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Simple Summary: CAR-T cell therapy has recently revolutionized the field of cancer therapeutics,
especially for hematological malignancies, and is also evolving as an experimental therapeutic option
for solid tumors. Despite the groundbreaking initial response rates, nearly half of CAR-T cell treated
patients have a lower response rate and experience major adverse effects. Recently, the microbiota
has been suggested to constitute a contributing factor possibly impacting host antitumor CAR-T cell-
mediated immune responses. As such, microbiota signatures may be harnessed to personally predict
therapy response or adverse effects in optimizing CAR-T therapy to the individual. Collectively,
personalized diagnostic and therapeutic utilization of the microbiota holds vast potential in achieving
a safer and more efficacious CAR-T cell-based treatment.

Abstract: Chimeric antigen receptor (CAR) - T cell cancer therapy has yielded promising results in
treating hematologic malignancies in clinical studies, and a growing number of CAR-T regimens
are approved for clinical usage. While the therapy is considered of great potential in expanding the
cancer immunotherapy arsenal, more than half of patients receiving CAR-T infusions do not respond,
while others develop significant adverse effects, collectively indicating a need for optimization of
CAR-T treatment to the individual. The microbiota is increasingly suggested as a major modulator of
immunotherapy responsiveness. Studying causal microbiota roles possibly contributing to CAR-T
therapy efficacy, adverse effects reduction, and prediction of patient responsiveness constitutes an
exciting area of active research. Herein, we discuss the latest developments implicating human
microbiota involvement in CAR-T therapy, while highlighting challenges and promises in harnessing
the microbiota as a predictor and modifier of CAR-T treatment towards optimized efficacy and
minimization of treatment-related adverse effects.
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1. Introduction

Chimeric antigen receptors (CARs) are genetically engineered synthetic receptors
expressed in autologous T cells (CAR-Ts). CARs feature a molecular design combining
an ectodomain comprising an antigen-binding module, typically a single-chain variable
fragment (scFv) derived from a monoclonal antibody, and a T cell signaling module (CD3ζ:
CD3 zeta-chain) connected to single/multiple intracellular signaling domain(s) of a co-
stimulatory molecule such as CD28, 4-1BB, or OX40 [1,2]. Each of these elements has a
distinctive function, which can be optimized by variations of these domains. Due to high
CD19 expression in B cell leukemias and lymphomas, CARs targeting CD19 constitute
the most widely clinically utilized CAR to date [3]. Over the years, the design of CARs
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has evolved considerably to enhance specificity, improve efficacy, and reduce adverse
effects (Figure 1). The first-generation of CAR-T cells contained a single CD3ζ signaling
domain devoid of additional co-stimulatory molecules [4,5]. These complexes were similar
to endogenous T cell receptors (TCR) and specifically targeted the antigen but had modest
clinical activity and a short in vivo lifespan [6–8]. Coupling additional co-stimulatory
signaling domains (for instance, CD28, 4-1BB, or OX40) to the antigen-specific scFv led to
enhanced activation, improved survival, effective expansion of the modified T cells and
sustained response due to longer in vivo half-lives [9]. These second-generation CARs
enabled the construction of persistent ‘living drugs’ which form the basis of current CAR-
T cell therapies in clinical use. Third-generation CARs were constructed with multiple
co-stimulatory signaling domains (for instance, CD3ζ-CD28-OX40 or CD3ζ-CD28-41BB)
within the endodomain. A new, fourth-generation of CAR-T cell constructs combines
additional T cell activity modulators with tumor-targeted effectors, such as T cells redirected
for universal cytokine-mediated killing (TRUCK) CAR-T cells. These CAR-T cells express
a constitutive or inducible transgenic protein expression cassette such as a transgene
for cytokine secretion (e.g., IL -2) or co-stimulatory ligands to improve the antitumor
activity [10,11].
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Figure 1. Evolution of CAR constructs. The molecular design of CARs is comprised of three regions:
(i) an ectodomain comprising an antigen-binding module; (ii) a transmembrane domain as an anchor;
and (iii) a signaling domain for T cell activation. First-generation CARs contain only a single signaling
domain (CD3ζ). Second-generation CAR constructs include a co-stimulatory domain along with the
signaling domain. Third-generation CARs are comprised of two co-stimulatory domains connected
to the intracellular signaling domain. Fourth-generation CARs, also referred to as TRUCKs, have an
inducible transgene construct that expresses cytokines, for instance IL-12. CAR-T, chimeric antigen
receptor T; CD3ζ, cluster of differentiation 3 zeta-chain); IL-12, interleukin 12. Figure created with
BioRender (biorender.com).

2. CAR-T Cell Therapy

Through the expression of these chimeric receptors, CAR-T cell therapy has recently
revolutionized the field of cancer therapeutics by redirecting autologous T lymphocytes,
isolated through leukapheresis, towards a tumor-specific antigen using viral and non-viral
transfection methods. CAR-T cells constitute a successful ‘adoptive cell immunotherapy’
especially suited for treatment of patients with relapsed or refractory hematological malig-
nancies, which resulted in the U.S. Food and Drug Administration (FDA) and European
Medicines Agency (EMA) approving several CAR-T cell medicines as a standard care of
hematological cancers. Tisagenlecleucel (Kymriah® by Novartis) was approved in August
2017 by the FDA as a therapeutic modality for treatment of patients younger than 25 years
of age with relapsed or refractory B cell acute lymphoblastic leukemia (ALL) and adult
patients with relapsed or refractory follicular lymphoma after two or more lines of systemic
therapies [12]. Axicabtagene ciloleucel (Yescarta® by Kite) was later authorized as a therapy
for adult patients with relapsed or refractory diffuse large B cell lymphoma (DLBCL) after
first-line treatment of chemoimmunotherapy in Europe as well as the U.S. in 2018 [13]. Since
then, several CAR-T cell therapies (CD19-targeted brexucabtagene autoleucel - Tecartus®,
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lisocabtagene maraleucel - Breyanzi®, and B cell maturation antigen-targeted idecabtagene
vicleucel - Abecma®, ciltacabtagene autoleucel - Carvykti®) have been approved by the
FDA for the treatment of hematological malignancies, including lymphomas and some
forms of leukemia, and most recently for the treatment of multiple myeloma [14–16].

Currently, CAR-T cell therapy is available through clinical trials for several forms of
blood cancer. However, its application for solid tumors, which collectively account for
~90% of cancer-associated mortality, has remained challenging. Ongoing studies are explor-
ing CAR-T cell therapy in solid tumors while primarily evaluating safety and reporting
preliminary research outcomes. Over the years, such solid tumor-focused clinical trials
have targeted surface proteins including carcinoembryonic antigen (CEA), Erb-B2 receptor
tyrosine kinase 2 (ERBB2), epidermal growth factor receptor (EGFR), fibroblast activation
protein (FAP), diganglioside (G2), human epidermal growth factor receptor 2 (Her2), inter-
leukin 13 receptor α (IL-13Rα), L1 cell adhesion molecule (L1CAM), mesothelin, mucin 1
(MUC1), and prostate-specific membrane antigen (PSMA) [17–19]. However, the clinical
results of CAR-T cell therapy in these solid tumor settings have been much less encouraging
until some advances reported recently. For example, Jin et al. demonstrated that naturally
expressed or radiation-induced expression of IL-8 enhanced intratumoral T cell traffick-
ing [20]. Indeed, IL-8 upregulation at the tumor invasion front has been demonstrated in
several types of human cancers [21]. Consequently, tumor-produced IL-8-guided CAR-T
cells facilitated migration into tumors, thereby prompting an enhanced antitumor response
in solid tumors [20]. Additionally, multiple novel target antigens are being investigated in
preclinical and clinical trials across different types of cancers [22]. Currently, 995 CAR trials
are ongoing (results from https://clinicaltrials.gov/; search for CAR cells; accessed on
4 January 2023): nearly 49% of the trials are currently recruiting, while 5% of the trials have
been completed. Among the completed/recruiting/active, not-recruiting interventional
trials, approximately 10% of the studies are in early phase 1; 50% are in phase 1; 10% are
in phase 2; 0.7% are in phase 3; 22% are in both phase 1 and 2; 0.7% are in phase 2 and 3;
while in nearly 6% of studies the information on current trial phase was not identifiable.
The graphical representation of the completed/recruiting/active, not-recruiting CAR-T
trials in different study phases has been illustrated in Figure 2 and has been summarized in
Table S1.
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3. Toxicity Associated with CAR-T Therapy

In addition to the 50% of CAR-T-treated patients who do not respond to therapy
or relapse after therapeutic intervention, a significant number of patients experience se-
vere adverse effects including cytokine release syndrome (CRS) and immune effector
cell-associated neurotoxicity syndrome (ICANS). If left unchecked, these lead to adverse
outcomes that do not allow for therapy responses, in part due to significant morbidity
and mortality.

CRS is marked by overall symptoms of fever, exhaustion, anorexia, myalgia, and
arthralgia, which can further progress to more severe forms of the syndrome including
cardiac conditions (arrhythmia, tachycardia) and respiratory (tachypnea) and multi-organ
failure [23–25]. CRS is driven by the release of inflammatory cytokines, including IL-2,
IL-6, IL-10, IFNγ, and TNFα [26,27], as a direct consequence of the response to CAR-T
cells and additional surrounding immune cells, leading to an overall hyperinflammatory
response [26–28]. Immune effector cell-associated neurotoxicity syndrome (ICANS) is
characterized by initial symptoms relating to impaired cognition and overall confusion
including aphagia, lethargy, and delirium [24,29,30]. Over time, ICANS can progress to
seizures, coma, and cerebral edema [31,32]. Blood–brain barrier disruptions, influx of cy-
tokines into the central nervous system (CNS), and microglial as well as myeloid activation
within the CNS are considered contributors to ICANS in relation to CAR-T infusion and
cell migration [32–34]; however, the exact causes of ICANS are not fully understood. CRS
can be treated by symptomatic treatment, IV hydration and in higher-graded CRS with
corticosteroids and anti-cytokine treatments such as tocilizumab targeting IL-6. In more
serious cases of ICANS, anti-epileptics may be necessary to manage seizures [35].

CAR-T therapeutic efficacy is also altered by potential off-target effects of the CAR-
T cells. In CAR-T therapies targeting CD19-expressing malignant cells, such off-target
effects include infection susceptibility driven by non-malignant B cell aplasia and resultant
hypogammaglobulinemia. In patients receiving CD19-targeted CAR-T cells to treat DLBCL,
more than half of those enrolled in a one-year study developed infections, with the majority
of those attributed to bacteria [36]. Strikingly, many of the bacteria identified in blood-
stream infections in these patients such as Escherichia, Pseudomonas, and Staphylococcus
notably originate in the gut prior to systemic translocation [36–38].

4. Microbiota Involvement in CAR-T Response and Toxicity

Over the last decade, a multitude of preclinical and clinical studies have demonstrated
an interplay between the intestinal commensal microbiota and the mammalian immune
system development and function [39]. Moreover, the intestinal microbiota was suggested
to correlate and even modulate responses to anticancer therapeutics including chemother-
apy, radiotherapy, immune checkpoint blockade, and adoptive cellular therapy, potentially
by impacting host antitumor immune responses [40–43]. For example, Paulos et al. demon-
strated that microbiota translocation augmented TLR4-mediated activation of the immune
system, thereby enhancing the efficacy of adoptively transferred self/tumor-specific CD8+ T
cells [44]. Likewise, allogeneic hematopoietic cell transplantation (allo HCT) was correlated
to gut microbiota changes induced by dietary and antibiotic exposure [45,46], including
an expansion of Enterococcus associated with a higher risk of graft-versus-host disease
(GVHD)–related mortality [28,45,47]. Conversely, Eubacterium limosum has been associated
with a decrease in cancer relapse/progression after allo HCT in patients with hematologic
malignancies [48]. Emerging data also suggest that the gut microbiota may impact immune
checkpoint blockade therapies, targeting programmed cell death protein 1 (PD-1) and
cytotoxic T lymphocyte-associated protein 4 (CTLA-4), as is extensively reviewed else-
where [28,49]. Briefly, a variety of taxa including Bacteroides, Akkermansia, Faecalibacterium,
and Clostridiales spp. have been identified in murine studies to be associated with PD-1
therapy and its ligand PD-L1 and suggested to enhance the overall antitumor efficacy of
checkpoint blockade [49–51]. Bacteroides fragilis and Bacteroides thetaiotaomicron were shown
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to enhance the CTLA-4 inhibitor efficacy in mice [50,51], collectively indicating a potential
role for the microbiota in altering responses to CAR-T cell therapy [52].

Similar microbiota impacts were recently suggested to impact CAR-T cancer im-
munotherapy efficacy. In a first human study, Smith et al. analyzed the fecal microbiota
composition of patients receiving second-generation CD19-targeted CAR-T therapy for
treatment of B cell malignancies, hypothesizing that the microbiota would have associa-
tions with treatment efficacy and toxicity. Baseline stool samples prior to CAR-T therapy
were heterogenous for bacteria at the phylum level and present with a decreased Shannon
index for alpha diversity as compared to healthy controls. At the genus level, the patient
microbiota significantly differed from that of healthy controls [53]. Given that antibiotics
are commonly administered to treat secondary infections in patients undergoing anticancer
therapies, antibiotics exposure and associated dysbiosis were suggested to adversely affect
the overall clinical outcome of immunotherapies [54]. Indeed, Smith et al. also noted
that 60% of their patient cohort received antibiotics and 20.6% of the cohort specifically
received broad-spectrum antibiotics such as piperacillin/tazobactam, imipenem/cilastatin,
and meropenem (PIM) that target anaerobic gut commensal bacteria. PIM exposure prior
to CAR-T therapy correlated with worse overall survival and progression-free survival;
notably, PIM correlated with a more aggressive disease and a higher lactate dehydrogenase,
which is a biomarker of a higher tumor burden. Patients receiving any antibiotics in the
weeks preceding CAR-T therapy initiation displayed increased incidence of ICANS. Specif-
ically, exposure to PIM also correlated with a higher ICANS in non-Hodgkin lymphoma
(NHL), but not in ALL. CRS was not shown to be correlated with PIM exposure. In all,
multiple bacterial species were associated with the absence of toxicity, but microbes associ-
ated with toxicity were unidentifiable by a linear discriminant analysis effect size (LEfSe).
Complete response rates at day 100 after CAR-T cell infusion were also correlated with a
higher abundance of certain taxa, specifically the class Clostridia, further indicating that the
gut microbiota may be playing a role in modulating the efficacy of CAR-T therapy. Overall,
Smith et al. concluded that antibiotic exposure and its alteration of the gut microbiota prior
to CAR-T therapy likely plays a role in its antitumor efficacy and toxicity [53].

Another recent study by Hu et al. [55] investigated CAR-T toxicity in relapsed/refractory
multiple myeloma (MM), NHL, and ALL patients receiving second-generation therapy
related to changes in the gut microbiota. Microbiota changes were longitudinally monitored
throughout CAR-T delivery by stool sampling prior to CAR-T infusion, during CAR-T
infusion but prior to development of CRS, during active CRS, and up to fourteen days after
CAR-T infusion. Severe CRS was associated with a decreased abundance of Bifidobacteria.
Alpha diversity as indicated by the Shannon index significantly decreased after CAR-T
infusion and was further associated with an increase specifically in the abundance of
Actinomyces and Enterococcus genera. Furthermore, Prevotella, Collinsella, Bifidobacterium,
and Sutterella spp. were more abundant in patients experiencing complete response versus
partial response [55]. Likewise, Smith et al. reported that patients with a higher abundance
of certain bacterial species such as Ruminococcus, Bacteroides, and Faecalibacterium had a
better response to CAR-T cell therapy [53]. Overabundance of Enterococcus faecium, post-
antibiotics treatment in CAR-T patients, was further negatively correlated with treatment
response [56]. In all, antibiotic exposure and the subsequent alteration of the gut microbiota
associates with increased toxicities including CRS and ICANS, and with worsened CAR-
T responses.

Importantly, these antibiotic effects may represent a causal impact of the antibiotics-
perturbed microbiota on CAR-T therapy-related endpoints, or alternatively a reverse
causality, in which antibiotics-treated patients present in an a priori clinically worse state
predisposed to altered CAR-T therapy responsiveness. To untangle these possibilities, a
recent study (Stein-Thoeringer et al., in press) [57] followed a large cohort of lymphoma
patients receiving second-generation CD19-targeted CAR-T cells in Germany and the U.S.
Like previous studies, an association was noted between an exposure to antibiotics prior to
CAR-T cell infusion and an increased prevalence of cancer relapse or disease progression
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and a decrease in overall survival. However, wide spectrum antibiotics-treated patients
suffer from an a priori worse disease state and increased tumor burden, likely accounting
for their decreased CAR-T therapy responsiveness. Excluding these patients allowed for
the detection of microbiota signatures strongly correlating with CAR-T responsiveness.
Moreover, a cross-country evaluation of non-wide spectrum antibiotics-treated patients
enabled a machine learning microbiome-based prediction of treatment outcomes, and
the identification of Bacteroides, Ruminococcus, Eubacteria, and Akkermansia spp. as major
potential drivers of therapy responsiveness.

Microbiota modulation of CAR-T treatment can be also driven by microbially secreted
metabolites (Figure 3). A recent in vivo study demonstrated that CAR-T therapy modified
to possess a receptor tyrosine kinase-like orphan 1 (ROR1) receptor induced a significant
decrease in tumor volume and weight in a subcutaneous mouse model of pancreatic
cancer featuring ROR-1-expressing Panc02 cells. The effect of these ROR1 CAR-T cells
was further modulated with an addition of the short chain fatty acids (SCFA) butyrate
and pentanoate [58]. Indeed, microbial-derived SCFA may favorably impact multiple
immunotherapies, through a variety of mechanisms including enhanced TNFα and IFNγ

effector responses, as well as upregulating anti-inflammatory T regs and CD8+ T cell
functions while minimizing pro-inflammatory macrophage, dendritic cell, and Th1/Th17
activities [58,59]. Whether similar impacts would be observed in the human setting, and
whether other bioactive metabolites participate in such interactions merits future studies.
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Figure 3. Microbiota involvement in CAR-T therapy efficacy and toxicity. Gut microbiota-derived
peptides and metabolites exert their influence on both T cells as well as CAR-T cells, which can be
further modulated by modification of diet and/or administration of antibiotics. The abundance
of certain species in the gut microbiome facilitates therapeutic efficacy while dysbiosis leads to
adverse effects including CRS and ICANS, increased tumor relapse or disease progression, and
decreased overall survival. CRS, cytokine release syndrome; ICANS, immune effector cell-associated
neurotoxicity syndrome; SCFA, short chain fatty acids; LPS, lipopolysaccharide, IFN-γ, interferon
gamma; TNF-α, tumor necrosis factor alpha; IL-10, interleukin 10; IL-2, interleukin 2; IL-6, interleukin
6, CAR-T, chimeric antigen receptor T; TCR, T cell receptor; CD 28, cluster of differentiation 28; CD 8,
cluster of differentiation 8. Figure created with BioRender (biorender.com).
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5. Therapeutic Microbiota-Mediated Modulation of CAR-T Efficacy

Growing evidence delineates that modulation of the intestinal microbiota may im-
pact the outcome of a variety of microbiota-contributed diseases, including cancer and
immunotherapy. For example, two pilot first-in-human clinical trials recently provided evi-
dence that melanoma immunotherapy responder-derived fecal microbiota transplantation
(FMT) in combination with anti-PD-1 may benefit a subset of patients with PD-1-refractory
melanoma [60,61].

As noted above, microbiota-modulated bioactive metabolites (termed ‘postbiotics’),
such as SCFA, may enhance the antitumor action of cytotoxic lymphocytes and CAR-T
cells [58]. These effects could be carried out by metabolic and epigenetic remodeling
of CAR-T cells, driving increased expression of effector molecules such as CD25, IFNγ,
and TNFα in syngeneic murine melanoma and pancreatic cancer models [58], or by SCFA
binding to the G-protein-coupled receptor GPR109A on T cells, promoting T cell killing after
high antigen stimulation [62]. Other microbial-derived metabolites, signaling through aryl
hydrocarbon receptors (AhR), may also play a role in contributing to CD8+ T cell exhaustion
by upregulating inhibitory receptors and downregulating cytokine production, thereby
altering the ability of T cells to kill tumor cells [63,64]. Supplementation or inhibition of
such microbially secreted bioactive metabolites may potentially be used to reinvigorate the
immune response.

Modulating dietary content and timing can alter microbiota community structure
and related metabolite secretion profiles, thereby impacting host physiology including
CAR-T therapy responsiveness and adverse effect profiles. Such ‘personalized nutrition’
approaches have been shown to impact glycemic response outputs in a reproducible,
microbiota-dependent manner [65,66]. For instance, a diet high in fibers induces the pro-
duction of butyrate, propionate, and acetate, which have been linked to anti-inflammatory
pathways in mouse cancer models [67–69]. As previously shown in non-cancer contexts,
monitoring the glucose levels of hundreds of individuals showed highly variable responses
to similar meals and predicting this outcome and establishing an optimal diet using ma-
chine learning effectively altered the post-prandial glycemic responses in individuals; thus,
it may be feasible to integrate personal microbiota and host features by artificial intelli-
gence and machine learning tools in harnessing dietary responses of the individual towards
optimization of CAR-T therapy responses [49,65,70]. Targeted suppression of microbes asso-
ciated with CAR-T therapy non-responsiveness and higher incidence of CRS may constitute
another attractive modality in optimizing treatment. Rationally designed bacteriophage
combinations, for instance, have been recently utilized to specifically suppress intestinal
pathogens associated with inflammatory bowel disease and therefore may serve as a poten-
tial targeted method in suppressing pathobionts in other microbiome-contributing clinical
conditions [71]. These modalities merit further consideration in CAR-T-treatment contexts.

6. Limitations and Challenges

Defining the causal effects of the microbiota and associated secreted bioactive com-
pounds, rather than merely relying on associations and correlations, remains a major
challenge in microbiota-associated research. Establishing mechanisms proving such causal
effects in the CAR-T therapy context will likely require further in vitro and in vivo research,
including studies utilizing animal models of cancer and CAR-T therapy. Transferring de-
fined microbiota configurations from human CAR-T responders and non-responders into
cancer-bearing germ-free mice would enable such elucidation of the causal contribution
of microbial consortia and their bioactive metabolites to treatment responsiveness [49].
Inter-individual microbiota variability represents another formidable challenge in identify-
ing reproducible and generalizable microbes and bioactive compounds impacting CAR-T
therapy and adverse effects across large patient populations. Indeed, both Smith et al.
and Hu et al. report high variability in microbiota populations between CAR-T-treated
patients, characterized by the dominance of different phyla [53,55]. Similarly, varying taxa
have been associated with impaired immunotherapy responsiveness in different trials,
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indicating that defining a generalizable CAR-T therapy optimizing microbial signature
will be difficult to achieve [72–74]. This further highlights the need to include multicentric
clinical trials with high-quality training and validation sets in identifying CAR-T therapy-
related microbiota signatures [45,75]. Such efforts will be aided by the use of artificial
intelligence technologies, in utilizing heterogenous patient-derived data towards actionable
conclusions [65]. Of note, whole microbiota transfers into CAR-T-resistant individuals may
optimize responsiveness and even convert non-responders to responders. Such treatment,
however, poses risks of introducing potentially harmful bacteria into patients who are
already severely immunocompromised, while inducing off-target effects, barrier disruption,
and even sepsis [49,76]. In the long term, identification of defined consortia mediating
such favorable effects may offer a safer, more reproducible, and universal treatment option.
Finally, the focus of this review has been on the influence of the bacterial microbiota in
patients receiving CAR-T therapy. The microbiota additionally includes viruses, fungi, and
parasites that could all potentially influence the efficacy of CAR-T therapy. Studying the
impacts of these insufficiently explored commensal kingdoms holds vast potential for the
development of an even larger set of therapeutic microbiota-related modulations.

7. Conclusions

CAR-T therapy has revolutionized the treatment of hematological malignancies and
overall advanced our understanding of modern cancer therapeutics. Determining novel
methods to enhance CAR-T efficacy and responsiveness is of utmost concern. The human
microbiota has shown profound influence as a modulator of immunotherapy response.
Here, we review the recent reports that microbiota features such as abundance of various
species correlate with CAR-T toxicity and overall response. Furthermore, the potentially
confounding nature of antibiotic usage upon microbiota as related to CAR-T therapy should
be further studied and defined.
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Abbreviations

AhR aryl hydrocarbon receptors
ALL acute lymphoblastic leukemia
allo HCT allogeneic hematopoietic cell transplantation
CAR Chimeric antigen receptor
CD3ζ cluster of differentiation 3 zeta-chain
CEA carcinoembryonic antigen
CNS central nervous system
CRS cytokine release syndrome
CTLA-4 cytotoxic T lymphocyte-associated protein 4
DLBCL diffuse large B cell lymphoma
EGFR epidermal growth factor receptor
EMA European Medicines Agency
ERBB2 Erb-B2 receptor tyrosine kinase 2
FAP fibroblast activation protein
FDA U.S. Food and Drug Administration
FMT fecal microbiota transplantation
G2 diganglioside
GVDH graft-versus-host disease
Her2 human epidermal growth factor receptor 2
ICANS immune effector cell-associated neurotoxicity syndrome
IFN-γ interferon gamma
IL interleukin
IL-13Rα interleukin 13 receptor α
L1CAM L1 cell adhesion molecule
LEfSe linear discriminant analysis effect size
LPS lipopolysaccharide
MM multiple myeloma
MUC1 mucin 1
NHL non-Hodgkin lymphoma
PD-1 programmed cell death protein 1
PSMA prostate-specific membrane antigen
ROR1 receptor tyrosine kinase-like orphan 1
SCFA short chain fatty acids
scFv single-chain variable fragment
TCR T cell receptors
TNF-α tumor necrosis factor alpha
TRUCK T cells redirected for universal cytokine-mediated killing
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