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Simple Summary: Tumor-initiating cells, also known as cancer stem cells, are a subset of cancer
cells in a tumor that sustain the tumor and are often responsible for therapy resistance and relapse.
Developmentally, they are evolved from the cellular origin of their corresponding cancer type and, as a
result, may inherit some expression programs from the cellular origin. This review aims to summarize
data from the literature showing that several hormone-related cancers (i.e., breast, prostate, and
ovarian) have a preferred luminal progenitor origin. These luminal progenitors express a common
innate immune program (e.g., Toll-like receptors and their associated genes). Tumor-initiating
cells originated from such luminal progenitors may inherit this program, which may contribute to
their formation via activation of Toll-like receptor pathways and crosstalk with immune cells (e.g.,
macrophages). We propose a potential strategy to eliminate such tumor-initiating cells by enhancing
immunotherapy via further activation of their inherited innate immune pathways.

Abstract: Tumor-initiating cells (TICs), also known as cancer stem cells (CSCs), are cancer cells
that can initiate a tumor, possess self-renewal capacity, and can contribute to tumor heterogeneity.
TICs/CSCs are developed from their cells-of-origin. In breast, prostate, and ovarian cancers, progeni-
tor cells for mammary alveolar cells, prostate luminal (secretory) cells, and fallopian tube secretory
cells are the preferred cellular origins for their corresponding cancer types. These luminal progenitors
(LPs) express common innate immune program (e.g., Toll-like receptor (TLR) signaling)-related genes.
Microbes such as bacteria are now found in breast, prostate, and fallopian tube tissues and their
corresponding cancer types, raising the possibility that their LPs may sense the presence of microbes
and trigger their innate immune/TLR pathways, leading to an inflammatory microenvironment.
Crosstalk between immune cells (e.g., macrophages) and affected epithelial cells (e.g., LPs) may
eventually contribute to formation of TICs/CSCs from their corresponding LPs, in part via STAT3
and/or NFκB pathways. As such, TICs/CSCs can inherit expression of innate-immunity/TLR-
pathway-related genes from their cells-of-origin; the innate immune program may also represent
their unique vulnerability, which can be explored therapeutically (e.g., by enhancing immunotherapy
via augmenting TLR signaling).

Keywords: tumor-initiating cell; cancer stem cell; cellular origin; cell-of-origin; breast cancer; prostate
cancer; ovarian cancer; innate immune program; Toll-like receptors; immune-checkpoint-blockade-
based immunotherapy

1. Brief Summary of TICs/CSCs

Tumor-initiating cells (TICs), also known as cancer stem cells (CSCs), are defined as a
subpopulation of cancer cells that can initiate a tumor, possess self-renewal capacity, and
can contribute to heterogeneous lineages of cancer cells that comprise the tumor [1]. CSCs
were originally identified in human acute myeloid leukemia (AML) by the pioneering
work of John Dick and colleagues [2]. They separated AML cells from patients based
on cell surface markers, such as CD34 and CD38. By transplanting different subsets of
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AML cells to immunodeficient NOD/SCID mice, they found that only AML cells within
the CD34+CD38− fraction were capable of recapitulating human AML in NOD/SCID
recipients; these were referred to as leukemic stem cells (i.e., CSCs for AML). Later, similar
approaches were used to identify CSCs in solid tumors, such as breast cancer [3,4], brain
tumor [5], colon cancer [6–8], prostate cancer [9–12], and ovarian cancer [13–16]. Due to the
nature of the transplantation-based approach, CSCs are functionally defined as a subset
of cancer cells capable of initiating tumor growth in recipient mice; thus, they are often
referred to as TICs as well.

As the transplantation-based approach in mice only selects those tumor cells that
can grow in the mouse microenvironment, it may not necessarily reflect the behavior
of all types of cancer cells in their native habitats, which raises a concern as to whether
TICs/CSCs defined in this way really exist in intact tumors. For instance, TICs/CSCs
in human melanoma defined based on xenotransplantation were initially reported to be
rare [17]. However, by modifying the xenotransplantation assay conditions, it was shown
later that TICs/CSCs were much more common in human melanoma [18]. Nevertheless,
several lines of evidence based on other approaches have provided further support for
existence of TICs/CSCs: e.g., in 2012, by using genetic marking, lineage tracing, and
clonal analysis approaches, several studies demonstrated the existence of CSCs during
unperturbed solid tumor growth. These include a study for squamous skin cancer in which
it was found that CSC populations with different properties existed in benign papilloma
and invasive squamous cell carcinoma [19]. CSCs in benign papilloma are rare, mirroring
the composition, hierarchy, and fate behavior of normal skin tissue; in contrast, CSCs
in invasive squamous cell carcinoma are more common [19], consistent with the notion
that CSCs are not necessarily a rare subpopulation of cancer cells in a tumor and also
suggesting that frequency of CSCs is cancer-stage-dependent [18,19]. In another study, it
was found that tumor cells expressing intestinal stem cell marker LGR5 are the CSCs to
fuel growth of intestinal adenomas [20]. In glioblastoma, it was shown that a relatively
quiescent subpopulation of endogenous glioma cells exhibited characteristics of CSCs to
sustain long-term tumor growth through production of transient populations of highly
proliferative tumor cells [21]. More recently, in human pancreatic ductal adenocarcinoma
(PDAC), by using a novel marker-free lineage tracing approach coupled with quantitative
modeling of tumor expansion in xenografts, it was found that all PDAC cells exhibited
clonogenic potential in vivo and that the stromal microenvironment played a dominant role
in defining their clonogenic activity [22]. A caveat for this study is that the data were largely
based on PDAC cell lines in a xenograft setting. Last, by high-throughput sequencing
analysis of human tumors, numerous DNA mutations have been identified in tumor cells
that can serve as “barcodes” for lineage analysis of a tumor (i.e., tumor cells carrying the
same mutations may have a common cellular origin). Interestingly, in a study analyzing
the natural histology and clonal evolution of human breast cancers based on sequencing
data, it was implied that there exists a long-lived, quiescent cell lineage (referred to as
“the most-recent common ancestor (MRCA)”) capable of substantial proliferation upon
acquisition of enabling genomic changes, thus supporting the concept of TICs/CSCs and
their existence in intact tumors [23].

Although it remains controversial, the concept of TICs/CSCs is important for recogniz-
ing a subpopulation of cancer cells within a tumor that has clinical importance as these are
often the type of cancer cells resistant to chemotherapeutics and that contribute to cancer
relapse and, therefore, also represent the ultimate therapeutic target [24].

2. Formation of TIC/CSC from the Cellular Origin of Cancer

The term “TIC” can often cause confusion with other commonly used terms, such as
the cellular origin (or cell-of-origin) of cancer. Cellular origin of cancer is a population of
normal cells in a tissue or organ that, with enabling initiating oncogenic events, evolve
to eventually become cancer cells. In the literature, cancer-initiating cell, defined as a
normal cell that receives the first cancer-causing mutations [25], is the same as the cellular
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origin/cell-of-origin of cancer described here. In contrast, at least for the purpose of this
review, TICs refer to CSCs or a subpopulation of cancer cells in a tumor that possess
stem-cell-like properties (i.e., “stemness”). Developmentally, TICs are derived from their
corresponding cellular origins (normal cells) via genetic/epigenetic changes and interaction
with the microenvironment and through clonal evolution (Figure 1). Because of this
developmental connection, the intrinsic gene expression program in the cellular origin of
cancer may also make a significant contribution to the properties of their corresponding
TICs, which can be explored therapeutically (see below).
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3. Luminal Progenitors as Cellular Origins of Breast, Prostate, and Ovarian Cancers

Cellular origins of most human cancer types are difficult to determine. For example,
cells-of-origin of several hormone-related cancers, such as breast, prostate, and ovarian,
have been topics of long-standing debate. Breast cancer comes from transformation of
mammary epithelial cells (MECs), which include estrogen receptor (ER)+ luminal cells, ER−

luminal cells, as well as ER− basal cells. Based on the cleared mammary fat pad transplanta-
tion assay, it was determined that basal MECs possess mammary stem cell (MaSC) activity
and are capable of producing both basal and luminal MECs upon transplantation [26,27].
Due to the multipotency nature of MaSCs, it was initially thought that MaSCs/basal MECs
are the cells-of-origin of most breast cancers [28,29]. However, more recent experimental
evidence demonstrated that most breast cancers may come from transformation of luminal
MECs [30,31]. Luminal progenitors (LPs) are committed progenitor cells in the luminal
lineage that give rise to mature luminal cells upon their differentiation [32,33]. Among
them, ER− LPs are long-lived progenitor cells that give rise to milk-producing alveolar
luminal cells during pregnancy and lactation (i.e., alveolar progenitors) [34,35]. Evidence
from both human breast tissue and mouse modeling studies demonstrated that basal-like
breast cancers (BLBCs), particularly those developed in BRCA1 mutation carriers, originate
from such LPs rather than from basal MECs [36–39]. This was further supported by our
recent single-cell study in which we showed selective expansion of the alveolar LP subpop-
ulation upon induced BRCA1 loss in a novel mouse model of BRCA1-deficient BLBC [40].
In addition, we demonstrated that mammary tumors developed in the mouse mammary
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tumor virus-polyoma middle T antigen (MMTV-PyMT) transgenic model (a mouse model
for luminal B subtype of human breast cancer [41]) may have an LP origin as well [35].

Prostate epithelial cells (PECs) include luminal and basal cells (as well as a rare
population of neuroendocrine cells) [42]. Based on the renal capsule reconstitution assay,
it was shown initially that basal PECs exhibited multipotent prostate stem cell activity
and could serve as cells-of-origin of most, if not all, prostate cancers [43,44]. However,
human prostate cancer is luminal in nature and its progression to the advanced stage is
characterized by a progressive loss of basal cells [45]. If prostate cancer originates from
basal PECs, such cells would need to differentiate into luminal PECs first. In fact, by
lineage tracing, several studies provided convincing evidence to support that luminal
PECs could also serve as cells-of-origin of prostate cancer, leading to development of more
aggressive prostate cancer [46,47]; in these models, although prostate cancer could also
initiate from basal cells, such cancer exhibited longer latency due to a need for basal cells
to differentiate into luminal cells first. In the renal capsule reconstitution assay, luminal
PECs can be produced via differentiation from basal PECs [48]; however, in unperturbed
adult prostates, the luminal lineage appears to be self-sustained by its own progenitor
cells [46,49–51]. Existence of multipotent or unipotent human and mouse prostate LPs
was supported by the recently developed organoid culture system [52–56]. Furthermore,
several recent studies based on single-cell analysis have also demonstrated the presence
of LPs in mouse or human prostate [55,57–59]. Overall, it appears that, although prostate
cancer can originate from both basal and luminal PECs, luminal cells (particularly LPs)
are the preferred cellular origin of prostate cancer, including castration-resistant prostate
cancer (CRPC) [46,47,50,51,55,60].

Ovarian cancer, as the name suggests, was initially thought to originate from epithelial
cells in the ovary, referred to as ovarian surface epithelial (OSE) cells [61,62]. However, more
recent evidence suggested that the cellular origin of most epithelial ovarian cancers (EOCs),
particularly the most common type, serous ovarian carcinoma, is the epithelial cell of nearby
fallopian tube (FT) tissues (oviduct in mouse) [63–68]. The FT epithelium is composed of
two types of FT epithelial (FTE) cells, including secretory cells and ciliated cells [69]. FTE
cells are positive for Keratin 8, which is a pan-luminal marker, so they are “luminal” cells
as well [70]. By lineage tracing, it was shown that FTE secretory cells have stem/progenitor
cell activity and can give rise to ciliated cells, which are considered as more differentiated
FTE cells [69]. It is now believed that most serous ovarian cancers originate from FTE
secretory cells, particularly those in the fimbrial region of the FT (i.e., the distal region of
the FT closer to the ovary) [71,72]. While both FTE and OSE cells could serve as cells-of-
origin of ovarian cancer in experimental settings, their corresponding ovarian cancer types
exhibited different disease latencies and therapeutic responses [73,74]. Importantly, by
single-cell analysis and comparison of expression signatures, we showed recently that a
subset of FTE secretory cells expressing stem/progenitor cell-related genes resemble LPs in
the mammary gland at the molecular level (whereas OSE cells resemble basal MECs) [75],
suggesting that they may represent LP-equivalent cells in the FT epithelium. Together, it
seems that, in breast and prostate cancers, there is convincing evidence to support that the
LP subpopulation in their corresponding epithelium may be the preferred cellular origin;
this notion may also hold true in ovarian cancer, but more studies are needed to further
demonstrate it.

4. Common Innate Immune Program in LPs

Transcriptome analyses of mouse and human MEC subpopulations revealed expres-
sion of multiple genes related to the innate immune pathways, particularly the Toll-like
receptor (TLR) signaling pathways (e.g., genes encoding CD14, LBP, TLRs) in mammary
LPs [76]. TLRs are a group of pattern recognition receptors (PRRs) in the innate immune
system to recognize pathogen-associated molecular patterns (PAMPs) and endogenous
damage-associated molecular patterns (DAMPs) [77]. In TLR pathways, lipopolysaccharide
(LPS), a major component of Gram-negative bacteria, is the ligand for several TLRs (e.g.,
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TLR4). CD14 binds LPS in the presence of lipopolysaccharide-binding protein (LBP) and
plays a key role to load LPS onto the TLR4/MD2 (MD2 also known as LY96) complex.
Activation of the TLR4/MD2 complex triggers downstream signaling cascades (e.g., ac-
tivation of NFκB signaling, leading to production of proinflammatory cytokines) [78,79].
Expression of the TLR4/MD2 complex has been found in mammary LPs, and, importantly,
treatment of LPs with TLR ligands led to enhanced growth of mammospheres, suggesting
that these progenitor cells could directly sense and respond to microbial products [80]. In
addition to sensing bacterial infection, other TLRs, such as TLR3, an endosomal TLR, can
sense double-stranded RNA (dsRNA; e.g., from viral infection) [81], which eventually leads
to production of mainly type I interferons (IFNs) [82].

Intriguingly, in our recent study of single-cell analysis of FT cells, we found that FTE
secretory stem/progenitor cells resemble mammary LPs, and the similarity in their tran-
scriptomes is in part due to their common expression of innate-immunity/TLR-pathway-
related genes (e.g., Lbp, Cd14) [75]. This expression pattern (of immune-related genes) is
also observed in human FT secretory progenitor cells [83].

In the prostate, by single-cell analysis, we identified a LY6D+ progenitor subpopulation
in the luminal lineage; these progenitors represent multipotent and/or unipotent LPs
inherently resistant to androgen deprivation and with regenerative capacity and can serve
as cells-of-origin for prostate cancer initiation and progression to CRPC [55]. LY6D+ prostate
LPs are consistent with several types of prostate LP subpopulations defined in other studies,
including those by lineage tracing [49–51] or single-cell analysis [57–59]. By expression
analysis, we found that innate-immunity/TLR-pathway-related genes are also expressed
in these prostate LPs [55]. Of note, the inflammation/immune-related gene signature has
also been observed across multiple mouse and human prostate LP datasets from another
study [84].

Why do progenitors for luminal MECs, luminal PECs, and FTE cells express com-
mon innate-immunity/TLR-pathway-related genes? One possibility is that all these or-
gans/tissues are susceptible to bacterial and/or viral infection (e.g., mastitis in the breast,
prostatitis in the prostate, and salpingitis in the FT) and expression of innate immune genes
in LPs that possess regenerative capacity may link the inflammation-related tissue damage
to their corresponding epithelial tissue repair program, a process that may contribute to
development of their corresponding cancer types. In support of this, polymorphisms in
TLR genes or TLR expression have been found associated with these cancers; for instance,
in breast cancer, polymorphisms in TLR3, 5, and 9 genes may either increase breast cancer
risk or play protective roles [85–87]. Genetic variations in candidate genes involved in
TLR or its downstream NFκB pathways may also be associated with breast cancer risk [88].
Furthermore, expression of TLR4 and its downstream adapter protein MyD88 was found to
be significantly higher in breast cancer than adjacent normal tissues, which was associated
with poor prognosis [89,90]. In prostate cancer, polymorphisms in TLR4 were reported to
be associated with prostate cancer risk in several studies [91–95], although no significant as-
sociation was also found in other studies [96,97]. In ovarian cancer, high expression of TLR4
and MyD88 was found to predict poorer overall survival in patients with EOCs [98]. A
polymorphism in TLR4 was also found recently to be associated with increased ovarian can-
cer risk [99]. Of note, TLR pathways have dichotomous roles in cancer development [100].
They can inhibit cancer initiation by activating innate immune reactions (and, subsequently,
adaptive immune responses), leading to elimination of premalignant cells; however, if
TLR-induced inflammation persists, chronic inflammation and TLR-related tissue repair
can promote cancer development. Thus, any association of TLRs with clinical outcomes is
likely to be cancer-type/context-dependent.

5. Presence of Microbes in Normal and Cancerous Breast, Prostate, and FT Tissues

It has been well studied that several human viruses (e.g., human papillomavirus
(HPV), hepatitis B virus (HBV), Epstein–Barr virus (EBV)) can directly cause cancer initia-
tion via infection of the cellular origin of their corresponding cancer type, in part due to
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expression of viral oncogenes and/or induction of host proto-oncogenes [101]. In addi-
tion, microbe infection (e.g., bacteria, viruses) can also contribute to cancer development
indirectly via activation of innate immune pathways and induction of an inflammatory
microenvironment. For instance, Helicobacter pylori (H. pylori) infection is associated with
development of gastric cancer due to interactions of H. pylori PAMPs with PRRs located
on immune and gastric epithelial cells and subsequent activation of the innate immune
program [102]. Although breast, prostate, and ovarian cancers are not typical cancer types
known to be associated with an infection, microbes (e.g., bacteria, fungi, and viruses) may,
nevertheless, play important roles in their development from their cellular origins.

5.1. Microbes in Breast Tissue and Cancer

Breast tissue and milk used to be thought as sterile but are now known to contain
a diverse and unique microbiome [103]. Mastitis is an inflammation of breast tissue
that may involve infection and most commonly affects women who are breast-feeding.
Although it remains controversial, there are some epidemiological studies showing a link
between mastitis and higher risk of developing breast cancer [104,105]. With advances
in sequencing technology, microbiota profiling has become feasible. By using 16S-rRNA-
amplicon-sequencing-based microbiome analysis, a previous study showed that bacteria
were indeed present in breast tissues, and, intriguingly, bacterial profiles in normal adjacent
breast tissues from women with breast cancer are different from those in breast tissues from
healthy women [106]. In particular, bacteria that had the ability to cause DNA damage
in vitro were found to be more abundant in adjacent breast tissues from breast cancer
patients, whereas those with anticarcinogenic properties were more abundant in normal
breast tissues, raising the possibility that the breast microbiota may modulate the risk of
developing breast cancer [106]. In breast cancer patients, compared to the adjacent breast
tissues, breast tumors have higher bacterial load and richness (i.e., number of bacterial
species) [107,108]. Overall, it appears that these differences are tissue/cancer-stage-specific
(e.g., from breast tissues in healthy women to breast tissues adjacent to tumors and to
breast tumors, there are increasing numbers and species of bacteria [108]). Since these
human tissue studies are correlations in nature, whether microbiota in breast tissues play
any direct contribution to breast cancer development is unclear. Studies in experimental
models may help to elucidate this. For instance, a recent study showed that tumor-resident
microbiota could promote metastatic colonization of mammary tumor cells in an MMTV-
PyMT transgenic mouse model [109]. Thus, microbes (e.g., bacteria) are present in both
normal and cancerous mammary tissues and may affect breast tumorigenesis in at least
some stages of its development.

In addition to bacteria, there is also evidence showing a potential relationship of viral
infection with breast cancer. Infection with human cytomegalovirus (CMV) is common in
adults in developed countries (~40–70%), and this virus was shown to preferentially infect
breast cancer cells with elevated expression of platelet-derived growth factor receptor-
α (PDGFRα) and fibroblasts (which have high levels of PDGFRα expression); infection
of PDGFRα+ fibroblasts raised the possibility that human CMV infection could affect
the tumor microenvironment, leading to a more inflammatory milieu [110]. Previous
research also reported some conflicting data of the potential roles of HPV, EBV, or MMTV
in breast cancer, but the precise roles of these viruses in breast tumorigenesis remain
unclear [111,112].

5.2. Microbes in Prostate Tissue and Cancer

Similar to breast tissue, the urinary tract in males, which goes through the prostate,
was traditionally considered as a sterile body niche but is now well recognized as a reservoir
of bacteria [113,114]. Urinary tract infections (UTIs) are mainly due to bacterial infections
but may also be caused by fungi or viral infections [113,114]. Acute bacterial prostatitis
is an acute bacterial infection of the prostate gland that is mainly caused by ascending
urethral infection or intraprostatic reflux [115]. Acute bacterial prostatitis is most frequently
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caused by Escherichia coli (Gram-negative), followed by Pseudomonas aeruginosa and Kleb-
siella, Enterococcus, Enterobacter, Proteus, and Serratia species [116–119]. Chronic bacterial
prostatitis is defined as recurrent UTIs with the same organism in prostatic secretions dur-
ing asymptomatic periods [120]. The most common pathogenic agents of chronic bacterial
prostatitis are also Escherichia coli or other Gram-negative Enterobacteriaceae [121].

As the urinary tract is considered the main route for potential bacterial infections
that could affect prostate cancer development (e.g., by influencing chronic inflammation
observed in the prostate), urinary microbiome was profiled in men with or without prostate
cancer and the study found a prevalence of proinflammatory bacteria and uropathogens
in the urinary tract of men with prostate cancer [122]. Microbiome profiling has also been
performed in the expressed prostatic secretions (EPS) of patients with prostate cancer or
benign prostatic hyperplasia (BPH); in this study, a cluster of bacteria, most of which are
Gram-negative, was shown to be abundant in EPS from patients with prostate cancer [123].
In a third approach, cancerous prostate tissue biopsies were subjected to whole-genome se-
quencing directly, and, by metagenomic analysis, it was found that many common bacterial
genera could be detected in prostate tissues, with a predominance for Proteobacteria [124].
Men from Africa or with African ancestry have elevated risks of developing lethal prostate
cancer, and, intriguingly, this study found that there was increased bacterial content and
richness within the African versus non-African samples, raising the possibility that onco-
genic transformation driven by bacterial infection within the prostate microenvironment
may be contributing to the aggressive disease presentation in African samples [124].

In addition to bacteria, viruses may also contribute to prostate cancer development.
For instance, HPV can immortalize normal human PECs, and there is strong evidence
supporting the association of HPV infection with increased risk of prostate cancer [125–127].
Other viruses, such as CMV or Polyoma viruses, may also play a role in prostate cancer,
but the association is not significant [126].

5.3. Microbes in FT Tissue and Ovarian Cancer

With improvements in bacterial detection, the theory of the sterile female upper
reproductive tract (URT) has been frequently challenged in recent years [128]. Similar
to mammary and prostate glands, it is now believed that the URT in the female, which
includes the FT and ovary, is also unlikely to consist of sterile structures [129]. By 16S
bacteria rRNA gene analysis, it was found that bacteria indeed exist in the URT, and
there were significant differences in the microbiome of FT versus ovary, as well as the
proximal versus distal (fimbriae) region of the FT [129]. The latter is important as the distal
region of the FT is thought to be the origin of most serous ovarian carcinomas [63–68].
In another study, by 16S rRNA high-throughput sequencing analysis, the diversity and
composition of the microbiota from ovarian cancer tissues and normal distal FT tissues
were compared; it was concluded that microbial composition change might be associated
with the process of ovarian cancer development from the distal region of the FT [130]. As
local inflammation may participate in initiation and continuation of ovarian cancer [131],
the microenvironment of the FT may contribute to ovarian cancer initiation before the
cancer spreads to the ovary and beyond.

The relationship of viral infection and ovarian cancer initiation is also a novel focus
in clinical research. There were some studies showing an association of CMV and HPV
with EOC [132–134]. Other studies reported no significant association but still speculated
a potential role of HPV infection in ovarian carcinogenesis [135,136]. More evidence is
needed to illustrate the link and mechanism.

6. Immune Programs in Formation of TICs/CSCs

The studies summarized above demonstrate the presence of microbes such as bacteria
in mammary and prostate glands as well as FTs. A common theme appears to be the asso-
ciation of dysbiosis (i.e., an imbalance in the microbiota, a term originally from the study
of gut microbiota [137]) with the neoplastic transformation process of their corresponding
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cancer type. In particular, there is often an overrepresentation of Gram-negative bacteria
associated with initiation of these epithelial cancers, which is likely to be driven by LPs (as
their cellular origins). As discussed above, LPS is a major component of Gram-negative
bacteria and can trigger TLR pathways (e.g., TLR4). TLR4 signaling can use either MyD88-
dependent or -independent downstream pathways: in the MyD88-dependent pathway,
activated TLR4 uses MyD88 as an adapter to eventually activate NFκB, leading to produc-
tion of proinflammatory cytokines; in the MyD88-independent pathway, activated TLR4
uses TRIF (also known as TICAM1) as the adapter, eventually leading to IRF3 activation
and production of type I IFNs [79]. In breast, prostate, and ovarian cancers, studies using
their corresponding cancer cell lines or primary cancer cells from patients all provided
evidence to support that LPS could promote production of proinflammatory cytokines
from cancer cells by signaling through TLR4 and MyD88 [77,138,139]. Of note, TLRs can
also be activated by DAMPs released from damaged and/or necrotic tissues (e.g., TLR4
and TLR2 can be activated by HMGB1) [77]. Thus, the fact that LPs in breast, prostate,
and FT tissues are strongly linked with the microbiome and innate-immunity/TLR-related
programs provides a potential mechanistic link for involvement of microbe and immune
programs in initiation and/or progression of these cancer types.

Recent studies have demonstrated a prominent association between cancer stemness
(i.e., the stem-cell-like properties of TICs/CSCs) and immunity [140,141]. As discussed
above, chronic inflammation in the breast, prostate, or FT tissues, in part due to the presence
of Gram-negative bacteria, could trigger the innate immune program in LPs, leading to
activation of the NFκB pathway and production of proinflammatory cytokines, which could
attract and recruit macrophages. Macrophages have been shown as important mediators
of tumor immunosurveillance [142,143]. As key innate immune cells in the mammary
gland, macrophages have been shown to play dual roles in development and remodeling of
MECs [144]. Macrophages have at least two activation states (i.e., polarization states [145]):
the classically activated M1 state, in which they are proinflammatory and are cytotoxic
against microbes and tumor cells; the alternatively activated M2 state, in which they play
a role in homeostatic mechanisms that terminate inflammatory responses and promote
wound healing and tissue remodeling [145–147]. Although M1/2 may be an oversim-
plified description of macrophage functional states, they at least provide a framework
for understanding different roles of macrophages. TLR signaling can negatively affect
cancer initiation by activating innate/adaptive immune reactions, leading to elimination
of mutated or infected cells. However, if TLR-induced inflammation persists, chronic
inflammation can promote cancer progression, in part due to polarization of macrophages
from the M1 to the M2 state (and subsequent or accompanying changes in other immune
cells). In addition to macrophages, other immune cell subpopulations, such as myeloid-
derived suppressor cells (MDSCs) and certain subsets of T cells (e.g., Th17 T helper cells in
ovarian cancer [148,149] and regulatory T cells in breast cancer [150]) can also contribute to
formation of TICs/CSCs and/or reinforcing their stemness [140,141].

The stemness of TICs/CSCs is regulated by several key pathways, among which the
STAT3 pathway is an important one as this pathway can not only upregulate expression of
stemness-related genes potently but also activate other stemness-promoting pathways (e.g.,
NFκB pathway) [141]. In fact, STAT3 is one of the most important transcription factors to
regulate both stemness and innate immunity. TICs/CSCs can contribute to macrophage
polarization to M2 via the STAT3 pathway in breast cancer [151] or the NFκB pathway
in ovarian cancer [152] (Figure 2). In return, macrophages can contribute to formation of
TICs/CSCs via these two pathways as well [153–155] (Figure 2). This can be achieved by
inducing a positive feedback loop to reinforce the stemness of TICs/CSCs through a panel
of TIC/CSC-supporting cytokines, such as IL-6, IL-8, or WNT5B [141].
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luminal progenitors in the breast, prostate, and FT).

In addition to recruiting various immune cells, TLR pathways also play an important
role in maintaining tissue homeostasis by regulating inflammatory and tissue repair re-
sponses to injury, a process that can contribute to cancer development [156]. In various
epithelial tissues, multiple lines of evidence support that expression of TLRs in epithelial
cells not only allows them to detect pathogen-derived products and trigger innate and
adaptive immunity but also coordinates repair of epithelial cell injury: e.g., (1) in intestinal
epithelial cells, it has been shown that TLR4- and MyD88-dependent signaling induces
COX2 expression, which mediates generation of PGE2 and production of growth factors,
leading to intestinal epithelial proliferation [157]; (2) TLRs can also provide signals to
promote survival of epithelial cells under stress conditions (e.g., through the TLR4-MyD88-
NFκB-COX2 cascade in normal and premalignant colon cells [158]); (3) wound healing
was impaired in Myd88-deficient mice [159]; (4) deletion of MyD88 or TLR2 impaired
intestinal epithelial regeneration and decreased mammary epithelial repopulating unit
frequency [160].

7. Perspective of Targeting TICs/CSCs by Enhancing Immunotherapy

As discussed above, immune mechanisms likely play key roles in development of
TICs/CSCs from their cellular origins. By gene expression analysis, it was found that
there is an association between cancer stemness and immune suppression in many types
of solid tumors [161]. Notably, recurrent negative correlations to stemness were observed
among major immune cell subpopulations that possess antitumor properties, including
CD8+ T cells, natural killer (NK) cells, and B cells [161]. Crosstalk between TICs/CSCs
and immune cells, especially myeloid cells and T cells, also enables TICs/CSCs to shape a
specific immunosuppressive tumor microenvironment (TME) that facilitates tumorigen-
esis, metastasis, and drug resistance [151,162,163]. Thus, harnessing the immune system
and reversing TME to an anti-tumor state might represent a promising strategy to target
TICs/CSCs or even prevent their formation from cellular origins.

Immune checkpoints are involved in a negative feedback mechanism that counteracts
the activation signals in T cells to temper the immune response and maintain hemosta-
sis in order to minimize tissue damage [164,165]. However, this mechanism is usually
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hijacked by tumor cells to escape immune surveillance, leading to tumor progression [166].
Immune checkpoint blockade (ICB) therapy is developed with the idea of harnessing
the immune system to strengthen anti-tumor responses, which has achieved great suc-
cess in the past decade [164,166]. In particular, immune checkpoint antagonists, such as
monoclonal antibodies specific for PD-1, PD-L1, and CTLA-4, have revolutionized cancer
therapy. Nevertheless, high levels of intratumoral heterogeneity and acquisition of an
immunosuppressive TME (i.e., immune “cold” tumor) appear to be natural obstacles that
have prevented ICB therapies from yielding satisfying outcomes in many human cancer
types, including hormone-related cancers [167,168]. In breast cancer, triple-negative breast
cancer (TNBC) is a subtype of breast cancer that often exhibits more lymphocyte infiltra-
tion in primary tumor sites than other subtypes. Due to their nature of generally higher
immunogenicity, they are candidates for ICB-based immunotherapy, yet anti-PD-1/PD-L1
monotherapy only resulted in a mild response in TNBC patients [169,170]. In ovarian
cancer, high-grade serous ovarian cancer (HGSOC) is the most common and lethal subtype.
Due to their endogenous immunity at the molecular or T cell level, they can potentially
be candidates for ICB-based immunotherapy as well, yet, to date, the outcome has fallen
short of expectations [171]. Possibly due to the low mutational load and defects in T-cell-
mediated anti-tumor immunity, prostate cancer is a type of cancer that is largely immune
“cold” and responds to ICB-based immunotherapy poorly, with ICB clinical trials showing
disappointing results for CRPC patients [172–174].

Expression analysis also showed that cancer stemness was strongly associated with
cell-intrinsic suppression of endogenous retroviruses and type I IFN signaling and increased
expression of multiple therapeutically accessible immunosuppressive pathways [161]. One
strategy to improve responsiveness to ICB-based immunotherapy is to restore/enhance
inflammation of the tumor (e.g., by activating IFN signaling and/or blocking immuno-
suppressive pathways). As discussed above, many TNBCs, HGSOCs, and prostate can-
cers may originate from their corresponding LPs (in the case of HGSOC, FT secretory
stem/progenitor cells). TICs/CSCs of these cancer types may inherit the innate immune
program (e.g., TLRs) from their cellular origins; if so, this may offer a unique opportunity
to stimulate/enhance immune reactions in them (e.g., by activating their innate immune
program using TLR agonists), making them more amenable to ICB-based immunother-
apy (Figure 2). In support of this idea, in a recent study using a breast cancer metastasis
model, MMTV-PyMT, it was shown that combined use of monophosphoryl lipid A (MPLA)
and IFNγ reduced primary tumor growth and metastasis by activating a collaborative
innate-adaptive immune response [175]. MPLA is a TLR4 agonist modified from lipid
A, the biologically active part of Gram-negative bacterial LPS endotoxin; compared to
LPS, MPLA exerts similar immunostimulatory activity but with reduced toxicity and has
been approved by the FDA to use against cancer-causing HPV [77,176,177]. We showed
previously that MMTV-PyMT mammary tumors may originate from mammary alveolar
LPs [35], which express TLR pathway genes (e.g., Tlr4, Cd14, Lbp) [178]. This raises an
intriguing possibility that the effectiveness of this approach was in part mediated via
activation of TLR signaling by MPLA in PyMT TICs/CSCs, which may have inherited
the TLR/innate immune program from LPs. The therapeutic potential of targeting TLR
pathways in breast and prostate cancers was also discussed in other reviews [77,179]. Sim-
ilar to our idea here (which focuses on targeting TLR+ TICs/CSCs), TLR agonists have
also been viewed as either a possible therapeutic agent or as a vaccine adjuvant toward
cancers [180]. Of note, in a transplantation-based ovarian cancer mouse model (i.e., ID8
model), TLR4 agonist LPS was tested to determine whether activation of TLR4 signaling
could reshape the cancer immune signature [181]; even though this treatment did not result
in survival benefit, it should be pointed out that the ID8 model originated from OSE cells
(rather than FTE cells) [182], which do not express TLR pathway-related genes [75]. This
study thus highlights the potential importance of choosing the right cancer for testing this
strategy; that is, the strategy of boosting ICB-based immunotherapy via activation of TLR
signaling might be most effective for cancer cells (or their TIC/CSC subset) equipped with
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the TLR/innate immune program. In addition, due to the dual roles of TLR pathways
in cancer development [100], caution should be taken when using TLR agonists so that a
window of opportunity is chosen to maximize the efficacy of immunotherapy and minimize
any potential pro-tumor activities (e.g., chronic inflammation, inflammation-associated
tissue repair).

8. Conclusions

In the last 10–15 years, studies in mouse models and human tumors have shown that
progenitors for “secretory” cells (i.e., milk-producing alveolar cells, prostate luminal cells,
FT secretory cells) are the preferred cellular origins of several common hormone-related
cancers (i.e., breast, prostate, and ovarian cancers). A common feature of these LPs is that
they all express genes related to the innate immune pathways (e.g., TLR pathways). Recent
demonstration of the presence of microbes (e.g., bacteria) in their corresponding normal
tissues and cancers suggests potential activation of innate immune responses in these LPs,
which may contribute to initiation and progression of their corresponding cancer types. This
can be achieved by chronic inflammation, LP-mediated epithelial tissue repair triggered
by inflammation-related tissue damage, and crosstalk between evolving TICs/CSCS and
immune cells (e.g., macrophages). Potential inheritance of the innate immune program by
TICs/CSCs from their cellular origins may convey unique vulnerability to these TICs/CSCs,
which may be harnessed for their elimination by enhancing immunotherapy. Although
we focus on a discussion of hormone-related cancers in this review, we suspect that the
same concept may also be applicable to other human epithelial cancer types that involve
exposure to microbes (e.g., lung cancer, intestine/colon cancer).
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