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Simple Summary: Differentiating growth patterns of the tumor glands in prostate biopsy tissue im-
ages is a challenging task for pathologists. Therefore, advanced technology, especially deep learning
techniques, is needed to improve cancer diagnosis and reduce the workload of the pathologist. In
this research work, we aimed to analyze whole-slide images of prostate biopsies and differentiate
between stroma, benign, and cancer tissue components through deep learning techniques. Instead
of image classification, we developed different deep CNN models for tissue-level prostate cancer
adenocarcinoma histological segmentation. With these techniques, different patterns in a whole-slide
image can be analyzed for cancer diagnosis.

Abstract: Recent advances in computer-aided detection via deep learning (DL) now allow for prostate
cancer to be detected automatically and recognized with extremely high accuracy, much like other
medical diagnoses and prognoses. However, researchers are still limited by the Gleason scoring
system. The histopathological analysis involved in assigning the appropriate score is a rigorous, time-
consuming manual process that is constrained by the quality of the material and the pathologist’s
level of expertise. In this research, we implemented a DL model using transfer learning on a set of
histopathological images to segment cancerous and noncancerous areas in whole-slide images (WSIs).
In this approach, the proposed Ensemble U-net model was applied for the segmentation of stroma,
cancerous, and benign areas. The WSI dataset of prostate cancer was collected from the Kaggle
repository, which is publicly available online. A total of 1000 WSIs were used for region segmentation.
From this, 8100 patch images were used for training, and 900 for testing. The proposed model
demonstrated an average dice coefficient (DC), intersection over union (IoU), and Hausdorff distance
of 0.891, 0.811, and 15.9, respectively, on the test set, with corresponding masks of patch images. The
manipulation of the proposed segmentation model improves the ability of the pathologist to predict
disease outcomes, thus enhancing treatment efficacy by isolating the cancerous regions in WSIs.

Keywords: deep learning; prostate adenocarcinoma; segmentation; transfer learning; histological;
U-Net

1. Introduction

The fifth leading cause of cancer-related deaths worldwide and the most prevalent
malignancy in males is prostate cancer [1,2]. Prostate cancer strikes more than 70% of
men over the age of 70; 10% of these cases result in death [3–5]. To provide effective
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therapy, a deeper understanding of the kind and stage of prostate cancer is required.
Therefore, precise predictive factor classification and segmentation for this malignancy are
urgently needed. The Gleason score analysis of prostate biopsies is currently considered
the industry-standard method for evaluating the cancer stage and progression.

The Gleason score measures the architecture of neoplastic glands using a five-grade
system. It is a rather simple approach for determining the prognosis of prostate cancer
and is widely used by pathology units worldwide. However, its repeatability is a problem.
The subjectivity of the evaluation produces variations in assessment results, as cited in
the literature [6–8]. In patients with a low Gleason score, follow-up has become a viable
alternative to prostatectomy in recent years; as a result, the repeatability of this parameter
is increasingly important, not only for determining the prognosis but also for choosing
the best treatment strategy. In addition, the architectural pattern of neoplastic glands is
the only factor taken into account when calculating the Gleason score; however, certain
patterns have overlapping characteristics and may be evaluated incorrectly, leading to
erroneous results [9–11]. Pathology units also spend a lot of time coming up with a Gleason
score. For a single patient, pathologists must examine 12 biopsies and submit a report
detailing the characteristics of cancer (e.g., including, at a minimum, the Gleason score,
Gleason grade, biopsy length, tumor length, percentage of tumor-affected tissue, lesion
continuity/discontinuity, and the ratio of affected to total cores) [12,13].

Digital prostate cancer and noncancer region segmentation may provide essential
support for the Gleason score evaluation in this difficult environment. In the realm of
pathology, the use of digital analysis and picture segmentation may help to more precisely
identify particular structures, including prostatic glands, for enhanced pattern recogni-
tion [14,15]. Automatic image analysis assistance would serve to improve recognition
and its consistency in both healthy and malignant areas and the interpretation of their
arrangement. With this approach, the subjectivity issue would be resolved, improving the
detection accuracy. To increase the precision and effectiveness of histopathological image
analysis, several strategies have recently been put forth for the development of automated
glandular segmentation algorithms [16,17]. Due to variations in the shape, size, and inter-
nal architecture of the prostate glands, particularly in disease situations, segmenting the
prostate can be a difficult process. Using deep learning (DL) techniques, the detection of
cancerous and noncancerous regions can be formulated as a direct segmentation problem.

In this study, we introduce an ensemble-based segmentation model—a modified
version of EfficientNetB2 U-Net—to differentiate prostate cancer from benign tissue com-
ponents. Moreover, we compared the performance of our method with existing pretrained
models. The main aim of this work is to perform the region segmentation of different tissue
components and build an auto annotation system (AAS) to assist pathologists in making
consistent diagnoses. The patch extraction from WSIs and the procedures to train and test
artificial intelligence (AI) algorithms are outlined in the Methods section.

2. Related Works

Numerous techniques for segmenting glandular structures have recently been put
forth. Farjam et al. [18] combined Gaussian filters to recover the textural characteristics
of prostate tissue; then, the borders of the glands were extracted using k-means cluster-
ing. When dealing with images that have large stain intensity fluctuations, texture-based
techniques typically perform poorly and do not take into account the spatial information
between epithelial nuclei and lumen. Different algorithms have been developed to take
advantage of the link between nuclei/stroma and gland morphology to solve this issue. For
example, a level set was used by Naik et al. [19] for prostate gland segmentation; a Bayesian
classifier that recognized all of the lumen areas was able to identify the starting contour of
the curve. Then, when the level set was close to the epithelial nuclei, an energy functional
was applied to retrieve the minimal energy. The level set creates good segmentation results
if applied correctly. However, its primary restriction is the initialization process. Specifically,
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the starting level may be incomplete or erroneous; thus, this family of algorithms may
provide improper segmentation (e.g., in the case of glands with no visible lumen).

To identify the four primary components of histological tissue, Peng et al. [20] used
color decomposition and principal component analysis; this was followed by a postpro-
cessing technique to locate the gland borders. In healthy tissue, this technique can locate
glands with fair accuracy; however, when tumoral patterns are present, the segmentation
accuracy suffers noticeably. Nguyen et al. [21] performed the pixel categorization of nuclei,
cytoplasm, lumen, and stroma based on information from the LAB color space. Then, the
glandular areas were extracted using an approach that combined lumen, cytoplasm, and
nuclei pixels. Stroma, gland, and lumen pixels were identified using a logistic regression
classifier developed by Singh et al. [22]. The final segmentation of the glands involved
a heuristic procedure. Notably, these techniques were capable of successfully segment-
ing glands with discontinuous or nonexistent lumen; however, they failed to do so for
structures with a lumen (as in the case of pathological conditions).

DL techniques have recently attained cutting-edge performance in numerous medical
imaging disciplines, including digital pathology image processing [23–25]. A convolutional
neural network (CNN) for prostate gland segmentation in histopathology images was
suggested by Ren et al. [26]. In this approach, an encoder network and a decoder network
were used to execute semantic segmentation. In their setup, the encoding and decoding
networks each had 10 convolutional layers, and the CNN’s input layer had dimensions
of 480 × 360 × 3. Slider windows were used to segment larger images. Compared to
earlier works, high performance was demonstrated with this approach. Using three CNN
channels, Xu et al. [27] concentrated on gland segmentation. One channel was used to
separate the background from foreground pixels. A second channel was used to identify
gland borders, while the third channel was used to identify specific glands. To obtain the
final segmentation result, the CNN fused the outputs of the three channels. Here, it is
important to emphasize that although benign and nicely shaped glands are useful for gland
detection, deep networks are capable of recognizing glands in situations of malignancy.
Nevertheless, Soerensen et al. [28] proposed a deep neural network—ProgNet—to segment
the prostate gland on magnetic resonance imaging (MRI) for targeted biopsies in routine
urological clinical practice. They used T2 MRI scans to carry out this research and compared
the performance with other DL networks. To measure the segmentation results, they used
the Dice similarity coefficient (DSC).

In this study, we used microscopic prostate biopsy images, WSIs, to perform tissue-
level segmentation and differentiate cancer tissue components using DL techniques. How-
ever, we not only performed segmentation but also developed AAS for WSI analysis.

3. Materials and Methods
3.1. Dataset

The dataset used in the current study was downloaded from the Kaggle repository,
accessible at https://www.kaggle.com/c/prostate-cancer-grade-assessment (accessed on
28 July 2022). Figure 1 shows a few examples of patch/tile images and their corresponding
masks, which are cropped from the original and annotated WSIs, respectively. A total
of 1000 WSI samples were used in this research to develop AAS using prostate biopsy
tissue images that were analyzed at the Radboud University Medical Center in Nijmegen,
Netherlands. The dataset was uploaded to the Kaggle repository by Bulten et al. [29] for
the Prostate Cancer Grade Assessment (PANDA) competition. Based on each patient’s
pathology report, a single hematoxylin and eosin (H&E)-stained glass slide containing the
tumor’s most aggressive portion was chosen for scanning [30]. A 3DHistech Panoramic
Flash II 250 scanner (3DHistech, Budapest, Hungary) was used to scan each of the chosen
glass slides at 20× magnification. From 1000 WSIs, we cropped 8100 patch images for
training and 900 for the testing phase, as shown in Figure 2.

https://www.kaggle.com/c/prostate-cancer-grade-assessment
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Figure 1. Example of patch images cropped from WSIs. (a–c) Original samples. (d–f) Corresponding
ground-truth samples.

Figure 2. The entire process of region segmentation of WSIs for diagnosis of Prostate Adenocarcinoma.
(a) The entire dataset of whole-slide images and ground-truth samples. (b) Patch images for training.
(c) Patch images for testing. (d) Classification models for training and testing. (e) WSI prediction and
auto annotation of stroma, benign, and cancer regions.

3.2. Image Preprocessing

A WSI is a large-volume digital representation of a microscopic slide. A microscope
scans a slide and assembles tiny pictures into a larger image, sometimes known as a
gigapixel image. The gigapixel image is too large to fit on a GPU all at once. Therefore,
we used patch images for region segmentation. To prepare the WSI sample (Figure 3a) for
tiling/patching, the RGB image was split into two levels by one threshold, 0 < T < 255, a
procedure known as global thresholding [31]. To achieve the desired outcome (a binary
image with one bit per pixel), the threshold value was manually adjusted to T = 210, rather
than being calculated automatically. Figure 3b illustrates this concept by designating the
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intensities of the pixels above the threshold T as foreground pixels (i.e., labeled 1) and the
intensities of the pixels below the threshold T as background pixels (i.e., labeled 0).

Figure 3. Examples of image preprocessing. (a) Original WSI. (b) Threshold result of (a). (c) Pathologist-
annotated/ground-truth image with several nonoverlapping blocks for patching. The violet and
yellow colors represent tissue regions with Gleason scores of 4 and 5, respectively. (d) The result of
patching from the original WSI.

Image tiling is a crucial phase in the WSI analysis process. Figure 3c shows an example
of a pathologist-annotated slide, in which the violet and yellow colors signify Gleason
scores of 4 and 5, respectively. However, depending on the x and y coordinates of the
foreground pixels (Figure 3b) and sliding window (ix, iy) in Figure 3d, we cropped the
images of size 256 × 256 pixels into several nonoverlapping blocks with grid spacing
ix = jy = 256 along both rows and columns from the original WSI. Similarly, image patching
was also carried out from the annotated slides (Figure 3c) to train the segmentation models.
The patches extracted from the WSI tissue regions correspond to five classes, namely,
stroma, benign, score 3, score 4, and score 5. To train the network, we sorted the patches
and considered score 3, score 4, and score 5 as the cancer class; the two other classes
remained the same: stroma and benign. Thus, ultimately, there were three classes in total:
stroma, benign, and cancer.

3.3. Tissue Region Segmentation

Region segmentation is of paramount importance for classifying stroma, benign, and
cancer tissue components in WSIs. Training a model from scratch is a difficult task, as it
is computationally expensive and requires that the parameters be changed several times
based on the learning performance. Therefore, the most common transfer learning method
was employed in this study. Specifically, we leveraged popular DL models that were
pretrained on the ImageNet dataset [32] as backbones of segmentation architectures to
perform feature extraction in the encoding path of the network.
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3.3.1. Transfer Learning

Transfer learning [33] is powerful, as it allows the neural network to handle small
inputs for creating a new domain while transferring a sizable preexisting dataset to the task,
thus minimizing the time and computational costs. Medical image datasets have limited
amounts of labeled data. For managing the bare minimum of medical data, transfer learning
offers the ideal solution, as it dramatically accelerates the training process and reduces
the computational cost of the network. In addition, freezing [34] and fine-tuning [35]
techniques can be applied to further modify the DL model to achieve even better accuracy.
Figure 4 shows the implementation strategies of transfer learning for training segmentation
models.

Figure 4. Approaches for training pretrained models based on transfer learning. The weights of
pretrained layers in the base models are modified during the learning process, whereas the frozen
layers retain their weights (i.e., not modified). (a) A basic transfer learning approach, where the
pretrained model is loaded and trained using the extracted features. (b–d) The proposed transfer
learning approach, where three freezing techniques are applied and features from each model are
concatenated to perform training.

3.3.2. Network Architecture

To segment biomedical images, different network architectures have been developed
by researchers, such as UNet, UNet+, SegNet, SegNet-UNet, SegNet-UNet+, ResNet-UNet,
attention UNet, and so forth [36–38]. In this study, we introduce an ensemble segmentation
model based on transfer learning strategies. Five pretrained segmentation models, namely,
UNet, ResNet34-UNet, ResNeXt50-UNet, InceptionV3-UNet, and EfficientNetB2-UNet,
were adapted for experimental purposes and compared to the proposed ensemble segmenta-
tion model. Here, ResNet-34, ResNeXt-50, Inception-V3, and EfficientNet-B2 are backbones
of UNet and refer to the base models. Figure 5 shows the architecture of the combined
UNet and pretrained segmentation models, in which the input consisted of extracted patch
images x ∈ R256×256×3 and the output was the segmented mask y ∈ R(0, 1, 2)256×256×3 of
three classes: stroma, benign, and cancer. A description of the segmentation models used is
given in the following.
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Figure 5. The architecture of UNet and the pretrained convolution neural network (i.e., backbones
for feature extraction). The parts of the backbone network marked with red, blue, green, and yellow
signify Resnet34-UNet, ResNeXt50-UNet, InceptionV3-UNet, and EfficientNetB2-UNet.

1. UNet Architecture: UNet [39] was initially proposed and implemented in 2015. The
network consists of encoder and decoder convolutional blocks, with skip connections
and a bottleneck layer to propagate encoded features to decoder blocks. The encoder
includes a number of blocks, each of which accepts input using two 3 × 3 convolution
layers, followed by a rectified linear unit (ReLU) and 2 × 2 max-pooling layers,
which down-sample the image by 2 for the next layer. The obtained feature maps
are propagated to the decoder block through the bottleneck layer to convert a vector
into a segmented image and up-sample the image with 2 × 2 up-convolutional
layers. Between the layers of contraction and expansion, the bottleneck layer causes
interference. The context is captured via a compact feature map using an encoder-like
contraction route.

2. ResNet-34 UNet Architecture: ResNet-34 [40] is a CNN architecture made up of a num-
ber of residual blocks. It varies from other CNNs by having shortcut connections [41].
This technique is used in residual building blocks to skip the convolutional layers.
The final calculation is performed by adding the input features with a residual block
output via a skip link. Therefore, the problem of a vanishing gradient is alleviated
by increasing the depth of the neural network. When introduced, ResNet easily won
that year’s ImageNet competition. Figure 5 shows ResNet34 as a backbone model
of UNet [42,43]. The residual block is constructed using several convolutional layers
(Conv), batch normalization (BN), a ReLU activation function, and a shortcut. Simi-
larly, the entire ResNet34 is constructed using 33 convolutional layers, a max-pooling
layer of size 3 × 3, and an average pooling layer followed by a fully connected layer.

3. ResNeXt50 UNet Architecture: RexNeXt, a variant of ResNet, was developed in
2017 by Xie et al. [44]. The primary distinction between ResNeXt and ResNet is
that instead of having continuous blocks (one after the other), ResNeXt considers
and integrates ‘cardinality’ or the size of transformations, drawing inspiration from
Inception/GoogleLenet. Notably, ResNeXt outperformed ResNet in the Imagenet
Challenge, despite having fewer parameters. On the same dataset, the prior U-Net
design that had been enhanced with the ResNeXt50 backbone was put into practice.
The concept behind ResNeXt is that it combines several transformations with similar
topologies using repeating building elements. Experimenting with cardinality (the
size of the collection of transformations) gives depth and width further advantages.
As a result, the network’s accuracy can be increased more efficiently by increasing
cardinality. This makes it possible to explore the dataset while also upgrading the
underlying U-Net design using ResNeXt50 blocks.
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4. InceptionV3 UNet Architecture: In 2014, Szegedy et al. launched GoogleNet, com-
monly known as Inception [45]. At the time, it was one of the biggest and most
effective categorization networks. GoogLeNet/Inception is more computationally
efficient than VGG in terms of parameters and costs, which include memory and
other resources. It also lowered the network classification top-5 error rate to 6.67%.
GoogLeNet/Inception comes in a number of iterations, including Inceptionv1, Incep-
tionv2, Inceptionv3, Inceptionv4, and Inception-ResNet. The version employed in
this study, Inceptionv3, was applied to improve the network accuracy while lowering
computational costs. Inceptionv3 is made up of 42 layers and around 24 million
parameters. The network makes use of the multilevel feature extractor known as the
inception block. The conception block is made up of filters of various sizes, including
1 × 1, 3 × 3, and 5 × 5. A convolutional layer with a filter size of 1 × 1 is utilized in
the network’s center to minimize dimensionality, and global average pooling is used
in place of completely linked layers.

5. EfficientB2 UNet Architecture: EfficientNet [46] is a novel CNN and scaling technique
that uses a compound coefficient to consistently scale the depth, breadth, and image
resolution. The EfficientNet scaling approach evenly scales the network breadth,
depth, and resolution using a set of preset scaling coefficients, in contrast to standard
practice, which scales these variables arbitrarily. The network width, depth, and
resolution are all consistently scaled by EfficientNet logically using a compound
coefficient. At first, EfficientNet-B0 was developed as a baseline network from Neural
Architecture Search (NAS) using the AutoML MNAS framework [46]. Later, this
baseline was extended and improved to obtain an efficient family (i.e., EfficientNet-
B1-EfficientNet-B7). In general, EfficientNet is constructed using the mobile inverted
bottleneck (MBConv) building block [47].

6. Ensemble EfficientNetB2 U-Net Architecture: The major sources of inspiration for this
research were Ensemble Learning and UNet with EfficientNet-B2. To construct the
proposed ensemble UNet model, we employed a multi-head pretrained CNN (i.e.,
EfficientNet-B2) to encode the feature maps from the input image and applied a fine-
tuning technique, ‘freezing,’ to accelerate neural network training by progressively
freezing hidden layers. Freezing a layer in the CNN is about controlling the process
of updating the weights during backpropagation; specifically, if any layer is frozen,
then its weight is not updated during model learning. In this study, we applied
three freezing techniques to perform feature extraction in the encoder blocks, as
shown in Figure 4b–d. The decoder blocks received the encoded feature maps to
up-sample the image size, and the up-sampling output was concatenated with the
output of the corresponding part of the encoder. The output of each fine-tune-based
EfficientNetB2-UNet architecture was concatenated to create the final output of the
proposed ensemble model, as shown in Figure 6. The encoder block (five down-
sampling layers) contained a 3 × 3 convolutional layer, 22 MBConv structures, and a
1 × 1 convolutional layer (Table 1). The decoder block (four up-sampling layers) was
constructed using up-sampled, concatenated, 3 × 3 convolutional layers.

Table 1. Encoder specification for the proposed segmentation model.

Steps Operator Resolution Layers

Down-sampling (1) Conv 3 × 3, Stride = 2 128 × 128 1
MBConv1, 3 × 3 128 × 128 2

Down-sampling (2) MBConv6, 3 × 3 64 × 64 3
Down-sampling (3) MBConv6, 5 × 5 32 × 32 3

Down-sampling (4) MBConv6, 3 × 3 16 × 16 4
MBConv6, 5 × 5 16 × 16 4

Down-sampling (5)
MBConv6, 5 × 5 8 × 8 5
MBConv6, 3 × 3 8 × 8 2

Conv 1 × 1 8 × 8 1
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Figure 6. Implementation of the proposed ensemble-based segmentation model. Conv: convolution;
MB Conv: mobile inverted bottleneck convolution.

4. Results and Discussion

In this section, the performance of the proposed method is demonstrated using the
prostate biopsy dataset. This study primarily segmented tissue samples to segment can-
cerous and noncancerous regions. The dataset from the Radboud University Medical
Center was analyzed, preprocessed, and separated for training and testing. The models
were trained and tested on the samples of size 256 × 256 pixels at 10× magnification.
Experiments were conducted using pretrained U-Net models for segmenting the tissue
regions, and the results were evaluated using the DC, IoU [48], and Hausdorff distance [49]
performance metrics to quantify the degree of overlap between ground truth and prediction
regions. Furthermore, a comparative analysis was carried out between the proposed and
existing methods.

4.1. Region Segmentation Results

The region segmentation performance was evaluated by comparing the proposed
ensemble segmentation model with several existing architectures, such as ResNet- 34,
ResNeXt-50, Inception-V3, and EfficientNet-B2. In image segmentation, the values of
true positives (TP), false positives (FP), and false negatives (FN) are considered areas or
the number of pixels. Model training was performed several times by configuring the
different parameters at epoch = 50. The early stopping regularization parameter was
used to prevent the overfitting and underfitting of the model and achieved the optimal
results at epoch = 10, because the model performance stopped improving on a hold-out
validation dataset. Table 2 shows the quantitative results of tissue region segmentation
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and the comparative analysis of the experimental methods. The DC, IoU, and Hausdorff
distance metrics used for model evaluation can be expressed as:

2× TP
(TP + FP) + (TP + FN)

(1)

TP
(TP + FP + FN)

(2)

δH(A, B) = max
{→

δ H(A, B),
→
δ H(B, A)

}
(3)

The distance measure is symmetric. Here, A is the ground truth, B is the segmented mask,
→
δ H(A, B) is the directed Hausdorff distance, typically the Euclidean distance, and it is not

symmetric;
→
δ H(B, A) is the reverse directed Hausdorff distance which is different from

→
δ H(A, B). To compare the shape, we used undirected Hausdorff distance δH(A, B) that
can be calculated as the maximum of the two directed distances.

Table 2. Comparative analysis of the performance of the proposed model with some existing methods
based on Dice score, IoU, and Hausdorff on a test dataset.

ResNet34 ResNeXt50 InceptionV3 EfficientNetB2 Proposed

Stroma

Dice coefficient 0.935 0.949 0.947 0.949 0.956

IoU 0.878 0.903 0.900 0.903 0.916

Hausdorff (mm) 17.7 16.9 16.6 17.2 15.8

Benign

Dice coefficient 0.624 0.775 0.705 0.778 0.802

IoU 0.453 0.633 0.544 0.638 0.670

Hausdorff (mm) 17.4 16.9 16.4 17.3 16.2

Cancer

Dice coefficient 0.848 0.892 0.879 0.905 0.914

IoU 0.736 0.805 0.785 0.827 0.843

Hausdorff (mm) 17.5 16.9 16.3 16.9 15.9

Average

Dice coefficient 0.802 0.872 0.843 0.877 0.891

IoU 0.689 0.780 0.743 0.789 0.811

Hausdorff (mm) 17.5 16.9 16.4 17.1 15.9

From Table 2, the proposed ensemble segmentation model outperformed all others,
giving an overall DC, IoU, and Hausdorff of 0.891, 0.811, and 15.9, respectively. Moreover,
the proposed model surpassed ResNet-34, ResNeXt-50, Inception-V3, and EfficientNet-B2
by 8.9%, 1.9%, 4.8%, and 1.4%, respectively, in average DC scores; 12.2%, 3.1%, 6.8%, and
2.2%, respectively, in average IoU scores; and 1.6, 1.0, 0.5, and 1.2, respectively, in average
Hausdorff.

Apart from the quantitative results, to show the qualitative performance of the ex-
perimental segmentation models, we plotted the patch-level prediction results, as shown
in Figure 7. Here, several test images are presented with their ground truth and pre-
dicted masks for each class, such as stroma + cancer (first and second rows) regions and
stroma + benign (third row) regions. For a clear representation, the segmented areas are
marked with different colors in the figure, in which red is stroma, blue is benign, and
green is cancer. No major differences in segmentation were evident in a comparison of
the proposed method with the others. Nevertheless, differences were indicated in the
quantitative results. The proposed model efficiently segmented tissue regions (i.e., stroma,
benign, and cancer) without losing necessary information.
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Figure 7. Comparison of segmentation examples from the proposed model with existing methods.
Red, blue, and green colors signify stroma, benign, and cancer regions, respectively. The size of each
tile in test set is the same as the train dataset, which is 256 × 256 pixels at 0.5µm/pixel.

4.2. Slide-Level Prediction

To study and comprehend how a model segments and makes decisions for a particular
job, the visualization technique is crucial. However, comparing projected outcomes is also
crucial for determining model performance with respect to ground-truth data. For WSI
analysis, several visualization methods exist. However, to visualize predicted probabilities,
the predicted patch images are overlapped on the WSI using different colors to signify
the stroma, benign, and cancer regions with white, red, blue, and green, respectively
(Figure 8). In our study, the proposed ensemble segmentation model revealed representative
information after iteratively learning from the patch-level diagnosis (Figure 8c). We also
compared the predicted results with pathologist-annotated slides (Figure 8b) to validate
the model performance. Our model performed well, similar to the ground-truth slides,
from which we can say that the WSI segmentation of cancerous and noncancerous regions
was successfully carried out using the proposed ensemble segmentation model.

DL has advanced significantly in several areas, including computer vision, producing
impressive outcomes [50]. Due to the abundance of labeled datasets, including ImageNet,
DL has also demonstrated effectiveness in medical image analysis. However, a CNN needs
large amounts of training data before it can be successfully applied to any assignment. The
lack of image datasets in medical disciplines frequently affects many researchers. This
sparked our interest in the subject and ultimately led us to transfer learning, a different
strategy from DL. By fine-tuning the fully connected layers to meet the needs of each job,
transfer learning makes use of a model that has already been trained. Any learned model
can be used as the foundation model for a new assignment. If the GPU is not powerful
enough, training a CNN can take quite a while. Nevertheless, with transfer learning, one
can train and categorize images in a matter of hours. In this work, we initially preprocessed
WSIs to obtain patch images with 256 × 256 pixels for segmentation using several AI-based
CNN models.

We used patch-level analysis rather than slide-level to simplify prostate cancer region-
based segmentation, which can save on computational costs and improve the efficiency of
DL models in data analysis. To categorize the tissue samples that were taken from the WSI
and carry out the automated identification/segmentation of cancerous and noncancerous
areas, we employed several pretrained CNN models. To accomplish ensemble segmentation
using the advantages of transfer learning, we presented a customized pretrained CNN
model (Figure 6). With this approach, we were able to expedite neural network training
by gradually freezing the hidden layers using several freezing techniques for each CNN
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model. We have studied numerous research articles related to prostate cancer classification
using histopathological images.

Figure 8. Slide-level prediction (stroma, benign, and cancer). (a) Original WSI. (b) Annotated WSI.
(c) Predicted WSI. The slide-level visualization is carried out at 10×magnification.

Most researchers differentiate cancerous from noncancerous tumors based on the
features learned from the whole image. Ryu et al. [51] proposed the Gleason scoring system
based on deep CNN for the diagnosis of prostate biopsy samples. They collected data
samples from two different institutions that were digitized at 40× optical magnification.
The segmentation network was trained on a set of 940,875 patch images of size 352 × 352
pixels extracted from 1133 WSIs. However, in our case, we used WSIs that were digitized
at 20× optical magnification. The main difference between our and their work is that they
used an internal dataset and developed an automatic Gleason scoring system using a huge
number of tissue samples that were trained on eight-GPU machines, whereas we carried
out region segmentation and built AAS to distinguish between stroma, benign, and cancer
tissue components, which can reduce the complexity of WSI analysis for pathologists. We
used different segmentation networks to perform a comparative analysis, and all of the
networks were trained on a set of 8100 patch images of size 256 × 256 pixels on a one-GPU
machine.

Histopathology images are usually large (about 40,000 × 40,000 pixels). Because of
limited memory, the models were trained on a set of patch images to reduce memory
consumption and increase computational time. However, hyperparameter selection before
the training process is also important for handling GPU memory; higher batch size values
can lead to higher memory consumption. Therefore, keeping all of the requirements in
mind, we set a batch size = 8 to train the model efficiently. Additionally, the models
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were not trained for all epochs; we used a function from the TensorFlow library—early
stopping—to monitor the validation loss and stop the training process if the loss failed to
decrease for a sequence of five epochs.

WSI annotation is commonly required in supervised classification for cancer grading,
which can be time-consuming and impractical in everyday pathology. The dataset we used
in this study, however, consisted of both WSIs and annotated images that were examined by
pathologists at the Radboud University Medical Center and whose reports (from between 1
January 2012, and 31 December 2017) were retrieved for patients who underwent a prostate
biopsy, as they were suspected of having prostate cancer. As a result, the pathologists
extensively annotated the WSIs used in this study. From this, we created an automated
AI-based computer-aided segmentation system to successfully perform patch-level analysis
region segmentation in WSIs.

Some limitations have been observed in this study. First, the models were not trained
with a sufficient amount of data due to GPU and memory issues. Second, we do not have
an internal dataset with accurate annotations to train and test the models. Third, we used
an existing model and modified it for region segmentation based on the transfer learning
technique instead of developing a state-of-the-art deep learning model. Lastly, the patches
were extracted from WSIs at low magnification levels, which can cause information loss.

5. Conclusions

Using whole-slide histopathology images, we created an automated computer-aided
segmentation system. In the coming decades, pathology practice will surely change as
a result of gigapixel WSI analysis and grading that employs AI techniques. We applied
pretrained and newly developed CNN models for multiclass segmentation to perform
patch-level analysis and WSI segmentation. However, to analyze the WSI sample and divide
it into three segmentation groups (stroma, benign, and cancer), several methodologies
were applied. The WSIs were divided into a sequence of nonoverlapping image blocks for
patch-level analysis using two preprocessing approaches (global thresholding and image
tiling). An ensemble-based pretrained model was developed to predict and grade the WSIs
after being trained at the patch level. Our proposed model performed better than other
pretrained CNN models when tested on 900 patch images that were not used in the training
phase. Looking forward, we intend to expand this research work to enhance the proposed
CNN model or develop a new robust method for real-time WSI prediction and annotation.

Author Contributions: Conceptualization, K.I.; formal analysis, R.I.S.; funding acquisition, N.-H.C.
and H.-K.C.; methodology, K.I. and H.R.; project administration, H.-K.C.; resources, E.P. and N.-H.C.;
software, Y.-B.H.; supervision, M.-J.L., H.-C.K. and H.-K.C.; validation, S.B. and Y.-B.H.; writing—
review and editing, S.B. and N.-H.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the grants from National Research Foundation of Korea
(NRF), funded by the Korean government (MIST) (Grant No. 2021R1A2C2008576) and Korea Health
Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, the Republic
of Korea (Grant No. HI21C0977).

Informed Consent Statement: The written informed consent was waved by the Institutional Review
Boards of RUMC (Approval No. 2016-2275).

Data Availability Statement: The publicly shared prostate cancer dataset is available at https://
www.kaggle.com/c/prostate-cancer-grade-assessment.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pernar, C.H.; Ebot, E.M.; Wilson, K.M.; Mucci, L.A. The Epidemiology of Prostate Cancer. Cold Spring Harb. Perspect. Med. 2018, 8,

a030361. [CrossRef] [PubMed]
2. Bashir, M.N. Epidemiology of Prostate Cancer. Asian Pac. J. Cancer Prev. 2015, 16, 5137–5141. [CrossRef] [PubMed]

https://www.kaggle.com/c/prostate-cancer-grade-assessment
https://www.kaggle.com/c/prostate-cancer-grade-assessment
http://doi.org/10.1101/cshperspect.a030361
http://www.ncbi.nlm.nih.gov/pubmed/29311132
http://doi.org/10.7314/APJCP.2015.16.13.5137
http://www.ncbi.nlm.nih.gov/pubmed/26225642


Cancers 2023, 15, 762 14 of 16

3. Gnanapragasam, V.J.; Bratt, O.; Muir, K.; Lee, L.S.; Huang, H.H.; Stattin, P.; Lophatananon, A. The Cambridge Prognostic Groups
for Improved Prediction of Disease Mortality at Diagnosis in Primary Non-Metastatic Prostate Cancer: A Validation Study. BMC
Med. 2018, 16, 31. [CrossRef] [PubMed]

4. Daskivich, T.J.; Fan, K.-H.; Koyama, T.; Albertsen, P.C.; Goodman, M.; Hamilton, A.S.; Hoffman, R.M.; Stanford, J.L.; Stroup, A.M.;
Litwin, M.S.; et al. Prediction of Long-Term Other-Cause Mortality in Men with Early-Stage Prostate Cancer: Results from the
Prostate Cancer Outcomes Study. Urology 2015, 85, 92–100. [CrossRef]

5. Ozkan, T.A.; Eruyar, A.T.; Cebeci, O.O.; Memik, O.; Ozcan, L.; Kuskonmaz, I. Interobserver Variability in Gleason Histological
Grading of Prostate Cancer. Scand. J. Urol. 2016, 50, 420–424. [CrossRef]

6. Rodriguez-Urrego, P.A.; Cronin, A.M.; Al-Ahmadie, H.A.; Gopalan, A.; Tickoo, S.K.; Reuter, V.E.; Fine, S.W. Interobserver and
Intraobserver Reproducibility in Digital and Routine Microscopic Assessment of Prostate Needle Biopsies. Hum. Pathol. 2011, 42,
68–74. [CrossRef]

7. Allsbrook, W.C.; Mangold, K.A.; Johnson, M.H.; Lane, R.B.; Lane, C.G.; Epstein, J.I. Interobserver Reproducibility of Gleason
Grading of Prostatic Carcinoma: General Pathologist. Hum. Pathol. 2001, 32, 81–88. [CrossRef]

8. Sadimin, E.T.; Khani, F.; Diolombi, M.; Meliti, A.; Epstein, J.I. Interobserver Reproducibility of Percent Gleason Pattern 4 in
Prostatic Adenocarcinoma on Prostate Biopsies. Am. J. Surg. Pathol. 2016, 40, 1686–1692. [CrossRef]

9. Zhou, M.; Li, J.; Cheng, L.; Egevad, L.; Deng, F.-M.; Kunju, L.P.; Magi-Galluzzi, C.; Melamed, J.; Mehra, R.; Mendrinos, S.; et al.
Diagnosis of “Poorly Formed Glands” Gleason Pattern 4 Prostatic Adenocarcinoma on Needle Biopsy. Am. J. Surg. Pathol. 2015,
39, 1331–1339. [CrossRef]

10. Meliti, A.; Sadimin, E.; Diolombi, M.; Khani, F.; Epstein, J.I. Accuracy of Grading Gleason Score 7 Prostatic Adenocarcinoma on
Needle Biopsy: Influence of Percent Pattern 4 and Other Histological Factors. Prostate 2017, 77, 681–685. [CrossRef]

11. Zietman, A.; Smith, J.; Klein, E.; Droller, M.; Dasgupta, P.; Catto, J. Consensus Guidelines for Reporting Prostate Cancer Gleason
Grade. BJU Int. 2016, 117, 849. [CrossRef] [PubMed]

12. Zietman, A.; Smith, J.; Klein, E.; Droller, M.; Dasgupta, P.; Catto, J. Describing the Grade of Prostate Cancer: Consistent Use of
Contemporary Terminology Is Now Required. Eur. Urol. 2016, 70, 1. [CrossRef] [PubMed]

13. Chen, C.; Huang, Y.; Fang, P.; Liang, C.; Chang, R. A Computer-aided Diagnosis System for Differentiation and Delineation of
Malignant Regions on Whole-slide Prostate Histopathology Image Using Spatial Statistics and Multidimensional DenseNet. Med.
Phys. 2020, 47, 1021–1033. [CrossRef] [PubMed]

14. Rezaei, S.; Emami, A.; Zarrabi, H.; Rafiei, S.; Najarian, K.; Karimi, N.; Samavi, S.; Reza Soroushmehr, S.M. Gland Segmentation in
Histopathology Images Using Deep Networks and Handcrafted Features. In Proceedings of the 2019 41st Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; IEEE: Piscataway,
NJ, USA; pp. 1031–1034. [CrossRef]

15. Sirinukunwattana, K.; Pluim, J.P.W.; Chen, H.; Qi, X.; Heng, P.-A.; Guo, Y.B.; Wang, L.Y.; Matuszewski, B.J.; Bruni, E.; Sanchez,
U.; et al. Gland Segmentation in Colon Histology Images: The Glas Challenge Contest. Med. Image Anal. 2017, 35, 489–502.
[CrossRef] [PubMed]

16. Qu, H.; Yan, Z.; Riedlinger, G.M.; De, S.; Metaxas, D.N. Improving Nuclei/Gland Instance Segmentation in Histopathology
Images by Full Resolution Neural Network and Spatial Constrained Loss. In Lecture Notes in Computer Science (Including Subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2019; pp. 378–386. [CrossRef]

17. Farjam, R.; Soltanian-Zadeh, H.; Jafari-Khouzani, K.; Zoroofi, R.A. An Image Analysis Approach for Automatic Malignancy
Determination of Prostate Pathological Images. Cytom. Part B Clin. Cytom. 2007, 72, 227–240. [CrossRef]

18. Naik, S.; Doyle, S.; Agner, S.; Madabhushi, A.; Feldman, M.; Tomaszewski, J. Automated Gland and Nuclei Segmentation
for Grading of Prostate and Breast Cancer Histopathology. In Proceedings of the 2008 5th IEEE International Symposium on
Biomedical Imaging: From Nano to Macro, Paris, France, 14–17 May 2008; IEEE: Piscataway, NJ, USA; pp. 284–287. [CrossRef]

19. Peng, Y.; Jiang, Y.; Eisengart, L.; Healy, M.A.; Straus, F.H.; Yang, X.J. Computer-Aided Identification of Prostatic Adenocarcinoma:
Segmentation of Glandular Structures. J. Pathol. Inf. 2011, 2, 33. [CrossRef]

20. Nguyen, K.; Sabata, B.; Jain, A.K. Prostate Cancer Grading: Gland Segmentation and Structural Features. Pattern Recognit. Lett.
2012, 33, 951–961. [CrossRef]

21. Singh, M.; Kalaw, E.M.; Giron, D.M.; Chong, K.-T.; Tan, C.L.; Lee, H.K. Gland Segmentation in Prostate Histopathological Images.
J. Med. Imaging 2017, 4, 027501. [CrossRef]

22. Madabhushi, A.; Lee, G. Image Analysis and Machine Learning in Digital Pathology: Challenges and Opportunities. Med. Image
Anal. 2016, 33, 170–175. [CrossRef]

23. Janowczyk, A.; Madabhushi, A. Deep Learning for Digital Pathology Image Analysis: A Comprehensive Tutorial with Selected
Use Cases. J. Pathol. Inf. 2016, 7, 29. [CrossRef]

24. Song, J.; Xiao, L.; Molaei, M.; Lian, Z. Multi-Layer Boosting Sparse Convolutional Model for Generalized Nuclear Segmentation
from Histopathology Images. Knowl.-Based Syst. 2019, 176, 40–53. [CrossRef]

25. Ren, J.; Sadimin, E.; Foran, D.J.; Qi, X. Computer Aided Analysis of Prostate Histopathology Images to Support a Refined Gleason
Grading System. In Medical Imaging 2017: Image Processing; Styner, M.A., Angelini, E.D., Eds.; SPIE: Bellingham, WA, USA, 2017;
Volume 10133, p. 101331V. [CrossRef]

26. Xu, Y.; Li, Y.; Wang, Y.; Liu, M.; Fan, Y.; Lai, M.; Chang, E.I.C. Gland Instance Segmentation Using Deep Multichannel Neural
Networks. IEEE Trans. Biomed. Eng. 2017, 64, 2901–2912. [CrossRef]

http://doi.org/10.1186/s12916-018-1019-5
http://www.ncbi.nlm.nih.gov/pubmed/29490658
http://doi.org/10.1016/j.urology.2014.07.003
http://doi.org/10.1080/21681805.2016.1206619
http://doi.org/10.1016/j.humpath.2010.07.001
http://doi.org/10.1053/hupa.2001.21135
http://doi.org/10.1097/PAS.0000000000000714
http://doi.org/10.1097/PAS.0000000000000457
http://doi.org/10.1002/pros.23314
http://doi.org/10.1111/bju.13470
http://www.ncbi.nlm.nih.gov/pubmed/27173992
http://doi.org/10.1016/j.eururo.2016.03.007
http://www.ncbi.nlm.nih.gov/pubmed/27012550
http://doi.org/10.1002/mp.13964
http://www.ncbi.nlm.nih.gov/pubmed/31834623
http://doi.org/10.1109/EMBC.2019.8856776
http://doi.org/10.1016/j.media.2016.08.008
http://www.ncbi.nlm.nih.gov/pubmed/27614792
http://doi.org/10.1007/978-3-030-32239-7_42
http://doi.org/10.1002/cyto.b.20162
http://doi.org/10.1109/ISBI.2008.4540988
http://doi.org/10.4103/2153-3539.83193
http://doi.org/10.1016/j.patrec.2011.10.001
http://doi.org/10.1117/1.JMI.4.2.027501
http://doi.org/10.1016/j.media.2016.06.037
http://doi.org/10.4103/2153-3539.186902
http://doi.org/10.1016/j.knosys.2019.03.031
http://doi.org/10.1117/12.2253887
http://doi.org/10.1109/TBME.2017.2686418


Cancers 2023, 15, 762 15 of 16

27. Bulten, W.; Kartasalo, K.; Chen, P.-H.C.; Ström, P.; Pinckaers, H.; Nagpal, K.; Cai, Y.; Steiner, D.F.; van Boven, H.; Vink, R.; et al.
Artificial Intelligence for Diagnosis and Gleason Grading of Prostate Cancer: The PANDA Challenge. Nat. Med. 2022, 28, 154–163.
[CrossRef] [PubMed]

28. Soerensen, S.J.C.; Fan, R.E.; Seetharaman, A.; Chen, L.; Shao, W.; Bhattacharya, I.; Kim, Y.; Sood, R.; Borre, M.; Chung, B.I.; et al.
Deep Learning Improves Speed and Accuracy of Prostate Gland Segmentations on Magnetic Resonance Imaging for Targeted
Biopsy. J. Urol. 2021, 206, 604–612. [CrossRef] [PubMed]

29. Bulten, W.; Pinckaers, H.; van Boven, H.; Vink, R.; de Bel, T.; van Ginneken, B.; van der Laak, J.; Hulsbergen-van de Kaa, C.;
Litjens, G. Automated Deep-Learning System for Gleason Grading of Prostate Cancer Using Biopsies: A Diagnostic Study. Lancet
Oncol. 2020, 21, 233–241. [CrossRef]

30. Xu, H.; Berendt, R.; Jha, N.; Mandal, M. Automatic Measurement of Melanoma Depth of Invasion in Skin Histopathological
Images. Micron 2017, 97, 56–67. [CrossRef]

31. Cheremkhin, P.A.; Kurbatova, E.A. Comparative Appraisal of Global and Local Thresholding Methods for Binarisation of Off-Axis
Digital Holograms. Opt. Lasers Eng. 2019, 115, 119–130. [CrossRef]

32. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; IEEE: Piscataway, NJ,
USA; pp. 248–255. [CrossRef]

33. Shin, H.-C.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R.M. Deep Convolutional Neural
Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans. Med.
Imaging 2016, 35, 1285–1298. [CrossRef]

34. Kanavati, F.; Tsuneki, M. A Deep Learning Model for Gastric Diffuse-Type Adenocarcinoma Classification in Whole Slide Images.
Sci. Rep. 2021, 11, 20486. [CrossRef]

35. Ponzio, F.; Macii, E.; Ficarra, E.; Di Cataldo, S. Colorectal Cancer Classification Using Deep Convolutional Networks-An Experi-
mental Study. In Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies,
Funchal, Madeira, Portugal, 19–21 January 2018; SciTePress-Science and Technology Publications: Setúbal, Portugal; pp. 58–66.
[CrossRef]

36. Jain, P.K.; Sharma, N.; Giannopoulos, A.A.; Saba, L.; Nicolaides, A.; Suri, J.S. Hybrid Deep Learning Segmentation Models for
Atherosclerotic Plaque in Internal Carotid Artery B-Mode Ultrasound. Comput. Biol. Med. 2021, 136, 104721. [CrossRef]

37. Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al.
Attention u-net: Learning where to look for the pancreas. arXiv 2018, arXiv:1804.03999.

38. Gómez-de-Mariscal, E.; Maška, M.; Kotrbová, A.; Pospíchalová, V.; Matula, P.; Muñoz-Barrutia, A. Deep-Learning-Based
Segmentation of Small Extracellular Vesicles in Transmission Electron Microscopy Images. Sci. Rep. 2019, 9, 13211. [CrossRef]
[PubMed]

39. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Lecture Notes in
Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham,
Switzerland, 2015; pp. 234–241. [CrossRef]

40. Gao, M.; Qi, D.; Mu, H.; Chen, J. A Transfer Residual Neural Network Based on ResNet-34 for Detection of Wood Knot Defects.
Forests 2021, 12, 212. [CrossRef]

41. Wen, L.; Li, X.; Gao, L. A Transfer Convolutional Neural Network for Fault Diagnosis Based on ResNet-50. Neural Comput. Appl.
2020, 32, 6111–6124. [CrossRef]

42. Zhang, Q.; Cui, Z.; Niu, X.; Geng, S.; Qiao, Y. Image Segmentation with Pyramid Dilated Convolution Based on ResNet and U-Net.
In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics);
Springer: Cham, Switzerland, 2017; pp. 364–372. [CrossRef]

43. Le’Clerc Arrastia, J.; Heilenkötter, N.; Otero Baguer, D.; Hauberg-Lotte, L.; Boskamp, T.; Hetzer, S.; Duschner, N.; Schaller, J.;
Maass, P. Deeply Supervised UNet for Semantic Segmentation to Assist Dermatopathological Assessment of Basal Cell Carcinoma.
J. Imaging 2021, 7, 71. [CrossRef] [PubMed]

44. Xie, S.; Girshick, R.; Dollar, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE:
Piscataway, NJ, USA; pp. 5987–5995. [CrossRef]

45. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1
July 2016; IEEE: Piscataway, NJ, USA; pp. 2818–2826. [CrossRef]

46. Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th The
International Conference on Machine Learning ICML 2019, Long Beach, CA, USA, 9–15 June 2019.

47. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake, UT, USA, 18–23 June
2018; IEEE: Piscataway, NJ, USA; pp. 4510–4520. [CrossRef]

48. Rahman, M.A.; Wang, Y. Optimizing Intersection-Over-Union in Deep Neural Networks for Image Segmentation. In Lecture Notes
in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham,
Switzerland, 2016; pp. 234–244. [CrossRef]

http://doi.org/10.1038/s41591-021-01620-2
http://www.ncbi.nlm.nih.gov/pubmed/35027755
http://doi.org/10.1097/JU.0000000000001783
http://www.ncbi.nlm.nih.gov/pubmed/33878887
http://doi.org/10.1016/S1470-2045(19)30739-9
http://doi.org/10.1016/j.micron.2017.03.004
http://doi.org/10.1016/j.optlaseng.2018.11.019
http://doi.org/10.1109/CVPR.2009.5206848
http://doi.org/10.1109/TMI.2016.2528162
http://doi.org/10.1038/s41598-021-99940-3
http://doi.org/10.5220/0006643100580066
http://doi.org/10.1016/j.compbiomed.2021.104721
http://doi.org/10.1038/s41598-019-49431-3
http://www.ncbi.nlm.nih.gov/pubmed/31519998
http://doi.org/10.1007/978-3-319-24574-4_28
http://doi.org/10.3390/f12020212
http://doi.org/10.1007/s00521-019-04097-w
http://doi.org/10.1007/978-3-319-70096-0_38
http://doi.org/10.3390/jimaging7040071
http://www.ncbi.nlm.nih.gov/pubmed/34460521
http://doi.org/10.1109/CVPR.2017.634
http://doi.org/10.1109/CVPR.2016.308
http://doi.org/10.1109/CVPR.2018.00474
http://doi.org/10.1007/978-3-319-50835-1_22


Cancers 2023, 15, 762 16 of 16

49. Laxhammar, R.; Falkman, G. Sequential conformal anomaly detection in trajectories based on hausdorff distance. In Proceedings
of the 14th International Conference on Information Fusion, Chicago, IL, USA, 5–8 July 2011; pp. 1–8.

50. Qadri, S.F.; Shen, L.; Ahmad, M.; Qadri, S.; Zareen, S.S.; Khan, S. OP-ConvNet: A Patch Classification-Based Framework for CT
Vertebrae Segmentation. IEEE Access 2021, 9, 158227–158240. [CrossRef]

51. Ryu, H.S.; Jin, M.-S.; Park, J.H.; Lee, S.; Cho, J.; Oh, S.; Kwak, T.-Y.; Woo, J.I.; Mun, Y.; Kim, S.W.; et al. Automated Gleason
Scoring and Tumor Quantification in Prostate Core Needle Biopsy Images Using Deep Neural Networks and Its Comparison
with Pathologist-Based Assessment. Cancers 2019, 11, 1860. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/ACCESS.2021.3131216
http://doi.org/10.3390/cancers11121860

	Introduction 
	Related Works 
	Materials and Methods 
	Dataset 
	Image Preprocessing 
	Tissue Region Segmentation 
	Transfer Learning 
	Network Architecture 


	Results and Discussion 
	Region Segmentation Results 
	Slide-Level Prediction 

	Conclusions 
	References

