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Simple Summary: Tumor-infiltrating lymphocytes (TILs) have been proven to be promising biomark-
ers associated with therapeutic outcomes and prognosis in breast cancer patients. Increased TIL
levels predicted a higher rate of response to neoadjuvant chemotherapy in all molecular subtypes
and was also associated with a survival benefit in human epidermal growth factor receptor 2-positive
and triple-negative breast cancer. The assessment of TILs was based on surgical pathological sections
or needle biopsies; this process was invasive and may have introduced sampling bias in biopsies.
Imaging-based biomarkers provide a non-invasive evaluation of TIL levels. The aim of this study
was to explore the feasibility of transformer-based or convolutional neural network (CNN)-based
deep-learning (DL) models to predict TIL levels in breast cancer from ultrasound (US) images. We
confirmed that the ultrasound-based DL approach was a good non-invasive tool for predicting TILs
in breast cancer and provided key complementary information in equivocal cases that were prone to
sampling bias.

Abstract: This study aimed to explore the feasibility of using a deep-learning (DL) approach to
predict TIL levels in breast cancer (BC) from ultrasound (US) images. A total of 494 breast cancer
patients with pathologically confirmed invasive BC from two hospitals were retrospectively enrolled.
Of these, 396 patients from hospital 1 were divided into the training cohort (n = 298) and internal
validation (IV) cohort (n = 98). Patients from hospital 2 (n = 98) were in the external validation (EV)
cohort. TIL levels were confirmed by pathological results. Five different DL models were trained for
predicting TIL levels in BC using US images from the training cohort and validated on the IV and
EV cohorts. The overall best-performing DL model, the attention-based DenseNet121, achieved an
AUC of 0.873, an accuracy of 79.5%, a sensitivity of 90.7%, a specificity of 65.9%, and an F1 score
of 0.830 in the EV cohort. In addition, the stratified analysis showed that the DL models had good
discrimination performance of TIL levels in each of the molecular subgroups. The DL models based
on US images of BC patients hold promise for non-invasively predicting TIL levels and helping with
individualized treatment decision-making.
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1. Introduction

In recent years, it has been gradually recognized that the immunogenicity of breast
cancer was highly heterogeneous [1], which was reported to be a main factor highly relevant
to the therapeutic response and prognosis of BC patients. Tumor-infiltrating lymphocytes
(TILs) have been identified as an important immunologic marker that reflects the status of
the tumor immune microenvironment [2,3]. Several studies had confirmed that a high TIL
level predicted response to neoadjuvant chemotherapy (NAC) in all molecular subtypes
and was also associated with a survival benefit in human epidermal growth factor receptor
2(HER2)-positive and triple-negative breast cancer (TNBC). By contrast, increased TILs
were an adverse prognostic factor for survival in luminal–HER2-negative breast cancer [4,5].

According to the recommendations by the International TILs Working Group 2014 [6],
the standard assessment of TIL levels in breast cancer was based on hematoxylin-eosin
(HE) staining of pathological sections of biopsy or resection specimens. As a result, this
not only adds to the workload of the pathologists but also to unavoidable subjectivity. On
the other hand, this kind of invasive procedure cannot dynamically monitor the changes
in the tumor microenvironment. Imaging-based biomarkers hold promise to provide a
non-invasive evaluation of TIL levels in BC.

Various studies had explored the association between imaging features and TIL lev-
els in BC, such as ultrasound (US), mammography, and magnetic resonance imaging
(MRI) morphological features [7–9], quantitative parameters of MRI [10–13], and 18F-FGD
uptake on PET/MRI [14]. However, most of these methods were either subjective or time-
consuming. There were also some MRI-based radiomics studies on evaluating TIL levels,
although most of these were classical machine-learning methods with limited samples [15].

Compared with MRI, US is a widespread first-line imaging modality used in the
diagnosis of breast diseases, given its advantages of low cost, no radiation, portable features,
and real-time image acquisition and display. However, ultrasound images have operator-,
patient-, and scanner-dependent variations. Meanwhile, the commonly used classical
machine-learning methods relying on precise tumor boundaries labeled by radiologists
were not that generalized in clinical practice. Deep learning (DL) represented by radiomics
can mine high-throughput quantitative features from image data to reveal disease features
with the ability to self-learn. Superior to classic ML, the DL approach achieves impressive
results and improved robustness in US image analysis by training on large amounts of
data [16]. Recent studies have demonstrated that US image-based DL models performed
very well in predicting NAC efficacy, axillary lymph node status, molecular subtypes,
and risk stratification of breast cancer, etc. [17–21]. To the best of our knowledge, there
are no relevant studies applying DL with US images for the prediction of TIL levels in
breast cancer.

Hence, we aimed to develop and optimize a novel DL model to predict TIL levels in
BC based on US images.

2. Materials and Methods
2.1. Patients

A total of 1022 patients were retrospectively collected from hospital 1 (Lanzhou
University Second Hospital) from 1 January 2018, to 31 October 2022, and 534 patients
were collected from hospital 2 (Gansu Provincial Cancer Hospital) from 1 January 2022,
to 31 October 2022. The inclusion criteria were as follows: (a) patients with invasive
breast cancer confirmed by surgical or core biopsy pathology; (b) patients with available US
images before any treatment; (c) available clinical data; (d) sufficient pathological specimens
for the assessment of TIL levels. The exclusion criteria included: (a) missing important
histopathological results; (b) other primary malignancies, severe infection, hemopathy, or
autoimmune diseases, etc.; (c) poor US image quality. The flowchart of the patient inclusion
process is shown in Figure 1.
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2.2. Image Acquisition

All the breast US examinations at two hospitals were performed by one of five ra-
diologists with more than five years of US experience using eight different US systems
(details of the equipment used in each hospital can be found in Table S1, Supplementary
Materials). All US images were acquired 1 or 2 days before performing a biopsy or resec-
tion. For patients with more than one breast lesion, the target lesion was defined as the
dominant or largest tumor in the affected breast. The target breast lesion was measured
at the maximum-diameter plane to determine US size. For consistency, only longitudinal
sections of ultrasound images were used.

In this study, two radiologists collaborated to collect the ultrasound images and
were prohibited from participating in the subsequent study. Specifically, one radiologist
initially collected all ultrasound images of patients eligible for the study based on clinical
features and pathological findings. All of these ultrasound data were then handed over
to another radiologist, who further screened ultrasound images, focusing only on image
quality, without knowing the pathological and clinical information. In this way, poor-
quality ultrasound images such as unclear, unstandardized images can be excluded, and
the influence of the doctor’s subjective perception and objective ability on the data set
during image collection can be effectively avoided.

2.3. Clinical and Pathological Analysis

The clinical data were acquired from medical records. Histopathologic data of the
breast cancer, including tumor type, histological grade, molecular subtype, estrogen re-
ceptor (ER) status, progesterone receptor (PR) status, HER2, and Ki-67 proliferation index,
were obtained from pathological reports.

According to the recommendations by the International TILs Working Group 2014 [6],
the standard assessment of TIL levels in breast cancer was based on the HE pathological
sections of biopsy or resection specimens. TILs include both stromal TILs (sTILs) and
intratumoral TILs (iTILs) in tumor tissue. To ensure accuracy and consistency, the rec-
ommendations suggested that sTIL levels represent the TIL level of the tumor. The sTIL
levels of the breast cancers were defined based on the proportion of the area infiltrated by
lymphocytes within the tumor itself plus the adjacent stroma. Consistent with previous
studies [7], the TIL levels for this study were categorized as low ≤ 10% and high > 10%.
All of the specimens were classified into high and low TIL groups by two pathologists with
more than five years of experience who were blinded to the US data.
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2.4. DL Models

In this study, we used four representative DL networks commonly used in breast
US images – ResNet50, DenseNet121, Mobilenet_v3, and Vision Transformer, which were
pre-trained with ImageNet (http://www.imagenet.org/, accessed on 1 October 2022). as
the basal classification model – to train the DL models based on raw US image data. Further-
more, we developed an attention-based deep-learning model to improve the basic version
of DenseNet121. The channel attention and spatial attention module were introduced into
DenseNet121 to make the model pay more attention to the information of the area of the
tumor. (Detailed in Method S2).

The input of the DL models were US images manually rectangular labeledwith the
region of interest (ROI) containing the complete tumor and its border tissue. If posterior and
lateral acoustic shadows of the tumor were visible on the US image, the ROI also needed to
include part of it. The DL algorithm is capable of learning hierarchical representations from
the raw US imaging data provided as input. After sequential activation of the convolution
and pooling layers, the DL model output the probability of TIL levels (Figure 2).
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Due to the limited training data in our dataset, we used data augmentation for image
augmentation. Data augmentation included flipping, scaling, rotating, and contrast changes.
All images were resized to 224 × 224 pixels to standardize the distance scale. Additionally,
data augmentation strategies have been shown to prevent neural network overfitting.
During training, the network was iteratively trained using the binary cross-entropy loss
function for a total of 60 epochs. When iterating to 40 epochs, we selected the model with
the best AUC in the last 20 epochs. To improve the reliability of the network, each network
was trained five times and the model with the median result was chosen for comparison.
(Details of the methods, including data preprocessing, the structure of the models, the
strategy for training the models, and measuring the performance of the models, are shown
in Methods S1–S4.).

To better interpret the model diagnosis process, we used the method of gradient-
weighted class activation mapping (Grad-CAM) [22] to produce heat maps to display the
pixels in the ROIs that provide the greatest contribution to the classification output.

2.5. Stratified Analysis to Assess the Diagnostic Value

Increased TIL levels have different results on the prognosis in different BC molecular
subtypes. We further performed a stratified analysis in the EV cohort to verify the diag-
nostic power of the attention-based DenseNet121 model. Patients were stratified into four
subgroups according to molecular subtypes, including HR+ and HER2−, HR+ and HER2+,
ER−, PR− and HER2+, and triple-negative subgroups.

http://www.imagenet.org/
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2.6. Statistical Analysis

Statistical analysis was performed using SPSS 26.0 (IBM Corp., Armonk, NY, USA)
and Python 3.6. Continuous variables were described as means ± standard deviations
(SDs) and comparisons between two groups were made using the Mann–Whitney U test
or student’s t-test. Categorical variables were expressed as numbers and percentages,
and comparisons between two groups were made using the chi-squared test or Fisher’s
exact test. Receiver operating characteristic (ROC) curve analysis was used to evaluate
the diagnostic performance of the model, and areas under the ROC curve (AUCs) were
calculated with 95% confidence intervals (CIs). A precision–recall (P-R) curve was plotted
to evaluate the accuracy of the model, and the F1 score was calculated with 95% CIs. The
accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive
value (NPV) with 95% CIs were reported for the DL models. All statistical analyses were
two-sided, and the statistical significance was set at p < 0.05. The number of true-positive,
false-positive, true-negative, and false-negative findings of the models on validation cohorts
was described in a 2 × 2 contingency table representing the confusion matrix.

3. Results
3.1. Baseline Characters

A total of 494 breast cancer patients with 494 lesions were ultimately enrolled in this
dual-center study (Figure 1). A total of 396 patients from hospital 1 were used as the main
cohort to reduce overfitting or bias in the study. Among these, 298 patients from hospital 1
collected before 2022 were divided into the training cohort for model development, while
98 patients from 2022 were used as the IV cohort to simulate prospective experimental
conditions. Patients from hospital 2 (n = 98) collected in 2022 were in the EV cohort. The
clinical-pathological characteristics of the patients were described in Table 1. There were
no significant differences in the clinical-pathological characteristics between the training
cohort and the two validation cohorts (p > 0.05).

3.2. Performance of DL Models

All five DL models performed well in predicting TIL levels based on breast cancer US
images. In IV cohorts, the AUCs were 0.906 (95% CI: 0.831, 0.956) for the ResNet50 model,
0.919 (95% CI: 0.847, 0.965) for the DenseNet121 model, 0.922 (95% CI: 0.850, 0.967) for
the attention-based DenseNet121 model, 0.885 (95% CI: 0.805, 0.941) for the Mobilenet_v3
model, and 0.907 (95% CI: 0.832, 0.957) for the Vision Transformer model. The F1 scores
were 0.824 (95% CI: 0.754, 0.895) for the ResNet50 model, 0.846 (95% CI: 0.779, 0.915) for
the DenseNet121 model, 0.851 (0.784,0.919) for the attention-based DenseNet121 model,
0.811 (95% CI: 0.736, 0.887) for the Mobilenet_v3 model, and 0.862 (95% CI: 0.797, 0.927)
for the Vision Transformer model. For the EV cohort, the AUCs were 0.858 (95% CI: 0.774,
0.921) for the ResNet50 model, 0.867 (95% CI: 0.784, 0.927) for the DenseNet121 model,
0.873 (95% CI: 0.791, 0.932) for the attention-based DenseNet121 model, 0.888 (95% CI:
0.808, 0.947) for the Mobilenet_v3 model, and 0.878 (95% CI: 0.796, 0.935) for the Vision
Transformer model. The F1 scores were 0.836 (95% CI: 0.766, 0.906) for the ResNet50 model,
0.844 (95% CI: 0.775, 0.912) for the DenseNet121 model, 0.830 (95% CI: 0.762, 0.898) for
the attention-based DenseNet121 model, 0.803 (95% CI: 0.726, 0.881) for the Mobilenet_v3
model, and 0.844 (95% CI: 0.775, 0.913) for the Vision Transformer model. The ROC
curve was plotted to demonstrate the comparative results of AUCs in Figure 3. The P-R
curve was plotted to demonstrate the relationship between the precision and recall rate of
different models in Figure 4. Compared with the DenseNet121 model, the attention-based
DenseNet121 model achieved better results (Table 2).
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Table 1. The clinical-pathological characteristics of the patients.

Characteristics Training Cohort
(n = 298) IV Cohort (n = 98) P1 EV Cohort (n = 98) P2

Age, years,
mean ± SD 53.1 ± 11.9 52.4 ± 11.8 0.76 54.1 ± 10.7 0.13

US size, cm
mean ± SD 2.38 ± 0.97 2.44 ± 0.91 0.50 2.50 ± 1.01 0.57

Ki67 0.32
≤20 103 (34.6%) 28 (28.6%) 36 (36.7%) 0.72
>20 195 (65.4%) 70 (71.4%) 62 (63.3%)
ER 0.61 0.30

Positive 207 (69.5%) 71 (72.4%) 74 (75.5%)
Negative 91 (30.5%) 27 (27.6%) 24 (24.5%)

PR 0.82 0.52
Positive 166 (55.7%) 53 (54.1%) 55 (56.1%)

Negative 132 (44.3%) 45 (45.9%) 43 (43.9%)
HER2 0.52 0.72

Positive 172 (57.7%) 57 (58.2%) 59 (60.2%)
Negative 126 (42.3%) 41 (41.8%) 39 (39.8%)

Molecular subtype 0.63 0.99
HR+ and HER2− 101 (33.9%) 33 (33.7%) 32 (32.7%)
HR+ and HER2+ 138 (46.3%) 42 (42.9%) 46 (46.9%)

HER2+ 34 (11.4%) 16 (16.3%) 12 (12.2%)
Triple-negative 25 (8.4%) 7 (7.1%) 8 (8.2%)

Histological grade 0.24 0.21
1 14 (4.7%) 5 (5.1%) 6 (5.1%)
2 280(94.0%) 89 (90.8%) 88 (89.8%)
3 4 (1.3%) 4 (4.1%) 4 (4.1%)

Tumor type 0.43 0.68
Invasive ductal carcinoma 283 (95.0%) 91 (92.9%) 92 (93.9%)

Others 15 (5.0%) 7 (7.1%) 6 (6.1%)
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For the IV cohort, the accuracies were 79.5% for the ResNet50 model, 82.8% for the
DenseNet121 model, 83.6% for the attention-based DenseNet121 model, 79.6% for the
Mobilenet_v3 model, and 84.7% for the Vision Transformer model. The sensitivities were
87.0% (95% CI: 77.8%, 96.2%), 87.0% (95% CI: 77.8%, 96.2%), 85.2% (95% CI: 75.5%, 94.9%),
79.6% (95% CI: 68.6%, 90.6%), and 87.0% (95% CI: 77.8%, 96.2%); and the specificities were
70.4% (95% CI: 56.5%, 84.3%), 77.2% (95% CI: 64.5%, 90.0%), 81.8% (95% CI: 70.1%, 93.5%),
79.5% (95% CI: 67.3%, 91.8%), and 81.8% (95% CI: 70.1, 93.5%), respectively. For the EV
cohort, the accuracies were 81.6% for the ResNet50 model, 81.6% for the DenseNet121
model, 79.5% for the attention-based DenseNet121 model, 79.6% for the Mobilenet_v3
model, and 82.7% for the Vision Transformer model.; the sensitivities were 85.1% (95% CI:
75.4%, 94.8%), 85.1% (95% CI: 75.4%,94.8%), 90.7% (95% CI: 82.8%, 98.6%), 75.9% (95% CI:
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64.3%,87.5%), and 85.2% (95% CI: 75.5%, 94.9%); and the specificities were 77.2% (95% CI:
64.5%, 90.0%), 79.5% (95% CI: 67.2%, 91.8%), 65.9% (95% CI: 51.5%,80.3%), 84.1% (95% CI:
73.0%, 95.2%), and 79.5% (95% CI: 67.3%, 91.8%), respectively. The classification confusion
matrices that report the number of true-positive, false-positive, true-negative, and false-
negative results for the attention-based DenseNet121 DL model in validation cohorts was
shown in Table 3.
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95% confidence intervals are included in brackets. Abbreviations: AUC—area under the receiver operating charac-
teristic curve, ACC—accuracy, SENS—sensitivity, SPEC—specificity, PPV—positive predict value, NPV—negative
predict value, IV—internal validation, EV—external validation.

Others tumor types included invasive lobular carcinoma, intraductal papillary carci-
noma, and mucinous carcinoma. P1 indicates the significance between the training and
the IV cohort; P2 indicates the significance between the training and the EV cohort. Ab-
breviations: IV, internal validation; EV, external validation; ER, estrogen receptor; PR,
progesterone receptor; HR, hormone receptor; HER2, human epidermal growth factor
receptor 2.

Furthermore, for the EV cohort, we conducted a stratified analysis of the performance
of the attention-based DenseNet121 DL model based on four different molecular subtypes
of BC (Figure 5). The prediction performance of the DL model in each of the HR+ and
HER2−, HR+ and HER2−, ER−, PR−, and HER2+, and triple-negative subgroups are
shown in Table 4.
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Table 3. Confusion Matrices for attention-based DenseNet121 DL model according to Validation
cohorts.

ResNet50
(Truth)

DenseNet121
(Truth)

Att DenseNet121
(Truth)

MobileNet_v3
(Truth)

Vision Transformer
(Truth)

Prediction High Low High Low High Low High Low

IV cohort
High 31 7 34 7 36 8 35 11 36 7
Low 13 47 10 47 8 46 9 43 8 47

EV cohort
High 34 8 35 8 29 5 37 13 35 8
Low 10 46 9 46 15 49 7 41 9 46
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Figure 5. Stratified performance of the attention-based DenseNet121 DL model based on breast cancer
molecular subtypes including HR+ and HER2−, HR+ and HER2+, ER−, PR− and HER2+, and triple-
negative subgroups. H, high TIL level; L, low TIL level; ER, estrogen receptor; PR, progesterone
receptor; HER2, human epidermal growth factor receptor 2; HR, hormone receptor.

Table 4. Stratified performance of the attention-based DenseNet121 DL model based on breast cancer
molecular subtypes in EV cohort.

Molecular Subtypes ACC SENS SPEC PPV NPV

HR+ and HER2− 78.1% 75.0% 83.3% 88.2% 66.7%
HR+ and HER2+ 78.3% 75.0% 85.7% 66.7% 60.0%

ER-, PR- and HER2+ 83.3% 80.0% 85.7% 80.0% 85.7%
Triple-negative 87.5% 75.0% 100.0% 100.0% 80.0%

Abbreviations: ER, estrogen receptor; PR, progesterone receptor; HR, hormone receptor; HER2, human epidermal
growth factor receptor 2; ACC, accuracy; SENS, sensitivity; SPEC, specificity; PPV, positive predict value; NPV,
negative predict value.
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3.3. Visual Interpretation of the Model

Heat maps were used to visually interpret the DL model’s decision-making. Two groups
of heat maps for the attention-based Densenet121DL model are shown in Figure 6 as exam-
ples. The DL model provided accurate diagnostic outcomes, with the heat maps illustrating
distinguishable color patterns. The red parts of the map indicate the area contributing
more information to the network’s diagnostic process. By screening all heat maps, we
found different common patterns in high and low-TIL-level tumors. In most US images of
high-TIL-level tumors, the valuable area often tends to cluster on the interior of the tumor,
followed by margin features. In addition, in most US images of low-TIL-level tumors, the
valuable area often tended to cluster on the interior and posterior of the tumors. To some
extent, this may explain the discrimination ability of the DL model, which is consistent
with previous clinical studies.
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TILs, tumor-infiltrating lymphocytes.

4. Discussion

TILs have emerged as clinically relevant and reproducible biomarkers with predictive
significance for therapeutic efficacy and prognosis in BC patients [3]. Given this importance,
the St Gallen Consensus Conference, WHO, and ESMO 2019 Guidelines all recommend
that pathological evaluation should include TIL quantification and reporting in TNBC and
HER2+ BC [23,24]. However, the main factor limiting widespread use of TILs in clinical
practice was their invasive nature. Continuous studies were therefore carried out on a
non-invasive method of accurately predicting TIL levels in BC [25].

Initially, there were several studies investigating the relationship between imaging fea-
tures and TIL levels in BC. Fukui et al. reported that more lobulated margin, weaker internal
echo level, and enhanced posterior echoes were predictors of lymphocyte-predominant
breast cancer [26]. Furthermore, another study revealed that TNBC tumors with high
TIL levels were more likely to have oval/round shapes, circumscribed or microlobulated
margins, and enhanced posterior echoes [8]. Although the findings of these studies re-
vealed that the imaging features had the potential to predict TIL levels, these findings were
operator-dependent with lower repeatability. Subsequently, there were also some MRI-
based radiomics studies about evaluating TIL levels in BC [15,27,28]; most of these studies
used a classic machine-learning (ML) approach with a small sample size in a single center.
All these factors seriously affected the accuracy and generalization of the model [16]. More
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recently, the deep-learning approach has made substantial progress with unsupervised
learning. It can avoid the influence of subjective factors and achieve a more accurate result
at a faster speed. To our knowledge, this is the first study applying the DL approach with
US images for predicting TIL levels in BC from dual centers. A total of 494 patients from
two hospitals participated in this study, ensuring the credibility of the study and providing
a good basis for future studies with a larger sample size.

In this study, the five DL models all performed well in predicting the TIL level of
BC. Compared with classical machine-learning methods, the five DL models all use a
large number of convolution kernels for feature extraction, which can extract advanced
semantic information to assist evaluation. ResNet50 is based on VGG11 and introduces
a skip connection layer for residual learning. The residual structure ensures the integrity
of information and avoids gradient disappearance or gradient explosion. MobileNet_v3
is a lightweight deep neural network that mainly uses depthwise separable convolutions,
inverted residuals, attention mechanisms, and linear bottlenecks. These modules greatly
reduce the number of computational parameters while ensuring the performance of the
network. Because MobileNet_v3 does not require high device performance, it can be
widely used in US images. The MobileNet_v3 DL mode had a higher AUC value than
the ResNet50 DL model in the IV cohort and a lower AUC value in the EV cohort. The
overall performance of the ResNet50 and MobileNet_v3 DL models was similar. Vision
Transformer is a model that applies Transformer to image classification. When there is
enough data for pre-training, the performance of Vision Transformer may exceed that of
CNN. In this study, Vision Transformer thus performed better than the two CNN models
indicated above.

DenseNet uses a more aggressive dense connection mechanism than ResNet. Each
layer is connected to each other, so that the network does not completely rely on the
features of the upper layer for extraction, making the reuse and extraction of features more
accurate [29]. Therefore, DenseNet has very good anti-overfitting performance, making it
especially suitable for applications where training data are relatively scarce. Our results
show that the overall performance of Densenet121 was better than that of the ResNet50 and
Mobilenet_v3 DL models. The attention-based DenseNet121 DL model we proposed was
to further improve the basic version of DenseNet121. The advantage of attention-based
DL models was that the model with the added attention module paid more attention to
the features in the tumor area and filtered out useless peripheral information [30]. The
combination of channel attention and spatial attention modules can transform various
deformation data in space and automatically capture important regional features. The
overall performance of the attention-based DenseNet121 DL model was thus better than
the basic DenseNet121.

Furthermore, the stratified analysis in the EV cohort according to the molecular
subtypes also showed good performance. The value of TIL levels in HER2+ and triple-
negative breast cancer has been widely recognized. Specifically, our DL model performed
better in predicting TIL levels in HER2+ and triple-negative breast cancer. In HR+ and
HER2+ subtype breast cancer, the DL model had a higher false negative rate in predicting
high TILs. This means that in the HR+ and HER2+ subtypes, part of the low-TIL tumors
had some imaging features that overlapped with those of high-TIL tumors.

The DL model not only provided a clinical judgment of TIL levels in BC, but also
visualized its decision-making by heat maps. There were different color patterns between
the heat maps of high- and low-TIL tumors. To some extent, this may explain the discrim-
ination ability of the DL models; it is also consistent with the result of previous clinical
studies [8,31]. The US image features of BC were strongly associated with organizational
construction. In low-TIL tumors, fibrosis increased in tumor stromal and the posterior
echoes were often attenuated [32]. The attenuated posterior echoes were a typical feature
of low-TIL tumors. The DL models paid more attention to the interior and posterior of
the lesion on US images. In high-TIL tumors, the tumor tissues rich in water-soluble
components have less attenuation; as a result, the internal echo was lower, and posterior
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echoes were enhanced. As the internal organizational construction was different from
low-TIL tumors, the DL model paid more attention to the interior of the tumor, followed
by margin features. However, unlike low-TIL images, the model does not focus on the
posterior features in high-TIL ultrasound images. It may be that internal features of the
lesions contribute more to the diagnostic process. Even so, the relationship between image
features and pathological characteristics still needs direct evidence for confirmation. In any
event, the highlighted regions in the heat maps were helpful to identify the representative
characteristics of high- and low-TIL tumors.

Compared with other studies on predicting TIL levels in BC using medical imaging
methods, our study took a more objective approach—DL with Transformer or Convolu-
tional Neural Network—and the models were trained and validated by a larger dataset of
standardized US images from dual centers. Compared with MRI, US had the advantage
of lower cost, simplicity, and greater availability with tremendous clinical potential and
economic benefits. More importantly, it was proved that the ultrasound-based DL approach
was a good non-invasive tool for predicting TILs in BC and providing key complementary
information in equivocal cases that are prone to sampling bias.

There are several limitations to this study. Firstly, this was a retrospective study
resulting in inevitable bias. Although our study involved dual center databases, more
prospective cohorts were needed to further validate the generalization ability of the model.
Secondly, although all US examinations were performed by experienced physicians in a
standardized way, there were still some variabilities in the quality of the images performed
by multiple physicians. Thirdly, as a common problem with many other DL models, the
biological mechanism of how the DL approach accurately differentiates high and low TIL
levels cannot be interpreted exactly.

5. Conclusions

In conclusion, we demonstrated that our DL models based on US images perform
satisfactorily in predicting TIL levels. The overall best-performing DL model reached an
AUC of 0.873, an accuracy of 79.5%, a sensitivity of 90.7%, a specificity of 65.9%, and an F1
score of 0.830. With further validation in a larger sample size from more centers, the DL
approach has great potential to serve as a non-invasive tool to predict TIL levels and make
the management of patients becomes more precise.
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