGFR is encoded by exons 18 to 24. The majority of NSCLC-
related EGFR mutations are located in four exons, 18–21, clustering around the adenosine
triphosphate (ATP)-binding pocket of the protein [1]. The most frequent mutations are a
small deletion in exon 19 and the L858R mutation in exon 21 [2].

During the last two decades, the development and clinical application of EGFR tyrosine
kinase inhibitors (EGFR-TKIs), namely the first-generation gefitinib, erlotinib, and icotinib;
the second-generation afatinib and dacomitinib; and the third-generation osimertinib,
have been associated with substantial responses and survival benefit in patients harboring
EGFR mutations, paving the way for establishing a precision oncology approach regarding
NSCLC [3]. A substituted amino acid, in particular, a change from threonine to methionine,
at the “gatekeeper” 790 residue in exon20 of EGFR (p.Thr790Met or T790M mutation), was
identified as a mechanism conferring resistance to first- and second-generation inhibitors
in approximately 50% of the cases through the alteration of inhibitor specificity in the
ATP-binding pocket of the protein [4].

Hence, osimertinib, an oral, irreversible, third-generation EGFR-TKI, was designed
to target the T790M resistance-associated mutation as well as the L858R and exon19del
activating mutations while sparing wild-type EGFR [5]. Osimertinib was initially approved
as a second-line treatment in EGFR T790M-positive NSCLC, based on the results of the
AURA trials [6]. In 2018, osimertinib was also approved as a first-line treatment of advanced
EGFR-mutant NSCLC on the basis of the results from the FLAURA trial, reporting a
progression-free survival (PFS) of 18.9 months and overall survival (OS) of 38.6 months
in untreated patients harboring EGFR sensitizing mutations [7]. Of note, osimertinib
penetrates the brain–blood barrier and presents substantial central nervous system activity,
contrary to early generation EGFR-TKIs [7]. Finally, the ADAURA trial investigated the use
of osimertinib as an adjuvant treatment in patients with resected NSCLC stage IB to IIIA
harboring EGFR mutations, and the results demonstrated significantly longer disease-free
survival compared with the placebo, resulting in the approval of the drug in the adjuvant
setting [8] (Figure 1).
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Figure 1. Timeline of development and approvals of osimertinib. Abbreviations: EGFR: epider-
mal growth factor receptor, TKI: tyrosine kinase inhibitor, FDA: Food and Drug Administration,
NSCLC: non-small-cell lung cancer. Figure of osimertinib molecule: National Center for Biotechnol-
ogy Information (2023). PubChem Compound Summary for CID 78357807, Osimertinib mesylate. Re-
trieved 24 January 2023 from https://pubchem.ncbi.nlm.nih.gov/compound/Osimertinib-mesylate.

Despite the durable disease control, the majority of patients receiving osimertinib
eventually develop disease progression, according to clinical and standardized radiological
criteria. As the use of upfront osimertinib for advanced EGFR-mutant NSCLC is increasing,
it is essential to understand the mechanisms of resistance to the drug in order to establish
subsequent treatment. Because osimertinib is also used in the adjuvant setting, the patterns
of resistance are relevant in the case of patients who relapse during the period of adjuvant
treatment. The optimal management of patients after progression to osimertinib constitutes
a therapeutic challenge [3]. The aim of this review is to summarize and critically discuss

https://pubchem.ncbi.nlm.nih.gov/compound/Osimertinib-mesylate
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the current evidence on the mechanisms conferring resistance to osimertinib as well as the
emerging therapeutic options in order to overcome resistance.

2. Mechanisms of Resistance

Osimertinib is a mono-anilino-pyrimidine compound that corresponds to the molecu-
lar formula C28H33N7O2 and possesses a molecular weight of 596 g/mol. Osimertinib
irreversibly binds to mutant EGFR via its acrylamide group that forms a covalent bond
with the Cys797 residue located in the ATP-binding site of mutant EGFR [9].

The mechanisms of resistance to osimertinib are generally divided into two categories:
(a) those occurring as a genetic alteration at the EGFR gene (on-target mechanisms) and
(b) those involving different genetic alterations and activation of other pathways (off-target
mechanisms). Evidence from the clinical trials and real-world registries has revealed
differential mechanisms when osimertinib is given as first-line or second-line treatment,
underlying the discrepancies in the selection pressure and clonal evolution of tumor
cells [10]. The relative frequencies of resistance mechanisms that have been reported from
clinical trials and representative real-world cohorts are summarized in Table 1.

Table 1. Relative frequencies of resistance mechanisms that have been reported from clinical trials
and representative real-world cohorts.

Author (Year) Number of
Patients Line of Therapy EGFR-Dependent Mechanisms

(On-Target)
EGFR-Independent Mechanisms

(Off-Target) [Ref]

Papadimitrakopoulou et al.
(2018) 73 2nd line

T790M loss (49%)
C797 mutations (15%; 10 patients with

C797S, 1 patient with C797G)

MET amplification (19%)
HER2 amplification (5%)

PIK3CA amplification (4%)
BRAFmut (V600E) (4%)

KRAS mutation (1%)
PIK3CA mut (E545K) (1%)

FGFR/RET/NTRK fusions (4%)

[11]

Oxnard et al. (2018) 41 2nd line T790Mloss (63%)
C797S (22%)

SCLC transformation (15%)
MET amplification (10%)

BRAF mutation (5%)
PIK3CA mutation (5%)
KRAS mutation (2%)

CCDC6-RET fusion (2%)
FGFR fusion (2%)
BRAF fusion (2%)

[12]

Ramalingam et al. (2018) 91 1st line C797S (7%)
MET amplification (15%)

HER2 ampl, PIK3CAmut, RAS mut
(2–7%)

[13]

Enrico et al. (2019) 31 Any
C797S (29%)
L817Q (6%)

EGFR amplification (3%)

Oncogenic fusions (RET, MET,
BRAF, ALK, FGFR3, and NTRK1)

16%
BRAF mutation (V600E) 6%

(co-existing with C797S)
MET amplification (3%)
HER2 amplification (3%)

KRAS mutation (3%)
PIK3CA mutation (3%)

[14]

Mehlman et al. (2019) 73 Any T790M loss (68%)
C797S (12%)

MET amplification (11%)
Histologic transformation

(9% of patients who underwent a
tissue biopsy)

HER2 amplification (3%)
BRAF mutation (V600E) (1%)

[15]

Lee et al. (2021) 34 2nd line T790Mloss (65%)
C797S (12%)

SCLC transformation (9%)
Squamous cell carcinoma

transformation (5%)
MET amplification (15%)

[16]

Akli et al. (2022) 27 1st line C797S (11%)

MET amplification (15%)
HER2 amplification (4%)

SCLC transformation
RET fusion (4%)

[17]

Nie et al. (2022) 21 1st line
C797S (24%)
L718Q (5%)

EGFR amplification (1%)

MET amplification (29%)
HER2 amplification (10%)

PTEN loss (5%)
PIK3CA mutation (5%)

[18]
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2.1. EGFR-Dependent (on-Target) Resistance Mechanisms
2.1.1. T790M Loss

In 50–60% of patients treated with first- or second-generation EGFR-TKI, the T790M
mutation develops, which results in the steric hindering of the drug’s binding to the mutant
EGFR protein [4]. Osimertinib covalently binds to the cysteine-797 (C797) residue in the
ATP-binding site of the protein, in addition to T790M, capable of overcoming the resistance
mechanisms [9,19].

Analysis of circulating tumor (ct) DNA at the time of progression or treatment discon-
tinuation revealed undetectable T790M in 49% of the patients in the AURA3 trial [11]. In
most cases, the loss of T790M is associated with the development of alternative competing
resistance mechanisms [12]. Oxnard et al. demonstrated that 63% of patients who received
osimertinib for T790M-mutant NSCLC presented loss of T790M at the time of progression,
which was frequently associated with the occurrence of histologic transdifferentiation,
KRAS mutations, or gene fusions [12]. In the same study, the time to treatment discontin-
uation was shorter in patients with T790M loss (6.1 vs. 15.2 months, p = 0.01) [12]. The
loss of T790M was also associated with earlier resistance and poorer survival in other
cohorts [16,20]. The loss of T790M and the presence of EGFR-activating mutations in
plasma were associated with the shortest PFS in a genomic analysis of postprogression
samples of patients who received second-line osimertinib (median 2.6 months, 95% CI 1.3,
not reached) [20]. On the other hand, when osimertinib is used upfront, the T790M muta-
tion does not usually exist either pre- or postprogression; therefore, given the increasing
frontline application of osimertinib, the significance of T790M will possibly become less
considerable [13].

2.1.2. C797S Mutation

The emergence of another genetic alteration, a tertiary mutation in EGFR residue C797
in exon 20 in the ATP-binding site, represents a key mechanism that confers resistance
to osimertinib [21]. Most frequently, serine substitutes cysteine at codon 797 (C797S) and
another rare substitution involving glycine (C797G) have also been reported [21]. From
a mechanistic point of view, osimertinib overcomes T790M resistance by forming a bond
with the residue C797 in the ATP pocket; therefore, the protein modification caused by
a mutation in the C797 residue hinders the covalent bond of osimertinib to the mutant
EGFR [21].

Of note, C797S represents the most common EGFR-dependent mechanism of resistance
to osimertinib taking into consideration all patients receiving osimertinib in any line of
therapy; however, it predominantly occurs in the second-line setting [22]. More specifically,
regarding the AURA3 trial, C797 mutations were detected in 15% of the patients at disease
progression, while in the FLAURA trial, they were detected in 7% of the patients who
progressed on osimertinib in the first line [11,13]. Additionally, the prevalence of C797
mutations is reported as 11% to 29% in real-world cohorts [14,15,17,18].

Importantly, in the case of patients who receive osimertinib as a second- or later-
line therapy for T790-positive NSCLC, a triple-mutant scenario, with the genotype
EGFRL858R/T790M/C797S or EGFRexon19del/T790M/C797S, may occur. Interestingly,
the allelic context in which C797S is acquired matters and may predict the responsiveness
to alternative treatments. In particular, if the C797S and T790M mutations are in different
alleles (in trans), the tumor cells are resistant to osimertinib but may be sensitive to a
combination of first- and third-generation TKIs. If the mutations exist in the same allele
(in cis), then the currently approved EGFR-TKIs, alone or in combination, do not display
antitumor activity [22]. Indeed, a preclinical study proved that cells harboring EGFR C797S
in trans with T790M are sensitive to a combination of first- and third-generation EGFR
TKIs. Case reports of patients who harbored the EGFR C797S mutation located in trans
with T790M describe that the combination of a first-generation TKI with osimertinib was
associated with a clinical and radiographic response [23,24]. In contrast, the emergence
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of the C797S mutation in cis with T790M, which is the most frequent scenario, precludes
sensitivity to first- and second-generation TKIs [25].

Similarly, in the case of the upfront use of osimertinib, preclinical data demonstrate
that upon occurrence of C797S the cancer cells retain the sensitivity to early generation
inhibitors; however, it may be transient [26], and additional resistance mechanisms may
coevolve with C797S [27] (Table 2).

Table 2. EGFR mutations conferring resistance to osimertinib. Specific mutations/combination of
mutations are sensitive to early generation EGFR-TKIs (in certain cases, in an allele-specific pattern).

EGFR Mutations 3rd-Generation
EGFR-TKI Alone

1st/2nd Generation with or
without 3rd Generation

EGFR-TKI
[Ref]

del_19 or L858R/T790M/C797S (in cis) Resistance Resistance [25]

del_19 or L858R/T790M/C797S (in trans) Resistance Sensitivity (1st-gen plus 3rd-gen
EGFR-TKIs) [22–24]

del_19 or L858R/C797S Resistance Sensitivity * (1st-gen plus 3rd-gen
EGFR-TKIs) [26]

L858R/T790M/L718 Resistance Resistance [28]
L858R/L718 Resistance Sensitivity (2nd-gen EGFR-TKI) [29]

del_19/G724S Resistance Sensitivity (2nd-gen EGFR-TKI) [30,31]
L858R/G724S Sensitivity ** Sensitivity [32]

* Preclinical data show that sensitivity may be transient in such cases. ** Based on preclinical data and computations analysis.

2.1.3. Rare EGFR Mutations

Rare EGFR mutations, including at positions L718, L792, G724, and G796, were also
reported as mechanisms leading to tumor cells’ resistance to osimertinib [33].

Mutations at a residue of the P-loop (L718) in exon18, corresponding to the site of
the protein that forms a hydrophobic sandwich with the phenyl aromatic ring of osimer-
tinib, were shown to confer resistance to the drug [33]. The reported substitutions include
L718Q and L718V. It has been shown that patients with NSCLC who harbor the combina-
tion of EGFR L858R/T790M/L718 mutations are resistant to first- and second-generation
inhibitors, whereas tumors with L858R/L718, which may occur in the case of first-line
osimertinib, seem to be sensitive to afatinib [28,29].

Additionally, the G724S mutation in exon 18 represents a mechanism of resistance that
has been identified in cases of second-line therapy with osimertinib. Structural analysis
and computational modeling indicate that the EGFR G724S mutation alters the glycine-
rich loop of the protein, leading to the incompatibility of forming a covalent bond with
osimertinib [30,34]. The authors demonstrated in vitro that exposure to afatinib led to a
reduction in tumor growth of G724S-driven cells in cases of concomitant T790M loss [30].
The efficacy of afatinib in the case of T790M loss and emergence of G724S mutation was
also outlined in a case report [31]. Interestingly, another study using simulations as well
as in vitro experiments and patient genomic profiling suggested that the G724S mutation
selectively confers resistance in the context of Ex19Del, while L858R/G724S cancer cells are
sensitive to osimertinib [32].

Additionally, G796R and L792 are rare mutations that have been reported in NSCLC
treated with osimertinib and might hamper the drug’s binding and ultimately reduce its
activity [35,36]. Finally, the double-mutant cells T790M/M766Q were shown to be resistant
to osimertinib but sensitive to neratinib and poziotinib (dual inhibitors of the human
epidermal growth factor receptor 2 (HER2) and EGFR kinase) [37].

2.2. EGFR-Independent (off-Target Resistance Mechanisms)
2.2.1. MET Amplification

The mesenchymal–epithelial transition (MET) oncogene encodes the receptor tyrosine
kinase c-Met. The receptor is subsequently phosphorylated to the binding of its ligand, the
hepatocyte growth factor (HGF), which is typically produced by mesenchymal cells. The
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phosphorylated receptor activates downstream signaling pathways, namely the phospho-
inositide 3-kinase (PI3K) pathway, the Janus kinases/signal transducer and activator of
transcription (JAK/STAT) pathway, and the mitogen-activated protein kinase (MAPK) path-
way. The MET signaling cascades result in the recruitment of many signal transducers that
regulate morphogenesis during tubule formation and are involved in cell mitogenesis [38].

MET amplification has been recognized as a pivotal EGFR-independent resistance
mechanism, because it bypasses EGFR inhibition through the activation of its downstream
pathways. It should be noted that MET amplification may occur as a focal amplification
or as a result of chromosome 7 polysomy; the former occurs via mechanisms such as
breakage–fusion–bridge, and the latter refers to multiple copies of chromosome 7 in tumor
cells, secondary to factors such as chromosomal duplication [39]. Focal high-copy amplifi-
cation of MET is an oncogenic driver event for cancer, whereas polysomy is typically not.
The ratio of the mean MET gene copy per cell relative to chromosome 7 centromere (CEP7)
is used to distinguish between polysomy and true amplification [39].

Currently, MET amplification is not consistently defined across different studies and
assays. Typically, it is defined as the presence of a MET gene copy number of five or a
MET/CEP7 ratio of two with the use of fluorescence in situ hybridization (FISH) [12].
Regarding next-generation sequencing (NGS), despite its advantages regarding the identifi-
cation of multiple genetic alterations, its major disadvantage is that not all assays control
for CEP7. So, when an increase in gene copy number of MET is detected, it may correspond
to a polysomy rather than to a focal MET amplification [39]. It is therefore recommended to
use FISH for the evaluation of MET amplification, especially in the case that the NGS assay
does not clearly evaluate the gene copy number gain [40].

It has been estimated that 5–24% of disease progressions upon osimertinib use in
any line of therapy are attributed to the development of MET amplification [11–15,17].
Interestingly, MET amplification is more common in the first-line setting, while C797S is
more frequent in the second-line setting [41,42]. Regarding the second-line therapy, MET
amplification was associated with other co-occurring alterations, such as loss of T790M,
the emergence of C797S [11] and other genetic events, such as CDK6 and BRAF ampli-
fication [10]. Preclinical studies showed that EGFR-mutant, osimertinib-resistant, MET-
amplified cell lines are sensitive to the combination of MET inhibitors with afatinib [43];
the relevant clinical investigation is discussed in another paragraph.

Of note, MET amplification should be distinguished from MET exon 14 (METex14)
mutation, which occurs as a de novo alteration in 3% to 4% of lung adenocarcinomas [3].
More specifically, the MET receptor lacking exon 14 exhibits decreased protein turnover
because of loss of the ubiquitination site encoded by exon 14, resulting in aberrant MET
activation and oncogenesis. METex14 was identified as a mechanism of acquired resistance
to erlotinib in a case report describing a patient who was later effectively treated with a com-
bination of osimertinib and crizotinib (a TKI with dual anti-ALK and -MET activity) [44];
however, evidence of the role of METex14 as a resistance mechanism to osimertinib has not
yet been reported.

2.2.2. HER2 Amplification and HER2 Point Mutations

Another off-target mechanism enabling the bypass of EGFR inhibition through the
activation of the downstream pathways is the amplification of the human epidermal growth
factor 2 receptor (HER2), another tyrosine kinase receptor, which is encoded by the ERBB2
gene [45]. Based on data from the AURA and FLAURA clinical trials, HER2 amplification
was detected in 5% of patients who developed resistance to second-line osimertinib and 2%
of cases of first-line osimertinib. It seems that HER2 amplification is mutually exclusive
with the T790M mutation [11,13].

Moreover, HER2 point mutations account for approximately 1.5% of acquired resis-
tance to osimertinib [46]. The majority of HER2 mutations comprise insertions in exon 20.
It was shown that such genetic alterations affect the kinase domain of HER2 [46]. Another
rare HER2 genetic alteration was also implicated in resistance to osimertinib according to a
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preclinical study, which demonstrated that exon 16-skipping HER2 led to the formation
of a splice variant of the protein (HER2D16 variant) via a Src-independent pathway [47].
In vitro, HER2D16-expressing cells were resistant to osimertinib, and combination therapy
of osimertinib with a Src kinase inhibitor failed to reverse resistance. In contrast, the combi-
nation of osimertinib with the pan-HER small-molecule inhibitor afatinib synergistically
suppressed cell proliferation and signaling in HER2D16 cells [47].

2.2.3. HER3 Upregulation

HER3 is another member of the EGFR family, but without an active kinase domain.
However, it heterodimerizes with other HER proteins, enabling its trans-phosphorylation,
and it mediates downstream signaling mainly through the PI3K/protein kinase B (AKT)
pathway. It was observed that upon in vitro and in vivo treatment with HER-family-TKIs,
including osimertinib, HER3 may display reduced phosphatase activity and increased
membrane expression, corresponding to a shift in its phosphorylation–dephosphorylation
equilibrium and sustained activation of PI3K pathway [48].

U3-1402 is a novel antibody–drug conjugate (ADC) incorporating a HER3-antibody
coupled with a topoisomerase I inhibitor (DXd). In preclinical models of EGFR-TKI resistant
NSCLC, U3-1402 showed anticancer activity alone or in combination erlotinib [49]. Recently,
another study revealed that osimertinib pretreatment led to overexpression of HER3-
enhanced uptake of HER3-targeted therapy with U3-1402 in lung cancer cells, suggesting
the combination of osimertinib and U3-1402, with the aim to delay the development of
resistance [50]. The cotreatment with osimertinib and HER3 was further investigated in a
preclinical study, which demonstrated that this drug combination led to enhanced immune
antitumor toxicity via the activation of STING [51].

2.2.4. RAS-RAF Pathway

The RAT sarcoma virus (RAS)/Raf murine sarcoma viral oncogene homolog B (RAF)
pathway (also referred to as mitogen-activated protein kinase (MAPK) pathway) has a
crucial role in cell growth, division, and differentiation [52].

Various genetic alterations of the MAPK pathway provide resistance to osimertinib [53].
In a preclinical model of EGFR-mutant cells exposed to several EGFR-TKIs including
osimertinib, the results revealed a range of alterations in the MAPK pathway. Firstly, several
NRAS mutations were detected, including a novel E63K mutation. Furthermore, the results
demonstrated a gain of copy number of wild-type NRAS or wild-type KRAS [54]. Among
the patients who progressed on osimertinib in the phase III clinical trials FLAURA and
AURA3, mutations of NRAS and KRAS were detected in 3% and 1%, respectively [11,13].
BRAF mutations (primarily V600E) and BRAF amplifications and fusions have also been
detected upon progression to first- or second-line osimertinib [13–15,55].

In a preclinical investigation, BRAF V600E-mutant, osimertinib-resistant cell lines
were sensitive to a combination of a BRAF inhibitor (encorafenib) and osimertinib [56]. In a
case report, the authors described that osimertinib combined with vemurafenib showed
efficacy in a patient with BRAF V600E-mediated osimertinib resistance, who exhibited
a clinical response for 13.4 months [57]. The concurrent combination of dabrafenib and
trametinib plus osimertinib was also attempted in two patients with BRAF V600E NSCLC
postprogression to osimertinib, but, due to toxicity, one patient ultimately received a
reduced dose of dabrafenib and trametinib. Rebiopsy upon tumor progression revealed
loss of BRAF V600E and emergence of EGFR C797S [58].

2.2.5. PI3K Pathway

The PI3K/protein kinase B (also known as AKT)/mammalian target of rapamycin
(mTOR) pathway, which is an important regulator of the cell cycle and proliferation, is
dysregulated in 4–11% of patients who progress to osimertinib [12,14]. Most genetic
alterations are found in PIK3CA (E454K, E542K, R88Q, N345K, and E418K), which encodes
the p100α protein, the catalytic subunit of PI3K [59,60]. Another alteration commonly
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found in several cancers, the PTEN deletion, leads to overexpression of PI3K signaling
and may contribute to osimertinib resistance [60]. Interestingly, histologic transformation
of osimertinib-resistant adenocarcinomas to squamous or small-cell carcinomas, which is
discussed in the next paragraph, is associated with acquired genomic alterations related to
the PI3K/AKT/mTOR pathway, such as PTEN deletion mutations [61].

Contrary to other oncogenic driver mutations in NSCLC, which are generally mutually
exclusive, PIK3CA mutations frequently coexist with other oncogenic gene mutations,
which is attributed to the cooperative role of PIK3CA in mitogenic signaling during lung
carcinogenesis [62,63].

2.2.6. Oncogenic Fusions

Chromosomal rearrangements involving driver oncogenes, termed oncogenic fusions,
have been identified not only as de novo oncogenic events but also as genetic alterations con-
ferring resistance to osimertinib (4–7%) [11,12]. The involved oncogenes include anaplastic
lymphoma kinase (ALK), BRAF, fibroblast growth factor receptor (FGFR), neurotrophic
tyrosine receptor kinase (NTRK), rearranged during transfection (RET), and ROS proto-
oncogene 1 (ROS1). Some of the specific rearrangements that have been reported are
the following; SBTBN1-ALK, PLEKHA7-ALK, AGK-BRAF, PCBP2-BRAF, ESYT2-BRAF,
BAIAP2L1-BRAF, FGFR3-TACC3, NTRK-TMP3, RET-ERC1, CCD&-RET, NCOA4-RET, and
GOPC-ROS1 [11–13,64].

Oncogenic fusions are rare but potentially targetable acquired resistance mechanisms.
Several case reports have been published presenting patients receiving combination ther-
apies of osimertinib with or without another targeted therapy specific for the acquired
fusion, e.g., crizotinib, selpercatinib, and alectinib, and achieving durable responses [64–69].
Interestingly, data on the tumor cells’ evolution dynamics of EGFR-mutant NSCLC revealed
that fusions do not commonly emerge as single alterations; rather, they frequently co-occur
with additional on or off-target” mechanisms of resistance [63].

2.2.7. Cell Cycle Aberrations

The operation of the cell cycle, chiefly regulated by cyclins and cyclin-dependent
kinases (CDKs), is often altered in cancer, leading to sustained proliferation of tumor
cells [70]. Genetic events affecting the cell-cycle-related genes are detected in 10–12% of
patients upon progression to osimertinib. The occurrence of those alterations has been
associated with a shorter median PFS [11,13,59]. The cell-cycle-related alterations mainly
include but are not limited to (a) gene amplifications, mainly of the genes encoding for
cyclin D1, D2, E1, and CDK 4 and 6; and (b) deletion mutations in the CDK inhibitor 2A
gene (CDKN2A), which encodes for the natural inhibitors of the pathway [11,13].

CDK4 and 6 phosphorylate the retinoblastoma protein (Rb), which is a major determi-
nant of sustained cell proliferation in cancer, such as in the case of osimertinib-resistant
cancer cells independent of the underlying mechanisms. So, La Monica et al. examined
the role of phosphorylated Rb as a biomarker and/or as a target in NSCLC-osimertinibin-
resistant cells and showed that Rb phosphorylation was maintained in the majority of
NSCLC cell lines with resistance to osimertinib [71]. According to preclinical studies, com-
bining osimertinib with the CDK inhibitors abemaciclib or palbociclib leads to a decline of
Rb phosphorylation and hinders the cell proliferation through an arrest of the resistant cells
in the G1 phase [72]. Currently, an ongoing phase II clinical trial was designed to assess the
safety and efficacy of abemaciclib, with or without osimertinib, in NSCLC after osimertinib
resistance (ClinicalTrials.gov, NCT04545710).
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2.2.8. Histologic Transformation

Remarkably, 2–15% of patients who progress on osimertinib treatment in any line
develop histologic transformation of their tumor from adenocarcinoma to squamous cell
carcinoma or small-cell lung cancer (SCLC) [12,15–17]. In a recent study, histologic transfor-
mation was identified in 15% of first-line osimertinib cases and 14% of later-line cases [73].
The initial EGFR sensitizing mutation are retained both in squamous and small-cell trans-
formation [74,75].

The presence of SCLC transformation has been associated with the loss of both RB1
and TP53 when genotyping the tumors [76,77]. The presence of apolipoprotein B mRNA
editing enzyme was also linked to a histologic shift of the tumor [76]. Therefore, whenever
concurrent RB1 and TP53 alterations are detected, potentially with the use of liquid biopsy,
a tissue biopsy is absolutely required in order to specify the histologic type. Additionally,
it was shown that the patients who harbor EGFR/RB1/TP53 mutations at baseline, who
represent 5% of patients with EGFR-mutant NSCLC, represent a distinct subgroup of
patients at high risk of histologic transformation but also with poorer outcome irrespective
of the transformation itself [77].

There are no specific indications regarding the therapeutic management of EGFR-
mutant NSCLC with transformed histology, which is generally associated with a poor
prognosis, mainly attributed to its aggressive biology [3]. Histology-driven traditional
chemotherapeutic regimens could be given in this patient subgroup, but with limited
efficacy [78]. Currently, the combination of a PARP inhibitor (niraparib) and anti-PDL1
durvalumab is being tested in EGFR-mutant NSCLC that has transformed to a SCLC
phenotype in a phase II clinical trial (NCT04538378).

2.2.9. Epithelial to Mesenchymal Transition (EMT)

Epithelial–mesenchymal transition (EMT), a process during which the epithelial cells
experience the loss of their polarity and adhesion capacities and acquire of a mesenchymal
phenotype enabling cellular migration, has been described as a mechanism contributing to
osimertinib resistance [79]. A preclinical model of osimertinib-resistant cells showed that
the emergence of EMT resulted from osimertinib-induced upregulation of transforming
growth factor beta 2 (TGFβ2) that activated SMAD2 protein [79]. In the same study,
the resistant cell lines were highly dependent on the NF-κB pathway for survival, and
treatment with the NF-κB pathway inhibitor BAY 11–7082 or genetic silence of p65, one of
the components of NF-κB, yielded a cytotoxic effect [79].

Because EMT collectively refers to a differential phenotype rather than a single al-
teration, it is of utmost importance to characterize the specific implicated pathways in
order to harness them therapeutically. Well-defined EMT-associated alterations involve the
decrease in E-cadherin, a contributor of the adherens junctions, and the overexpression
of the mesenchymal biomarker, vimentin, as well as of Hakai protein, a degrader of E-
cadherin [80,81]. The regulators of E-cadherin expression, namely the transcription factors
Zeb, Snail, Slug, and twist, are highly considered potential therapeutic targets [82]. In a
preclinical study, TWIST1 overexpression resulted in erlotinib and osimertinib resistance in
EGFR-mutant NSCLC cells; conversely, genetic and pharmacological inhibition of TWIST1
increased the sensitivity to EGFR TKIs [83].

An overview of mechanisms of resistance to osimertinib is illustrated in Figure 2.
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Figure 2. Overview of mechanisms of resistance to osimertinib. In addition to EGFR-dependent
(on-target) alterations, different mechanisms of resistance occur at several levels within the cell.
These include upregulation of other receptor tyrosine kinases, upregulation of downstream pathways,
oncogenic fusions encoding for mutant, promitogenic proteins, and alterations affecting the regulation
of the cell cycle. Additionally, histologic transformation to squamous or small-cell lung cancer may
develop that confers resistance to EGFR inhibition. Finally, epithelial-to-mesenchymal transition
contributes to developing resistance to osimertinib. Abbreviations: EGFR: epidermal growth factor
receptor, RAS: rat sarcoma viral oncogene homolog, BRAF: v-Raf murine sarcoma viral oncogene
homolog B, PI3K: phosphatidylinositol 3 kinase, AKT: protein kinase B, mTOR: mammalian target of
rapamycin, MEK: mitogen-activated protein kinase kinase ERK: extracellular signal-regulated kinase,
RTKs: receptor tyrosine kinases.

3. Management of Osimertinib-Resistant NSCLC

Optimizing the next step after progression of EGFR-mutant NSCLC while on os-
imertinib is an ongoing challenge and this issue is not clearly defined in therapeutic
algorithms [84]. Performing a rebiopsy in order to molecularly characterize the tumor is
recommended; however, a tissue biopsy is sometimes difficult to obtain due to the location
of the tumor masses or the patient’s physical condition or it may be time-consuming. The
use of liquid biopsy is recommended as long as the limitations of this technology are taken
into consideration [85]. The next therapeutic step should be tailored to each patient and
may depend on the detection of specific resistance-associated genetic alterations. Several
therapeutic options beyond progression to osimertinib are discussed below.

3.1. Targeted Therapy for EGFR-Dependent Alterations

As discussed above, in the case of NSCLC with loss of T790M and acquired tertiary mu-
tations (e.g., C797S), the use of an early generation EGFR-TKI appears a feasible therapeutic
option after progression on osimertinib. Similarly, if T790M mutation coexists with tertiary
mutations but on different chromosomes (in trans), it is presumed that the cancer cells
will remain sensitive to treatment with a combination of osimertinib and a first-generation
inhibitor. A number of case reports have suggested using early generation EGFR-TKIs as
monotherapy or in combination with osimertinib in those scenarios [26,27,86–88]. However,
this therapeutic approach has not been evaluated in randomized clinical trials. Addition-
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ally, preclinical evidence suggests that the sensitivity of cancer cells to early generation
EGFR-TKIs may be transient [26].

The development of targeted therapy for C797S-mediated resistance to osimertinib
represents an unmet need and is currently actively explored [45]. To this end, fourth-
generation EGFR-TKIs, such as LS-106, BLU-945, BLU-701, EAI045, and JBJ-09-063, have
been specifically designed to evade the resistance caused by the EGFR C797S mutation.

The fourth-generation allosteric EGFR inhibitors bind to a different site than the
existing ATP-competitive EGFR TKIs, modifying the space configuration of mutant EGFR
and hindering its binding to EGFR ligands, therefore blocking its own phosphorylation and
its downstream signals. All agents mentioned above have shown preclinical in vitro and
in vivo antitumor efficacy in models of NSCLC harboring C797S and common activating
EGFR mutations, with or without T790M [89–92].

Regarding clinical investigation, SYMPHONY (NCT04862780) is a phase I/II clinical
trial that is currently recruiting patients with EGFR-mutant NSCLC after failure of third-
generation EGFR-TKIs, aiming to assess the safety, tolerability, and anticancer activity of
BLU-945 with or without osimertinib. Similarly, HARMONY (NCT05153408) is a phase
I/II clinical trial evaluating the safety, tolerability, and anticancer activity of BLU-701 alone
or in combination with osimertinib or platinum-based chemotherapy in EGFR-mutant
NSCLC. Finally, BDTX-1535 is another inhibitor that is currently being explored in a first-in
human clinical trial for patients with glioblastoma and NSCLC harboring sensitive EGFR
alterations and who have disease progression following standard of care (NCT05256290).

Furthermore, in addition to the use of EGFR-TKIs, it was reported that amivantamab,
which acts as a bispecific anti-EGFR and anti-MET inhibitor, showed anticancer activ-
ity in a preclinical model of EGFR-mutant NSCLC cells with EGFR-TKIs resistance. It
also presented clinical efficacy in patients with C797S mutation and concomitant MET
amplification [93,94]. Additionally, the combination of an ALK-TKI (brigatinib) plus an
anti-EGFR monoclonal antibody (cetuximab) was efficacious according to a retrospective
study that included patients with T790M/cisC797S mutations resistant to osimertinib [94].

3.2. Targeted Therapy for EGFR-Independent Alterations
3.2.1. MET Amplification

Preclinical data and preliminary clinical evidence support that a combination regimen
of osimertinib and MET inhibitors is a reasonable therapeutic strategy to overcome the
osimertinib resistance attributed to MET amplification. More specifically, durable responses
associated with the combination treatment of crizotinib with osimertinib have been pre-
sented in case reports [95,96]. The efficacy of crizotinib and osimertinib was also analyzed
in a retrospective cohort of patients with NSCLC, MET amplification, and resistance to
prior EGFR-TKI [93]. The results showed that the objective response rate (ORR) was 100%,
and the median PFS was 6.2 months [97].

The phase 1b TATTON study enrolled patients with advanced EGFR-mutant NSCLC
who progressed on a prior EGFR-TKI in order to assess the safety and tolerability of os-
imertinib combined with selumetinib (MEK1/2 inhibitor), savolitinib (MET inhibitor), or
durvalumab (anti-PD-L1 monoclonal antibody) [98]. Based on the outcome, the combina-
tion of osimertinib 80 mg with selumetinib or savolitinib at identified tolerable, active doses
is possible, whereas the combination of osimertinib with durvalumab was not feasible
due to the high incidence of toxicity (interstitial lung disease) [98]. Subsequently, the
combination of osimertinib with savolitinib was assessed in two global expansion cohorts
of the TATTON study. The interim analysis revealed that osimertinib plus savolitinib had
an acceptable safety profile and observed antitumor activity; therefore, the final results are
eagerly anticipated [99].

Additional clinical trials (NCT03778229, NCT05015608, and NCT03944772) are cur-
rently exploring the safety and efficacy of osimertinib combined with savolitinib. The
combination of osimertinib with other MET inhibitors (capmatinib and tepotinib) is also
under investigation in clinical trials (NCT04816214 and NCT03940703). Finally, teliso-
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tuzumab vedotin (Teliso-V), an ADC composed of a Met antibody (ABT-700) and a micro-
tubule inhibitor (monomethyl auristatin E), is being explored in the LUMINOSITY trial
(NCT03539536) that is currently recruiting pretreated patients with EGFR-mutant NSCLC
and immunohistochemically positive c-MET.

3.2.2. HER2 Amplification

Preclinical studies of HER2 amplification-mediated osimertinib-resistant models showed
sensitivity to osimertinib in combination with the anti-HER2 ADC trastuzumab emtansine
(TDM1). Li et al. reported clinical activity of TDM1 in patients with NSCLC and HER2
amplification who progressed on previous EGFR-TKIs [100]. Moreover, the authors de-
scribed that when a patient with NSCLC developed resistance to TDM1, the switching of
ADC from TDM1 to fam-trastuzumab deruxtecan (T-DXd) resulted in a partial response
that strikingly lasted for one year [100]. The combination of osimertinib and TDM1 was
investigated in a phase I/II trial (TRAEMOS) in patients with HER2 amplification-mediated
EGFR-TKI resistance. However, the trial was terminated due to insufficient effectiveness
(NCT03784599).

DESTINYLung01 was a phase II clinical trial that evaluated the efficacy and safety
of T-DXd in patients with HER2-overexpressing or HER2-mutant NSCLC. According to
a separate interim analysis of the trial, treatment with T-DXd resulted in a 24.5% ORR in
HER2-overexpressed, immunohistochemistry (IHC) 2+ or 3+, but HER2 mutation-negative
NSCLC, a status that may partially correspond to HER2 amplification. It must be noted
that the initial design of this two-cohort phase II trial included a patients group with HER2
overexpression, classified with an immunohistochemical score of 3+ or 2+, and another
group with HER2 mutations [101].

3.2.3. Osimertinib in Combination with Inhibitors of Oncogenic Genetic Alterations

As aforementioned, several case reports propose a regimen of the combination of
osimertinib plus a relevant inhibitor when a targetable oncogenic mutation or fusion is
detected [60,102–104]. In addition to the case reports, the combination of osimertinib with a
RET inhibitor (BLU-667) was supported by the results of an in vitro study, which suggested
that the mechanisms of resensitization of osimertinib are mediated by the suppression of
both extracellular -signal-regulated kinase (ERK) and AKT phosphorylation [65].

Combining osimertinib with another inhibitor targeting the corresponding oncogenic
alteration appears to be a plausible therapeutic strategy; however, it should be noted
that the tolerability of those combinations has not been assessed in clinical trials. For
example, in a patient with BRAF V600E, osimertinib-resistant NSCLC, serious toxicity led
to a dose reduction of dabrafenib plus trametinib in combination with the ordinary dose of
osimertinib [59]. Therefore, not all such combination strategies are tolerable and feasible,
which must attract the attention of physicians.

3.3. Beyond Targeted Therapy
3.3.1. Chemotherapy

It must be noted that 30–50% of mechanisms resulting in resistance to osimertinib
remain unknown, and, often, no targetable alteration is detected, despite performing a
rebiopsy. Hence, targeted therapy may not be feasible, while platinum-based doublet
chemotherapy remains a plausible option. Interestingly, the results from a retrospective
cohort of patients with advanced NSCLC who progressed on osimertinib therapy showed
that chemotherapy was correlated with a tendency toward longer survival compared with
a nonchemotherapy regimen. The median OS was 25.0 versus 11.8 months, while median
PFS was not significantly different between the two groups [105].

Resistance to osimertinib is attributed to a shift to a SCLC phenotype in 2–15% of
cases [14,15,17,42]. Derived from primary SCLC, a platinum–etoposide combination ther-
apy is routinely used to treat patients with SCLC transformation after osimertinib treatment.
A retrospective study demonstrated that platinum–etoposide yielded a clinical response
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rate of 54%, a median PFS of 3.4 months, and a median OS of 10.9 months in patients
with SCLC-transformed lung cancer. In the same study, a group of patients who received
immune checkpoint inhibitors was analyzed, and the results showed that immunotherapy
was largely inefficacious [74]. Currently, data do not support the continuation of osimer-
tinib when commencing chemotherapy after disease progression on first-line therapy with
osimertinib [106].

3.3.2. Immunotherapy

Numerous clinical trials have demonstrated the clinical benefit of immune checkpoint
inhibitors (ICIs) in the management of NSCLC; however, ICI monotherapy exhibits limited
benefit in patients harboring EGFR mutations. A systematic review showed that ICIs
were associated with prolonged OS (HR, 0.69; p < 0.001) in individuals harboring wild-
type EGFR but not in the EGFR mutation subgroup (HR, 1.11; p = 0.54) compared with
docetaxel [107]. Consistent with the above, the results from the IMMUNOTARGET registry,
which included patients with oncogene-driven NSCLC who received immunotherapy,
showed that ICI monotherapy yielded a short median PFS of 2.1 months and a low ORR of
12% among patients with NSCLC harboring EGFR alterations [108]. Of note, in patients
receiving monotherapy with ICI and harboring an oncogene “driver” alteration, there is an
increased risk of hyperprogressive disease, a severe complication that is related to worse
survival [109].

3.3.3. Combination of Chemotherapy and Antiangiogenic Therapy

The addition of vascular endothelial growth factor (VEGF) inhibitors to EGFR-TKIs in
the first-line treatment of patients with EGFR-mutant NSCLC has been investigated; differ-
ential results have been revealed regarding the survival benefit between the combination of
erlotinib plus bevacizumab [110] and osimertinib plus bevacizumab [111], a phenomenon
that may reflect the tumor cell heterogeneity caused by different EGFR-TKIs. Nevertheless,
the addition of an antiangiogenic agent to EGFR-TKI after progression to osimertinib has
not been evaluated.

3.3.4. Combination of Chemotherapy/Immunotherapy/Antiangiogenic Therapy

Recently, the combination of chemotherapy, immunotherapy, and antiangiogenic
therapy has been examined in patients with EGFR-mutant NSCLC. Initially, the Impower
130 study showed that no survival benefit was observed in the EGFR-mutant subgroup who
received atezolizumab and carboplatin/nab-paclitaxel compared with those who received
chemotherapy alone; however, the IMpower150 trial demonstrated that the addition of
atezolizumab and bevacizumab to carboplatin/paclitaxel significantly improved PFS and
OS in EGFR-mutated NSCLC patients, including those with previous TKI failures [112,113].
Similarly, another clinical trial reported that combination treatment with atezolizumab,
bevacizumab, and carboplatin/pemetrexed was associated with promising efficacy in
metastatic EGFR-mutant NSCLC patients after EGFR-TKI failure [114]. Another combina-
tion, that of sintilimab (anti-PD-1 inhibitor) plus bevacizumab and platinum–pemetrexed,
in patients who progressed on EGFR-TKIs resulted in the prolongation of PFS compared
with patients receiving chemotherapy alone [115]. Therefore, the results of those trials
suggest a synergistic effect of ICIs and antiangiogenic drugs on chemotherapy for the
treatment of NSCLC patients in EGFR-mutated settings.

4. Discussion

Osimertinib currently represents the standard of care for the upfront management of
patients with advanced NSCLC harboring common activating mutations. Due to its increas-
ing use in front-line settings, deciphering its associated resistance patterns is becoming
more and more relevant. The literature review revealed a heterogeneous set of resistance
mechanisms, both EGFR-dependent and -independent, and, to some extent, different from
those that have been identified with the use of osimertinib in later-line settings. Taking into
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consideration the variation in the resistance patterns, it becomes evident that a tailored
approach should be followed for each patient, mainly depending on the molecular profile
of the progressed tumor.

In this context, performing a rebiopsy upon progression to osimertinib is of crucial
importance for defining further management. Whenever a tissue biopsy is feasible, it should
be pursued. Otherwise, tumor genotyping with a liquid biopsy is recommended, as long
as the limitations of such an approach are taken into consideration [85]. More specifically,
ctDNA is unsuitable for histological transformation evaluation and gene fusion acquisition
screening, which typically requires the RNA NGS evaluation of a tissue sample [17].
Of note, liquid biopsy for tumor genotyping is an ongoing research area encompassing
different technologies in addition to ctDNA; a broader potential may be available in the
future. However, attention should be paid to the validation and standardization of such
approaches in order to reliably drive therapeutic decisions.

Intriguingly, EGFR-mutant NSCLC increasingly becomes a disease entity requiring a
distinct approach from the early to the advanced stage. Of note, osimertinib has also been
approved for adjuvant treatment of resected NSCLC, which reveals additional questions
regarding patients who may relapse during adjuvant treatment or after the completion
of the adjuvant treatment. Data on patterns of resistance and optimal management are
still scarce for such cases. Recently, the European Society of Medical Oncology (ESMO)
published consensus statements for the management of EGFR-mutant NSCLC, highlighting
the requirement for a distinct approach from diagnosis to management and from early to
advanced stage [116].

5. Conclusions

Despite the durable responses of osimertinib, especially in the front-line setting, the
majority of patients develop resistance. The mechanisms of resistance include EGFR-
dependent alterations, predominantly the acquisition of C797S mutation, which hinders
the binding of the drug; and EFGR-independent mechanisms, including MET and HER2
amplifications, KRAS/BRAF/PIK3CA mutations, oncogenic fusions, and histologic trans-
formation. A rebiopsy upon progression is highly recommended in order to guide the next
therapeutic step. Fourth-generation EGFR-TKIs are under clinical investigation, and the
results of clinical trials are anticipated. Other therapeutic options include other targeted
therapies whenever feasible, and the combination of chemotherapy with immunotherapy
and antiangiogenic therapy, or cytotoxic chemotherapy alone. Future research should be
focused on the expansion and validation of liquid biopsies to optimize the monitoring of
the disease.
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