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Simple Summary: Transcription factor EB (TFEB) is a master modulator of autophagy and 

lysosomal biogenesis. Dephosphorylation of TFEB at Ser142 and Ser138 determines its nuclear 

localization and transcriptional activity. The link between TFEB-associated genes and colorectal 

cancer (CRC) progression and prognosis remains unclear; thus, we performed data-independent 

acquisition (DIA)-based quantitative proteomics to systematically identify the targets of TFEB. 

Using stringent statistical criteria, 60 proteins associated with vesicular endocytic trafficking were 

identified as TFEB targets. Moreover, a prognosis-linked TFEB-related gene signature was 

developed, showing that patients with higher risk scores had higher epithelial–mesenchymal 

transition (EMT) scores with worse prognosis. Additionally, a nomogram was constructed by 

combining clinicopathological parameters and the gene signature to enhance the quantification 

capacity in risk assessment for individual patients. This research facilitates further mechanistic 

studies of TFEB, and the TFEB gene signature-based model may provide important information for 

assisting clinicians to predict CRC patient prognosis. 

Abstract: Dephosphorylation of transcription factor EB (TFEB) at Ser142 and Ser138 determines its 

nuclear localization and transcriptional activity. The link between TFEB-associated genes and 

colorectal cancer (CRC) progression and prognosis remains unclear. To systematically identify the 

targets of TFEB, we performed data-independent acquisition (DIA)-based quantitative proteomics 

to compare global protein changes in wild-type (WT) DLD1 cells and TFEBWT- or TFEBS142A/S138A 

(activated status)-expressing DLD1 cells. A total of 6048 proteins were identified and quantified in 

three independent experiments. The differentially expressed proteins in TFEBS142A/S138A versus 

TFEBWT and TFEBWT versus control groups were compared, and 60 proteins were identified as 

products of TFEB transcriptional regulation. These proteins were significantly associated with 

vesicular endocytic trafficking, the HIF-1 signaling pathway, and metabolic processes. Furthermore, 

we generated a TFEB-associated gene signature using a univariate and LASSO Cox regression 

model to screen robust prognostic markers. An eight-gene signature (PLSCR3, SERPINA1, 

ATP6V1C2, TIMP1, SORT1, MAP2, KDM4B, and DDAH2) was identified. According to the 

signature, patients were assigned to high-risk and low-risk groups. Higher risk scores meant worse 

overall survival and higher epithelial–mesenchymal transition (EMT) scores. Additionally, as per 

the clinicopathological parameters and gene signature, a nomogram was constructed that was 

utilized to enhance the quantification capacity in risk assessment for individual patients. This 

research shows that TFEB directly mediates network effects in CRC, and the identified TFEB gene 

signature-based model may provide important information for the clinical judgment of prognosis. 
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1. Introduction 

Colorectal cancer (CRC), a common malignant tumor in the digestive system, ranks 

third in terms of incidence and second regarding mortality, according to global cancer 

statistics [1]. The molecular structure of CRC is extremely heterogenous and is therefore 

responsible for the heterogeneous and frequently suboptimal treatment response [2]. 

Thus, research has focused on molecular subtyping strategies based on single or 

multiomics data to categorize patients into subgroups to facilitate risk stratification and 

disease management [3]. 

Dysregulation of transcription factors (TFs) leads to pronounced changes in gene 

expression, which is a common phenomenon of human malignant neoplasias [4,5]. These 

alterations influence cell proliferation/differentiation, metastasis, and migration, as well 

as chemotherapeutic resistance, thereby acting as major factors concerning the behavior 

of tumors [6]. Transcription factor EB (TFEB), which belongs to the MiT-TFE helix TFs, 

performs a vital function in lysosomal biogenesis, autophagy, metabolism, and the 

immune response [7]. Numerous reports have indicated that TFEB is upregulated in 

various types of tumors [7,8], and high levels of TFEB expression in CRC tissues are 

associated with aggressive clinical characteristics and poor survival of CRC patients [9]. 

Overexpression of TFEB and upregulation of its transcriptional network appears to be 

sufficient to drive tumorigenesis in different tissues; therefore, modulation of the activity 

of TFEB can be considered as a potential therapeutic strategy [10]. 

The TFEB shuttling between the nucleus and cytoplasm is influenced by its 

phosphorylation [11]. After being translocated to the nucleus, TFEB activates its target 

gene’s transcription [12]. The nuclear export of TFEB is determined by the 

phosphorylation status of S142 and S138 near the nuclear export signal (NES). 

Dephosphorylation of S138/S142 when mTOR is inhibited results in TFEB nuclear 

retention [13]. The mutation of the aforementioned serines to alanines results in different 

TFEB types that appear to be localized in the nucleus and are constitutively active [12–14]. 

It is assumed that many reported targets of MiT members exert critical functions in 

tumorigenesis [7,15,16]; thus, identification of additional targets may be important for 

further insights regarding the functions of TFEB and its inhibition in cancer treatment.  

In this study, to systematically identify the targets of TFEB, we produced stably wild-

type TFEB (TFEBWT)- or activated-status TFEB (TFEBS142A/S138A)-expressing CRC cells and 

quantitatively analyzed the proteomes of these cells. Using stringent statistical criteria, 60 

proteins were identified as TFEB targets. Moreover, a prognosis-linked gene signature 

(TFEB related) was developed utilizing the robust biomarkers identified through the 

combination of different methods. These insights will help further identify TFEB targets 

and elucidate the functions of TFEB. 

2. Materials and Methods 

2.1. Cell Lines and Cell Culture 

Human DLD1 and 293T cells were cultured as per the respective depositors’ 

recommendations after purchase from the American Type Culture Collection (Manassas, 

VA, USA). 

2.2. Plasmid Construction, Retroviral Infection, and Transfection 

TFEBWT-GFP and mutant TFEBS142A/S138A-GFP DNA sequences were amplified by PCR 

and were cloned into the pEGFP-N1 vectors, followed by subcloning into a pLVX-Puro 

lentiviral vector. Cells that overexpressed TFEBWT or TFEBS142A/S138A stably were generated 

as described previously [17]. Briefly, lipofectamine 3000 (Thermo Fisher Scientific, 
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Waltham, MA, USA) was utilized to infect the cells by transfecting 293 T cells with virus 

skeleton vectors and lentiviral plasmids. CRC cells were infected using culture media 

containing viruses and were selected using puromycin. Prior to further experimentation, 

the selected stably overexpressed wild-type or mutant TFEB cells were maintained for at 

least two weeks. 

2.3. Immunoblotting 

Immunoblotting assays were performed as previously described [18]. SDS-PAGE 

was performed on the extracted proteins, which were then transferred onto PVDF 

membranes (BIO-RAD, Hercules, CA, USA). The gel bands formed after exposure to 

appropriate antibodies (primary and secondary) were visualized using the ECL reagent 

(BIO-RAD) and imaged by Tanon 5200-Multi (Tanon Science & Technology, Shanghai, 

China). The primary antibodies (against TFEB, GFP, LAMP2, NDRG1, SMPD1, and actin) 

and the HRP-conjugated secondary antibodies (goat anti-rabbit antibody) were supplied 

by Proteintech (Wuhan, China). Original uncropped images for immunoblotting are 

presented in Figure S1. 

2.4. Cell Proliferation Assays 

For the proliferation assay, CRC cells stably expressing TFEBWT or TFEBS142A/S138A were 

seeded in 96-well microplates at a density of 1.5 × 103 cells per well and were cultured for 

four days. One day after seeding, cells were stained with CCK-8 (Beyotime, Jiangsu, 

China). The automated microplate spectrophotometer (BioTek Instruments, Winooski, 

VT, USA) was employed to read the plate after 1.5 h at the 450 nm wavelength. 

Absorbance was normalized against the absorbance on the first day and was calculated. 

Each experiment was performed in triplicate. 

2.5. Confocal Examination 

DLD1 cells stably expressing TFEBWT-GFP or TFEBS142A/S138A-GFP were plated on 

confocal dishes (NEST, Wuxi, China) and were incubated for 24 h. Prior to imaging, DAPI 

(Beyotime) was used as a stain to label the nucleus. TFEBWT treated with Torin (TargetMol, 

Shanghai, China) was used as positive control. A confocal laser scanning microscope 

(LSM 880 with AiryScan, Carl Zeiss, Oberkochen, Germany) was utilized to visualize and 

record the GFP fluorescence. 

2.6. Pinocytosis Assays 

Pinocytosis was examined using a TRITC-dextran (70 kDa; Ruixi Biological 

Technology Co., Ltd., Xi’an, China) uptake assay. The incubation of the stably expressing 

TFEBWT-GFP or TFEBS142A/S138A-GFP DLD1 cells with 1 mg/mL TRITC-dextran was 

performed for 2 h at 37 °C, followed by thorough washing and processing for 

immunofluorescence assays as described above. The quantification of TRITC-dextran 

uptake was conducted through the “Analyze Particles” feature in Fiji software (Image J 

v1.4). Cells that absorbed TRITC-dextran were quantified with the aid of a flow cytometer 

(BD Biosciences, CA, USA) at 594 nm. 

2.7. Mass Spectrometry (MS) Analysis 

To assess global protein alteration, data-independent acquisition (DIA)-based 

proteomics was performed as per our prior study [19]. Briefly, cells were subjected to cell 

lysis buffer with subsequent trypsin digestion and desalination. Following the addition of 

iRT-Standard (Biognosys, Cambridge, MA, USA) to each sample, the Orbitrap Fusion 

Lumos mass spectrometer (Thermo Fisher Scientific) was employed for producing the 

DIA-MS raw data. The raw data were searched against the UniProt human protein 

database (http://www.uniprot.org, accessed on 20 January 2021). Among all mentioned 

alterations, the variable ones were considered to be the acetylation of lysine and the 
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protein N-terminal as well as oxidation (M), whereas a fixed modification was considered 

to be carbamidomethylation (C). The peptide and protein identification false discovery 

rate cutoff values were set at 1%, and their expression levels were measured with the aid 

of the Spectronaut software v14 (Omicsolution, Shanghai, China).  

2.8. Analysis of Differentially Expressed TFEB Targets 

The differentially expressed proteins (DEPs) in the TFEBS142A/S138A and TFEBWT groups 

(TFEBS142A/S138A/TFEBWT) and TFEBWT and control groups (TFEBWT/control) were obtained 

using the R software v4.0.5 “limma” package [20], and the criteria used to define DEPs 

were as follows: fold change (FC) > 1.2 and p < 0.05. TFEB targets were identified as FC 

(TFEBS142A/S138A/TFEBWT) > FC (TFEBWT/control) > 1.2 and p < 0.05. 

2.9. Gene Ontology Analysis 

The enriched pathways of TFEB targets were identified through the R package 

“clusterProfiler” [21,22] utilizing GO (including CC: cellular component, BP: biological 

pathway, and MF: molecular function) and KEGG functional enrichment analyses. 

Utilizing the entire human genome as a reference, the functional annotation chart options 

set p < 0.05 for determining the significant biological pathways.  

2.10. Publicly Available mRNA Data 

The relevant clinical information and RNA-seq data on colon cancer (COAD) from 

The Cancer Genome Atlas (TCGA) database were acquired by using the online tool 

Sangerbox (http:// sangerbox.com/, accessed on 6 April 2022) [23], and were included in 

the training group. Subsequently, an expression matrix file (GSE17536) via the Gene 

Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/, accessed on 20 May 

2022) was utilized for external verification.  

2.11. Signature Generation 

The “Survival” R package was employed for univariate Cox regression analysis to 

screen out the differentially expressed TFEB targets linked to prognosis, whereas further 

operations such as the Cox regression model of the least absolute shrinkage and selection 

operator (LASSO) were fit using the “Glmnet” R package to further identify the most 

robust candidates. The gene expression levels were normalized and calculated by the 

corresponding LASSO Cox coefficients, which were then used to establish the TFEB-

related risk score (TRS) as follows:  

TRS = ∑i Coefficient (mRNAi) × Expression (mRNAi)  

2.12. Classification, Prediction, and Validation in GEO and TCGA 

As per the formula of the signature, the patients were classified into two risk groups 

(high-risk and low-risk groups) depending on the TRS values. The threshold values and 

area under the curve were obtained and analyzed using the receiver operating 

characteristic (ROC), a time-dependent function. The aforementioned values were 

calculated for 1-, 3-, and 5-year overall survival (OS) and relapse-free survival to validate 

the performance of the signature using the “survivalROC” R package. The predictive 

significance of the risk score formula concerning prognosis was assessed using log-rank 

tests and Kaplan–Meier (K-M) survival curve analyses. Time-dependent concordance 

index (C-index) and time-dependent receiver operating characteristic (tROC) analyses 

were used to compare the predictive capacity of survival among different variables using 

the R packages “survConcordance” and “survivalROC”. 
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2.13. Gene Set Enrichment Analysis (GSEA) 

GSEA Software V3.0 (http://software.broadinstitute.org/gsea/index.jsp, accessed on 

18 August 2022) [24] and h.all.v7.4.symbols.gmt gene set 

(http://software.broadinstitute.org/gsea/index.jsp accessed on 18 August 2022) [24] were 

used to investigate the associated pathways in different risk subgroups. Based on the gene 

expression profile in TCGA and phenotypic grouping, the minimum gene set was set as 

5, and the maximum gene was set as 5000. After a thousand resamples, the functional 

annotation chart options set p < 0.05 for determining the significant hallmark gene sets.  

2.14. Calculation of Epithelial–Mesenchymal Transition (EMT) Scores 

The EMT scores were calculated as previously reported by Milena P. Mak et al. [25], 

using the pan-cancer EMT signature (Table S2 [25]). For each CRC patient, the EMT score 

was calculated as the mean expression of the mesenchymal markers minus the mean 

expression of the epithelial markers. 

3. Results 

3.1. Constitutive Nuclear Import of TFEB Promotes CRC Proliferation 

Dephosphorylation of the two highly evolutionarily conserved serines S138 and 

S142, which are situated near a NES (Figure 1A–B), is critical for its nuclear retention and 

activation. To examine the role of activated TFEB in CRC, a series of constructs was 

generated in which the GFP tag was fused to TFEBWT or TFEBS138A/S142A. Substantial 

expression of the TFEB-GFP fusion protein was observed in TFEBWT- and TFEBS138A/S142A-

transfected cells through Western blotting using anti-TFEB and anti-GFP antibodies 

(Figure 1C). Confocal microscopy showed that mutations in S138 and S142 caused almost 

complete nuclear retention of TFEB (Figure 1D–1E), as compared to TFEBWT, similar to the 

mTOR inhibitor Torin. The CCK-8 assay showed that CRC cells overexpressing both WT 

and mutant TFEB displayed a pro-proliferation phenotype, as compared to the control, 

while TFEBS138A/S142A displayed a higher proliferation ability than TFEBWT cells (Figure 1F), 

suggesting an oncogenic role of activated TFEB in CRC. 
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Figure 1. Mutations in S138 and S142 caused almost complete nuclear retention of TFEB. (A) 

Schematic of the human TFEB protein domains. S138 and S142 are localized in the proximity of a 

NES. (B) S138 and S142 of TFEB are evolutionarily conserved in the indicated species. Alignment of 

the sequences near TFEB S138 and S142 is shown. (C) Western blots of endogenous and exogenous 

TFEB in CRC cells transfected with wild-type TFEB-GFP or TFEB-GFP mutant (S142A/S138A). 

Uncropped immunoblots are provided in the Figure S1. (D,E) Localization of TFEBWT and 

TFEBS142A/S138A in the cytosol and in the nucleus was detected by confocal microscopy. Representative 

images (D) and statistical results (E) are shown. Torin1 (250 nm), a positive control. Cell outlines in 

white dotted lines. DAPI was used to label the nucleus. Scale bars, 5 μm. Mean ± SD, n = 10 cells per 

condition, unpaired t-test. (F) Cell viability of indicated cells were analyzed using a CCK8 assay. 

Mean ± SEM, n = 3, unpaired t-test. **p  <  0.01, ***p  <  0.001. 

3.2. DIA-Based Proteomics Profiling Reveals Potential TFEB Targets 

To systematically identify downstream proteins regulated by TFEB, the proteome of 

DLD1-TFEBWT, -TFEBS142A/S138A, and control cell lines were analyzed through DIA-based 

proteomics (Figure 2A). Proteins from these lines were profiled in triplicate, and 6048 

proteins (Table S1) were identified and quantified at 1% FDR. Ridge plots were employed 

to show the expression distribution of these proteins in different groups (Figure 2B), and 

no significant difference was observed among each set of triplicates; however, the 

expression distribution differed between the three groups (p = 9.7 × 10−4). To examine the 

difference between the proteins measured in the three groups and to validate the 

reproducibility of the triplicate measurements in each experiment, a PCA was performed. 

This revealed that the samples could be divided into TFEBWT, TFEBS142A/S138A, and control 

groups, thus confirming the similarity of each set of triplicate measurements (Figure 2C). 

We analyzed DEPs in TFEBS142A/S138A versus TFEBWT and TFEBWT versus control groups 

through volcano plots and obtained a list of 480 upregulated and 964 downregulated 

proteins in the TFEBS142A/S138A/TFEBWT groups and 982 and 117 in the TFEBWT/control 

groups (>1.2-fold change, p < 0.05; Figure 2D, Table S2). To better identify and recognize 

targets transcriptionally regulated by TFEB translocation to the nucleus without being 
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affected by TFEB overexpression, we selected proteins that were upregulated in the 

TFEBWT/control groups and remained upregulated when the proteome of TFEBS142A/S138A 

cells was compared with that of TFEBWT cells (Figure 2E). After filtering, 60 proteins 

showed gradually increased expression levels, in the order of control, TFEBWT, and 

TFEBS142A/S138A (Figure 2F, Table S3). Subsequently, three randomly selected proteins 

(LAMP2, NDRG1, SMPD1) from the 60 proteins were verified by immunoblotting and 

qRT-PCR. The results showing the quantitative trend of the three DEPs in MS were 

consistent with the immunoblotting and qRT-PCR results (Figure S2A–S2B). The high 

accuracy of our MS result provided a basis for the subsequent analysis of the 60 TFEB-

regulated proteins.  

 
Figure 2. DIA-based quantitative proteomics characterizes TFEB targets. (A) The workflow of three 

independent DIA-MS experiments for identification of the TEFB-regulated proteins. (B) Ridge plots 

showing protein expression distribution in each group. (C) PCA analysis demonstrating that 

samples in the control, TFEBWT, and TFEBS142A/S138A were separated into three discrete groups. (D) 
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Volcano plot showing the DEPs in TFEBS142A/S138A versus TFEBWT and TFEBWT versus control 

comparisons. (E) Venn diagram showing 60 TFEB targets. (F) Heatmap showing the expression of 

TFEB-regulated proteins in the control, TFEBWT, and TFEBS142A/S138A, groups. 

3.3. TFEB Increases Cellular Pinocytosis Rates 

To further characterize the 60 TFEB targets, KEGG and GO analyses were performed. 

The KEGG analysis showed that the TFEB targets significantly regulated lysosome-related 

cellular processes, the HIF-1 signaling pathway, and metabolism (Figure 3A). According 

to the GO analysis, these TFEB targets were enriched in metabolic and biosynthetic 

processes under biological progress (Figure 3B). The endoplasmic reticulum, granule, 

vesicle, vacuole, and early endosome were the main cellular components (Figure 3C). 

Oxidoreductase activity made up a high proportion of the molecular function (Figure 3D). 

 
Figure 3. GO classification and pathway analysis of the TFEB transcriptional regulated proteins. (A) 

KEGG analysis of the 60 TFEB transcriptional regulated proteins. (B–D) The same proteins were 

subjected to the GO analysis (BP, biological process; CC, cellular component; MF, molecular 

function). (E,F) DLD1 cells stably expressing TFEBWT or TFEBS142A/S138A were incubated with TRITC-
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dextran (0.2 mg/mL) in a growth medium at 37 °C for 2 h. The representative confocal images show 

internalized TRITC-dextran (red dots) in indicated cells. Scale bars, 10 μm. Quantification is 

indicated on the right. Mean ± SD, n = 30 cells per condition, unpaired t-test. (E) Pinocytosis 

quantification using TRITC-dextran in indicated cells by flow cytometry. (F) Mean ± SEM, n = 3, 

unpaired t-test. **p  <  0.001, ***p  <  0.001. 

The CC enrichment analysis results of this research were consistent with previous 

reports, where TFEB-mediated endocytosis and phagocytosis could promote tumor 

growth. Pinocytosis is similar to phagocytosis and endocytosis in terms of being a 

lysosome-dependent and evolutionarily conserved pathway and offers an alternative 

nutrition acquisition pathway via which malignant cells consume (take up) extracellular 

substances. Science pinocytosis is not included in GO terms; to test whether TFEB may 

also affect pinocytosis, we determined pinocytosis rates by measuring the TRITC-labeled 

dextran uptake. Confocal microscopy showed that both TFEBWT and TFEBS138A/S142A cells 

had enhanced extracellular TRITC-dextran uptake as compared to the control, while 

TFEBS138A/S142A displayed a higher TRITC-dextran uptake ability than TFEBWT cells (Figure 

3E). The effect of TFEB on pinocytosis was confirmed by flow cytometry and revealed that 

the TRITC-dextran uptake ability of the TFEBWT and TFEBS138A/S142A cells was consistent 

with the results obtained by confocal microscopy (Figure 3F). Collectively, these results 

suggested that TFEB is involved in the regulation of all three general modes of vesicular 

endocytic trafficking including pinocytosis. 

3.4. Establishment of a TFEB Target Signature for Prognosis 

The 60 TFEB targets were analyzed through univariate Cox regression, and 

promising candidates with a cutoff value of the log-rank test of p < 0.05 were utilized for 

robust prognostic marker detection by inclusion in the LASSO Cox regression model. 

Overfitting was eliminated by tenfold cross-validation, with an optimal λ value of 0.007 

(Figure 4A). A set of eight genes (PLSCR3, SERPINA1, ATP6V1C2, TIMP1, SORT1, MAP2, 

KDM4B, and DDAH2) as well as their individual LASSO coefficients were generated 

(Figure 4B). Their corresponding hazard ratios and LASSO coefficient distributions are 

listed in Figure 4C-4D. As a result, the TRS formula: TRS = ∑i Coefficient (mRNAi) × 

Expression (mRNAi) was generated. 
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Figure 4. TFEB-related gene signature establishment. (A) Selection of the optimal LASSO parameter 

lambda; vertical lines indicate the optimal values. (B) LASSO coefficient profiles of the 8 candidate 

genes. (C) Forest plots of the 8-gene signature. (D) Coefficients of the eight genes. (E) Boxplots 

showing the 8-gene signature expression levels between high- and low-risk-score groups. (F) The 

distributions of the risk score and survival status of CRC patients, and the heatmap showing the 

eight genes’ expression profiles. (G) K–M survival curves for patients at high and low risk in the 

TCGA-COAD cohort. (H) ROC plot and AUC scores for predicted OS by the TRS in the TCGA-

COAD cohort. (I) Kaplan–Meier survival curves of OS between high- and low-risk patients in the 

GSE17536 dataset. (J) ROC plot and AUC scores for predicted OS by the TRS in the GSE17536 

dataset.  
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We next divided the CRC patients from the training set into high- and low-risk 

groups according to their TRS. The expression levels of risk-type genes (PLSCR3, 

ATP6V1C2, TIMP1, MAP2, KDM4B, and DDAH2) were elevated in the high-risk category 

in contrast with the low-risk category, whereas the expression levels of protective-type 

genes (SERPINA1 and SORT1) had the opposite trend (Figure 4E). Ranked by TRS, the 

CRC patients were examined regarding the link between survival times and survival 

status (Figure 4F). The eight genes’ expression patterns were represented by a heatmap, 

which demonstrated the predictive ability of the eight-gene signature in the prognostic 

values in patients as well as their potential influence on the onset and progression of 

malignancies. 

A higher TRS was associated with a poorer prognosis for patients than lower scores, 

according to a K-M analysis (HR = 2.91, p = 1.2 × 10−7; Figure 4G). The prognostic model’s 

predictive ability was tested using the ROC curves; the AUCs of these curves were 

estimated at around 0.7, indicating good predictive performance (Figure 4H). The same 

model was utilized to verify the eight-gene signature in the testing dataset (GSE17536, n 

= 177). The K–M survival curves depicted increased survival rates for the low-risk 

category (Figure 4I), which was congruent with the training group data. The ROC curves 

depicted diverse AUC values ranging from 0.61 to 0.7 (Figure 4J). Collectively, these 

results suggested that the models based on the eight-gene signature had high specificity 

and sensitivity.  

3.5. Tumor-Biology-Associated Potential Functions of the TFEB Signature 

To gain further insights into the features of the TFEB signature, the link between the 

cancer hallmark gene sets and TRS was examined (Figure 5A). The group with high risk 

showed enrichment of the EMT, angiogenesis, myogenesis, hedgehog signaling, apical 

junction, notch signaling, and coagulation as per the GSEA data, whereas protein 

secretion was reduced. Among these enriched pathways, EMT produced the highest 

enrichment score; therefore, EMT scores for the CRC patients were subsequently 

calculated. Compared to normal tissues, cancer tissues had increased EMT scores (Figure 

5B), and the high-risk group had higher EMT scores (Figure 5C). Furthermore, the EMT 

score positively correlated with the TRS (Pearson’s R = 0.41, p = 4.3 × 10−19, Figure 5D). 

These results indicated that EMT made pronounced contributions to the prognosis of 

COAD patients with a higher TRS. 
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Figure 5. Biological pathways of TFEB score subtypes. (A) GSEA enrichment plots showing the 8 

most enriched cancer hallmark pathways (p < 0.05). (B) The comparison of EMT scores in tumor and 

normal tissues in the TCGA-COAD cohort. (C) The comparison of EMT scores in high- and low-risk 

groups in the TCGA-COAD cohort. (D) The correlation analysis between EMT scores and risk 

scores. 

3.6. Combination of the TRS and Clinicopathological Characteristics Improves Survival 

Prediction 

To compare the TRS with the crucial clinical factors, we analyzed the TRS differences 

between subgroups with distinct clinicopathological features. In the TCGA dataset, T3–4, 

stage III–IV, and N1–2 patients had an increased TRS (Figure 6A); similarly, in the testing 

dataset GSE17536, the TRS was increased in stage 3–4 and grade 3 (Figure S3). To enhance 

the quantification capacity in risk assessment, we constructed a nomogram using the TRS 

and six clinical features including gender; age; clinical N, M, and T; and stage (Figure 6B). 

The actual 3-year survival times were congruent with the anticipated survival times, as 

per the calibration plots (Figure 6C). The K–M survival analyses indicated significant OS 

in the risky group (Figure 6D). The prediction capacity of the nomogram was assessed 

through tROC analyses, with an average AUC above 0.8, which was markedly better than 

pathological TNM staging. (Figure 6E). Furthermore, the nomogram also showed a robust 

performance in the prediction of survival rates in the testing dataset (Figure S4A–S4B). 

These results suggested that the TRS-based nomogram had a stable and powerful 

performance in the prediction of survival rates. 
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Figure 6. Nomograms showing the results of prognostic models using the TFEB signature and TNM 

staging system to predict OS of patients with CRC. (A) Distribution of TRS in clinicopathological 

variables, e.g., tumor (T), lymph node status (N), metastasis (M), and clinical stage. (B) Nomogram 

based on risk score and clinical factors. (C) Calibration plots of the nomogram for predicting the 

probability of 1-, 3-, and 5-year survival. (D) Kaplan–Meier curves of OS between high-risk and low-

risk patients in the TCGA-COAD cohort. (E) tROC analysis to assess the accuracy of the nomogram.  

4. Discussion 

Aberrant regulation of MiT/TEF transcription factors plays a critical role in 

tumorigenesis [7–10,12]; however, the network directly mediated by TFEB in CRC 

remains obscure. In the current study, we produced TFEBS138A/S142A, a continuously 

activated form, to systematically investigate direct targets of TFEB by performing in-

depth DIA-MS-based quantitative proteomics. A total of 60 TFEB-regulated DEPs were 

identified, and a univariate and LASSO Cox regression model was performed to select 

robust prognostic biomarkers for the creation of a TFEB-related gene signature. 

Additionally, the accuracy and prediction capability were enhanced through the 

construction of a nomogram model according to the clinicopathological features and 

TFEB-related gene signatures. 
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As a master transcriptional regulator of cell catabolism, TFEB is translocated from 

the cytoplasm to the nucleus to control gene expression that is relevant to lysosomal and 

autophagosomal biogenesis [12,26]. Our results consistently showed that TFEB carried 

Ser-to-Ala mutations of both Ser138 and Ser142 and showed constitutive nuclear 

localization, which significantly promotes CRC growth. The activation of TFEB influences 

various downstream cellular processes that are vital for phagocyte functions, such as 

lysosome functioning and autophagy, endocytosis, phagocytosis, endoplasmic reticulum 

restoration, mitochondrial homeostasis, lipid and glucose metabolism, and the production 

of cytokine and chemokine [27]. In congruence with these results, we found that these 

proteins were localized in the endoplasmic reticulum and structures associated with 

secretion and endocytosis, and they were involved in the regulation of lysosome 

processes, metabolic processes, HIF-1 signaling, oxidoreductase activity, and several 

binding functions, indicating that the functions of TFEB are not limited to autophagy and 

lysosome biogenesis. 

Vesicular endocytic trafficking is essential in regulating tumor metastasis and 

growth. As per the type of cargo, internalization route, and scission mechanism, vesicular 

endocytic trafficking occurs in three general types in the cell: pinocytosis, phagocytosis, 

and endocytosis [28]. TFEB induces cellular endocytosis and phagocytosis to mediate 

lysosomal biogenesis, autophagy flux, and MTORC1 signaling [27,29]. In this research, 

the cellular components of TFEB targets were linked to vesicle membranes during 

phagocytosis and endocytosis, and an unidentified TFEB function of enhancing the 

pinocytosis pathway was detected (Figure 3E,F), indicating that TFEB is involved in 

regulating all three general modes of vesicular endocytic trafficking. These findings may 

help explain why active TFEB can promote CRC cell proliferation (Figure 1E) and 

pronounced TRS group enrichment in the carcinogenic activation pathways (Figure 5). 

Based on the identified TFEB-associated genes, we established a prognostic CRC 

signature with a combination of eight genes (PLSCR3, SERPINA1, ATP6V1C2, TIMP1, 

SORT1, MAP2, KDM4B, and DDAH2) and an equation for calculating a TRS (Figure 4). 

The poorer prognosis observed in the group with higher TRS values through survival 

analysis was confirmed using independent cohorts. Additionally, GSEA analysis revealed 

considerably increased enrichment levels concerning the carcinogenic activation 

pathways in the group with higher TRS values, i.e., EMT, angiogenesis, myogenesis, 

hedgehog signaling, apical junction, notch signaling, and coagulation. These findings 

provided a more thorough and credible reason for the worse prognosis in patients 

belonging to the high-TRS subgroup. Additionally, a nomogram was generated 

containing the TRS and other clinicopathological parameters. In comparison with various 

characteristics, a stable and powerful performance was shown by the nomogram 

regarding the prediction of survival rates during follow-up at different times (Figure 6). 

The resulting data indicated the high potential of the TRS for CRC patient prognosis, and 

the capability of the nomogram as a reliable method for diagnosing CRC patients in 

clinical settings.  

Six of the eight genes served as risky types in our study, and most of them have been 

studied in many cancers. For example, involved in both tumor progression and 

metastasis, ATP6V1C2 functions in the biological process of transferring hydrogen ions 

[30]. TIMP1, termed tissue inhibitor matrix metalloproteinase 1, has been widely studied 

in various cancers. In colorectal cancer, TIMP1 promotes metastasis through the FAK-

PI3K/AKT and MAPK pathways [31]. MAP2, a crucial regulator of microtubule dynamics, 

exerts dual effects on cancer progression [32]. Our research revealed that MAP2 correlated 

with a poor prognosis of CRC and served as a risk biomarker. KDM4B promotes the 

progression of colorectal cancer and glucose metabolism by promoting TRAF6-mediated 

AKT activation [33]. DDAH2 was reported to be involved in the invasion of lung 

adenocarcinoma by promoting angiogenesis [34]. The expression of SERPINA1 and 

SORT1 has previously been shown to be increased in several types of cancers [35,36]; 

however, the two proteins served as two protective biomarkers in the current study. 
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Notably, PLSCR3, with the highest risk coefficient in our model, has rarely been 

investigated in tumor research. Therefore, more research on CRC is needed to fully 

understand the molecular processes related to the TFEB of the novel gene signature.  

5. Conclusions 

Taken together, we performed a proteome-wide analysis of potential TFEB targets, 

and our insights facilitate further mechanistic studies of TFEB. Furthermore, a novel 

TFEB-regulated gene signature was established to identify CRC patients with increased 

risk. By incorporating this with clinicopathological characteristics, we assembled a 

nomogram to quantitatively assess individual patients’ risk scores. The TFEB gene 

signature-based model may prove to be efficient in assisting the clinician to predict patient 

prognosis, thereby leading to the effective management of CRC on an individual basis. 
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