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Simple Summary: Multifactorial diseases are caused by a combination of genetic and environmental
factors and various risk factors that accumulate with age. Cardiovascular diseases, chronic kidney
disease, chronic obstructive pulmonary disease, metabolic (dysfunction) associated fatty liver disease,
and cancers are the most common multifactorial diseases and impose a considerable healthcare
burden. The simultaneous manifestation of two or more of these diseases represents various clinical
challenges as each disease interferes with the treatment of the other. This review summarizes several
lines of evidence concerning the bi-directional relationship between multifactorial diseases and cancer.
Moreover, this article aims to increase clinicians’ awareness regarding the risk of cancer development
among patients with other multifactorial diseases.

Abstract: Within the aging population, the frequency of cancer is increasing dramatically. In addi-
tion, multiple genetic and environmental factors lead to common multifactorial diseases, including
cardiovascular disease, chronic kidney disease, chronic obstructive pulmonary disease, and metabolic-
associated fatty liver disease. In recent years, there has been a growing awareness of the connection
between cancer and multifactorial diseases, as well as how one can affect the other, resulting in a
vicious cycle. Although the exact mechanistic explanations behind this remain to be fully explored,
some progress has been made in uncovering the common pathologic mechanisms. In this review,
we focus on the nature of the link between cancer and common multifactorial conditions, as well
as specific shared mechanisms, some of which may represent either preventive or therapeutic tar-
gets. Rather than organ-specific interactions, we herein focus on the shared mechanisms among the
multifactorial diseases, which may explain the increased cancer risk. More research on this subject
will highlight the significance of developing new drugs that target multiple systems rather than just
one disease.

Keywords: incident cancer; onco-nephrology; chronic obstructive pulmonary disease; heart
failure; cardio-oncology; reverse cardio-oncology; end-stage renal disease; metabolic associated
fatty liver disease

1. Introduction

During the late 20th and early 21st centuries, a pronounced shift in global demo-
graphics towards older ages became more and more evident, reflecting the development of
public health systems, improvements in the practice of medicine, and amelioration of socio-
economic standards. According to the United Nations Department of Economic and Social
Affairs Population Division 2019, the worldwide population over 65 is expected to exceed
1.5 billion in 2050 [1]. Age greatly increases the risks of chronic diseases and is associated
with a loss of reparative and regenerative capacities in several organs. In addition, there
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is a decrease in physiological reserve capacities in response to stress and time-dependent,
cumulative alterations of critical molecular pathways leading to organ dysfunction [2].

Multifactorial diseases are caused by a combination of genetic and environmental
factors, as well as various risk factors that accumulate with age. Cardiovascular diseases
(CVD), chronic kidney disease (CKD), chronic obstructive pulmonary disease (COPD),
metabolic (dysfunction) associated fatty liver disease (MAFLD), and malignancies are the
most common multifactorial diseases, and impose a considerable healthcare burden [3],
particularly since their prevalence strongly increases with age [4–10].

Recently, the bidirectional links between multifactorial diseases and cancer attracted
scientific interest. Cancer treatment and management are associated with potential sequelae,
including but not limited to cardiotoxicity, pulmonary toxicity, renal injury, and liver dam-
age [11–15]. Consequently, scientific fields such as cardio-oncology and onco-nephrology
were established through surveillance and interventions to prevent and reduce the adverse
effects of anticancer treatments. But rather than organ-specific interactions, the relation
between cancer and multifactorial disease is explained by generic mechanisms, that are
shared between these diseases. This review summarizes the increasing evidence pertaining
to the link between incident cancer and several common multifactorial diseases including
heart failure (HF), renal failure/CKD, COPD, and MAFLD. Moreover, this article serves to
inform clinicians regarding the increased risk of cancer development among patients with
other multifactorial diseases.

2. Heart Failure Triggers a Pro-Oncogenic Milieu
2.1. The Bidirectional Relationship between Cancer and Heart Failure

Cardiotoxicity induced by cancer therapy is gradually accumulating and becoming
increasingly evident despite an increased survival rate for cancer patients. For instance,
anthracycline-based treatment can result in 5–48% irreversible cardiac damage and HF
in a dose-dependent manner [16]. Emerging evidence also supports the fact that more
than 40% of cancer patients’ death are attributed to cardiovascular disease [17]. Therefore,
cardio-oncology emerged as a new field that focuses on the monitoring, detection, and
treatment of CVD and the optimization of cancer therapies in cancer patients [12,18–20].
Interestingly, recent epidemiologic data have demonstrated that cancer prevalence is higher
in patients with HF compared to the general population [21,22]. HF patients have a 24–68%
increased risk of developing cancer, and cancer mortality was significantly higher in HF
patients compared to healthy subjects [23–25]. These observations have been attributed
by some to surveillance bias, i.e., malignancies may be detected more frequently due
to routine monitoring for HF management. Moreover, HF and cancer have shared risk
factors, including hypertension, obesity, diabetes mellitus, smoking, and reduced physical
activity [25], which could explain their concurrent manifestation.

We have extensively discussed the bidirectional link between these two syndromes
and provided a 5-tier classification system to categorize cardio-oncology syndromes (COS)
that characterize the features of the link between cancer and cardiovascular diseases. In
summary, COS Type I represents the mechanisms by which cancer can lead to cardiovas-
cular dysfunction. COS Type II comprises the mechanisms by which cancer therapies can
result in acute or chronic CVD. COS Type III refers to the pro-oncogenic milieu created by
the release of cardiac factors. COS Type IV includes CVD management, including therapies
and diagnostic practices that have been associated with promoting or unmasking malig-
nancies. COS Type V refers to common factors causing systemic and genetic predisposition
to both diseases [20]. Moreover, a wealth of preclinical and epidemiological analyses lend
support to the postulation that HF is a pro-oncogenic condition for incident cancer. We
have highlighted the common mechanistic pathways in cancer and heart failure [19] and
designed a roadmap with key steps to guide and improve future clinical and pre-clinical
research and increase the collaboration between cardiologists and oncologists [19].
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2.2. Preclinical Data: Heart Failure Accelerates Tumour Growth

The first preclinical study to assess the effect of HF on cancer development discerned
the role of myocardial infarction (MI)-induced HF on intestinal polyp formation in the
APCmin mouse model. The authors found that HF resulted in an increased intestinal tumor
load and the severity of HF was strongly associated with tumor growth, independent of
hemodynamic changes. This was explained by factors secreted by failing hearts, which
stimulated the proliferation of colon cancer cells [24]. This study provided the first key
evidence in a preclinical model that HF represents a systematic pro-oncogenic environment
that can directly stimulate colon cancer growth. A subsequent basic study revealed that MI
accelerates breast cancer outgrowth by epigenetically reprogramming Ly6Chi monocytes
to an immunosuppressive phenotype in the circulation and tumor [26]. Compared to the
sham group, MI increased the proportion of Ly6Chi monocytes in tumor tissue, enhanced
the chromatin accessibility of Ly6Chi monocytes in pathways regulating stress responses,
and reduced the chromatin accessibility in pathways related to immune and inflammatory
responses. For instance, the binding sites of PU.1, CCAAT-enhancer-binding protein (CEBP),
and interferon regulatory factor (IRF)-8 of Ly6Chi monocytes were less accessible after MI,
which impaired myeloid cell differentiation and transcriptionally inhibited numerous
genes regulated by PU.1, CEBP and IRF-8 such as CD40 and CD86 genes involved in T cell
activation, resulting in an immunosuppressive phenotype that persists in tumor monocytic
myeloid-derived suppressor cells (mMDSCs) [26]. The authors proposed that MI-induced
HF resulted in systemic hematopoiesis and an immunosuppressive milieu that altered the
normal phenotype of monocyte precursors, and eventually promoted tumor growth.

Cancer progression was also assessed in another mouse model of a different HF
etiology, namely, pressure overload-induced cardiac hypertrophy. The transverse aortic
constriction (TAC) model was performed, followed by cancer cell implantation of breast
cancer or lung cancer cells. TAC-operated mice displayed larger tumors and more severe
metastatic lesions in the lung compared to control groups [27]. Similarly, the authors
identified that periostin, an extracellular matrix protein secreted by the remodeled hearts,
was elevated in the serum after TAC surgery and was able to stimulate cancer progression
in vitro.

2.3. Common Risk Factors and Signalling Pathways

Shared pathways underlying the pathogenesis of both HF and cancer (Figure 1), such
as inflammation, oxidative stress, and somatic mutations, in part explain the coexistence
of these two syndromes [19,28]. Clonal hematopoiesis of indeterminate potential was
shown to be associated with incident HF, HF risk factors, and biomarkers [29,30]. In
addition, established tumor biomarkers predicted cardiovascular outcomes in HF patients
and correlated with cardiovascular events in a general population [31,32]. Another layer
of evidence from clinical studies supports the link between HF and cancer. Interestingly,
the microbiome has recently emerged as a common pathway and a potential link between
the two diseases [33]. Gut microbial dysbiosis is associated with several types of cancer,
including colorectal cancer (CRC), liver cancer, and pancreatic cancer [34–36]. In addition,
microbial dysbiosis has been observed in patients with HF [37,38]. Recent studies have
provided evidence that pathogenic bacteria can possess tumorigenic effects [34]. In addition,
pathogenic bacteria can induce chronic inflammation, which is associated with CVD [39].
Several microbial metabolites, such as TMAO, have also been associated with an increased
risk for CVD and cancer [40–42].

Nowadays, cardiologists and oncologists recognize the cardiotoxic effects of anti-
neoplastic treatments, which has resulted in the establishment of cardio-oncologic clinics.
Nevertheless, less awareness is given to ‘’reverse cardio-oncology”, where HF itself consti-
tutes a risk factor for cancer. Exploring pathways theoretically linking HF to cancer is a
growing field of research, with the goals of understanding the bidirectional link between HF
and cancer, finding common therapeutic targets, and improving the treatment of patients.
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3. Kidney Disease: A Potential Risk Factor for Cancer
3.1. Cancer Risk in Chronic Kidney Disease Patients

Throughout the last two decades, the link between CKD and other diseases including
cancer has progressively become acknowledged. CKD and malignancy are correlated
in several ways in both directions. [43] It is well known that nephrotoxicity and CKD
might be caused by anti-neoplastic therapies and occur after nephrectomy in patients
with kidney cancer [44–46]. Conversely, CKD may also lead to cancer via an underlying
cystic disease, increased urinary concentrations of carcinogenic toxins, oxidative stress, and
inflammatory milieu [47,48].

It remains unclear at which stage of CKD cancer incidence starts to rise. A cohort
study reported a higher cancer risk in patients with moderate CKD, although this trend
was only observed in men [49]. Cancer prevalence increased from an estimated glomerular
filtration rate (eGFR) of 55 mL/min/1.73 m2 and kept rising linearly as eGFR was decreas-
ing. Independent of smoking and age, the authors found that each 10 mL/min/1.73 m2

reduction in eGFR was associated with a 29% increased risk of new-onset cancer. This
association appeared to be cancer site specific, and was more significant in lung and urinary
tract malignancies [49]. A retrospective cohort study also demonstrated that reduced eGFR
correlated with elevated risks of renal and urothelial cancer [50]. Comparable trends were
observed in another cohort with a younger and larger population. The investigators found
a positive correlation between overall cancer incidence and reduced kidney function (log
of albumin to creatinine ratio), which is mainly exposed in lung, colon, kidney, and bladder
cancers [51]. However, a meta-analysis of six prospective studies did not show a significant
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association between reduced kidney function and overall cancer incidence, but among
dialysis patients, the risk of cancer in the urinary tract, endocrine, and digestive tract was
significantly increased [52]. Therefore, the link between CKD and cancer incidence should
be evaluated with a clear stratification of cancer sites and certain CKD categories.

Cancer incidence for up to five years has been evaluated among patients with end-
stage renal disease (ESRD) and before they underwent renal replacement therapy. These
patients demonstrated a higher risk of several cancer types such as renal cell carcinoma,
bladder cancer, multiple myeloma, sarcoma, and lymphoma [53]. Correspondingly, an
international collaborative study gathered a cohort of 831,804 CKD patients who received
dialysis [54]. The investigators found a higher cancer prevalence in the kidney, bladder,
and thyroid. Several studies addressed cancer risk in patients during dialysis and with
renal transplantations and are presented in Tables 1 and 2, respectively.

Table 1. Risks of cancer in CKD patients during dialysis.

Cancer Study Number of
Participants

Follow-Up
(Years) Age (Years) Estimated Risk

(95% CI)

Overall

Australia and New
Zealand Dialysis and
Transplant Registry
(ANZDATA) [55]

23,764 mean 2.7 57.5 (43.5–67.6) SIR 1.45 (1.36–1.54)

Pancreatic
A multicenter

retrospective cohort
study [56]

6254 mean 2.4 64.0 ± 13.0 SIR 1.17 (0.31–2.99)

Hepatocellular
National Health

Institutes Research
Database [57]

92,348 mean 4.4 60.4 ± 14.8 SIR 1.4 (1.2–1.5)

Colorectal
A multicenter

retrospective cohort
study [56]

6254 mean 2.4 64.0 ± 13.0 SIR 1.53 (1.11–2.05)

Bladder

a retrospective cohort
including United States

(USRDS), Europe
(EDTA), Australia, and

New Zealand
(ANZDATA) [58]

831,804 mean 2.46 mean 55.5 SIR 1.5 (1.4–1.6)

Kidney ANZDATA [55] 23,764 mean 2.7 57.5 (43.5–67.6) SIR 5.4 (4.3–6.7)

Lung
National Health

Institutes Research
Database [57]

92,348 mean 4.4 60.4 ± 14.8 SIR 0.5 (0.5–0.6)

Gastric
A multicenter

retrospective cohort
study [56]

6254 mean 2.4 64.0 ± 13.0 SIR 1.10 (0.47–2.17)

Thyroid
A multicenter

retrospective cohort
study [56]

6254 mean 2.4 64.0 ± 13.0 SIR 3.42 (1.25–7.46)

Breast Meta-analysis including
6 studies [52] 32,057

4.4 (3.2–5.4)
for dialysis

patients
60 ± 12 for

dialysis patients HR 1.03 (0.50–2.12)

Prostate Meta-analysis including
6 studies [52] 32,057

4.4 (3.2–5.4)
for dialysis

patients
60 ± 12 for

dialysis patients HR 0.38 (0.19–0.77)

Leukaemia
National Health

Institutes Research
Database [57]

92,348 mean 4.4 60.4 ± 14.8 SIR 0.4 (0.2–0.7)

Myeloma
A multicenter

retrospective cohort
study [56]

6254 mean 2.4 64.0 ± 13.0 SIR 1.31 (0.15–4.72)

Data are presented as values, means ± standard deviation, or medians with interquartile ranges unless otherwise
indicated. HR, hazard ratio; SIR, standardized incidence ratio.
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Table 2. Cancer risks in CKD patients with renal transplantation.

Cancer Study Number of
Patients with RRT

Follow-Up
(Years) Age (Years) Estimated Risk

(95% CI)

Overall

Australia and New
Zealand Dialysis and
Transplant Registry
(ANZDATA) [55]

8173 mean 6.0 43.4 (31.1–53.9) SIR 3.03 (2.82–3.25)

Pancreatic Hong Kong
Renal Registry [59] 4674 8.2 ± 6.2 43.7 ± 12.6 SIR 1.57 (0.51–4.87)

Hepatocellular
National Health

Insurance Database
in Taiwan [60]

4716 4.8 ± 3.1 44.1 ± 12.4 SIR 5.07 (3.89–6.42)

Colorectal
Meta-analysis
including 54
studies [61]

1,208,767 NA NA SIR 1.40 (1.15–1.71)

Gallbladder
National Health

Insurance Database
in Taiwan

[60]
4716 4.8 ± 3.1 44.1 ± 12.4 SIR 3.02 (0.76–11.99)

Bladder ANZDATA [55] 8173 mean 6.0 43.4 (31.1–53.9) SIR 2.6 (1.5–4.2)

Kidney ANZDATA [55] 8173 mean 6.0 43.4 (31.1–53.9) SIR 5.0 (3.4–7.1)

Lung cancer Hong Kong
Renal Registry [59] 4674 8.2 ± 6.2 43.7 ± 12.6 SIR 1.68 (1.17–2.42)

Gastric Hong Kong
Renal Registry [59] 4674 8.2 ± 6.2 43.7 ± 12.6 SIR 2.85 (1.62–5.02)

Thyroid ANZDATA [55] 8173 mean 6.0 43.4 (31.1–53.9) SIR 3.5 (1.7–6.4)

Breast Hong Kong
Renal Registry [59] 4674 8.2 ± 6.2 43.7 ± 12.6 SIR 1.66 (1–2.75)

Ovarian Hong Kong
Renal Registry [59] 4674 8.2 ± 6.2 43.7 ± 12.6 SIR 3.29 (1.37–7.9)

Leukaemia Hong Kong
Renal Registry [59] 4674 8.2 ± 6.2 43.7 ± 12.6 SIR 2.15 (0.89–5.15)

Myeloma ANZDATA [55] 8173 mean 6.0 43.4 (31.1–53.9) SIR 1.8 (0.6–4.2)

Data are presented as values, means ± standard deviation, or medians with interquartile ranges unless otherwise
indicated. RRT, renal replacement therapy; SIR, standardized incidence ratio; NA, not available.

3.2. Mechanisms Linking Kidney Disease to Cancer Development

One of the main features of CKD is a persistent inflammatory state associated with
high production of pro-inflammatory cytokines, such as interleukin-1β (IL-1β), interleukin-
6 (IL-6), and tumor necrosis factor α (TNF-α). It is well established that inflammation is one
of the main risk factors and a key mechanism in cancer formation and development. An in-
flammatory milieu allows malignant cells to escape host immune surveillance, stimulating
angiogenesis, tumor growth, and invasiveness. An incessant low and chronic inflammation
in CKD patients will activate the generation of nicotinamide adenine dinucleotide phos-
phate (NADPH) oxidase and myeloperoxidase (MPO) by polymorphonuclear neutrophils
and monocytes macrophages, which promotes the production of reactive oxygen species
(ROS) and initiates a state of oxidative stress [62]. Under pro-oxidative stress conditions,
ROS are continually produced by aerobic metabolism in the mitochondria, which results in
severe damage to cell structure and function and induces somatic mutations and tumor for-
mation [63]. The latter process involves increased DNA mutations, DNA damage, genomic
changes, and cancerous cell proliferation [64].

Patients with ESRD have higher levels of carcinogenic compounds and nitrogen-
containing substances accumulating in the blood [65]. Carcinogenic compounds such as
2-amino-6-methyldipyrido [1,2-a: 3′,2′-d] imidazole (Glu-P-1) and 2-aminodipyrido [1,2-
a:3′,2′- d] imidazole (Glu-P-2) are relatively higher in plasma of uremic patients undergoing
dialysis compared to the healthy population, and potentially bind to DNA and cause DNA
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damage [66,67]. In addition, uremia can affect the composition of the intestinal microbiota
and intestinal barrier, and further promote pathogen overgrowth, and bacterial translo-
cation from the gut into mesenteric lymph nodes, liver, and spleen [66]. The increased
bacterial translocation will activate innate immunity and systemic inflammation, and the
imbalance of intestinal flora can increase the production of toxins such as Colibactin to
induce DNA damage and tumor-promoting metabolites such as secondary bile acids [48].
More identified bidirectional links between CKD and cancer pathogenesis are illustrated in
Figure 2.

Cancers 2022, 14, x FOR PEER REVIEW 7 of 21 
 

 

interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α). It is well established that inflam-

mation is one of the main risk factors and a key mechanism in cancer formation and de-

velopment. An inflammatory milieu allows malignant cells to escape host immune sur-

veillance, stimulating angiogenesis, tumor growth, and invasiveness. An incessant low 

and chronic inflammation in CKD patients will activate the generation of nicotinamide 

adenine dinucleotide phosphate (NADPH) oxidase and myeloperoxidase (MPO) by pol-

ymorphonuclear neutrophils and monocytes macrophages, which promotes the produc-

tion of reactive oxygen species (ROS) and initiates a state of oxidative stress [62]. Under 

pro-oxidative stress conditions, ROS are continually produced by aerobic metabolism in 

the mitochondria, which results in severe damage to cell structure and function and in-

duces somatic mutations and tumor formation [63]. The latter process involves increased 

DNA mutations, DNA damage, genomic changes, and cancerous cell proliferation [64]. 

Patients with ESRD have higher levels of carcinogenic compounds and nitrogen-con-

taining substances accumulating in the blood [65]. Carcinogenic compounds such as 2-

amino-6-methyldipyrido [1,2-a: 3′,2′-d] imidazole (Glu-P-1) and 2-aminodipyrido [1,2-

a:3′,2′- d] imidazole (Glu-P-2) are relatively higher in plasma of uremic patients undergo-

ing dialysis compared to the healthy population, and potentially bind to DNA and cause 

DNA damage [66,67]. In addition, uremia can affect the composition of the intestinal mi-

crobiota and intestinal barrier, and further promote pathogen overgrowth, and bacterial 

translocation from the gut into mesenteric lymph nodes, liver, and spleen [66]. The in-

creased bacterial translocation will activate innate immunity and systemic inflammation, 

and the imbalance of intestinal flora can increase the production of toxins such as Coli-

bactin to induce DNA damage and tumor-promoting metabolites such as secondary bile 

acids [48]. More identified bidirectional links between CKD and cancer pathogenesis are 

illustrated in Figure 2. 

 

Figure 2. Schematic representation illustrating the relation between kidney disease and cancer. Figure 2. Schematic representation illustrating the relation between kidney disease and cancer.

4. Lung Cancer Development in Chronic Obstructive Pulmonary Disease

COPD and lung cancer are two leading public health issues and causes of morbidity
and mortality. Both diseases share common risk factors such as exposure to smoking and
genetic predisposition. Approximately 15–20% of lifelong smokers will develop COPD or
lung cancer [68]. Furthermore, COPD is highly associated with up to a 4.5-fold increased
risk of lung cancer and represents a major independent risk factor for lung cancer among
smokers [69]. Even within mild COPD, emphysema has already been shown to be as-
sociated with the occurrence of lung cancer [70]. The major pathophysiologic drivers in
this context include genetic predisposition, oxidative stress, inflammation, and inflamma-
tory mediators [71].

4.1. Shared Susceptibility Loci and DNA Epigenetic Modification in COPD and Lung Cancer

Some well-known gene families of proteinases, detoxifying enzymes, and inflamma-
tory cytokines play roles in COPD development [72]. Several genome-wide association
studies (GWAS) also identified that certain chromosomal regions and candidate genes such
as glycophorin A (GYPA), hedgehog interacting protein (HHIP), and family with sequence
similarity 13 member A (FAM13A) were associated with the susceptibility to both COPD
and lung cancer [72–76]. Interestingly, single nucleotide polymorphisms (SNPs) in the
nicotinic acetylcholine receptor (nAChRs) subunit genes, CHRNA3 and CHRNA5, mapped
at chromosome 15q25, have been linked to the increased risks of both COPD and lung
cancer [76–78]. These findings suggest that shared pathogenetic pathways may underlie
susceptibility to these two smoking-related diseases.
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Epigenetic modification is another important link between COPD and lung cancer [79].
Common methylation marks and changes in gene expression, most probably induced by
smoking, are observed in both patients with lung cancer and COPD [80]. DNA hypermethy-
lation has been identified as an important factor in the development of lung cancer, leading
to changes in the expression of numerous oncogenes and tumor suppressor genes [81,82].
Two of them, cyclin-dependent kinase inhibitor 2A (CDKN2A), which encodes the tumor
suppressor p16, and O-6-methylguanine-DNA methyltransferase (MGMT), are methylation
targets shared by COPD and lung cancer [83,84]. A recent genome-wide epigenetic study
discovered 349 CpG sites that were strongly associated with COPD [85]. Interestingly,
many of these sites have previously been associated with an increased risk of lung cancer.
Furthermore, a bioinformatic analysis of DNA methylation patterns in COPD-associated
lung cancer revealed dysregulation of innate immunity and lymphocyte trafficking [86].
This supports the view that COPD’s inflammatory environment influences lung cancer by
disruption of epigenetic modifications.

4.2. Inflammation and Oxidative Stress: Two Shared Signalling Pathways

COPD is characterized by chronic lung inflammation as well as immune cell recruit-
ment and activation [87]. Inflammation as a link between COPD and lung cancer has
been suggested, but the exact underlying mechanism is unknown. Inflammatory medi-
ators released into bronchial epithelial stem cells promote inflammation-induced cancer
by causing cellular proliferation, resistance to apoptosis, invasion, and metastasis [88,89].
For example, the inflammatory cytokine TNF-α is upregulated in COPD patients and
is known to promote tumor cell proliferation and differentiation [90,91]. Furthermore,
matrix-metalloproteinases (MMPs), particularly MMP-9, and MMP-2, are overexpressed in
COPD patients and are involved in tissue remodeling, emphysema development, cancer
cell proliferation, invasion, and metastasis [92–95]. Interestingly, MMP-12, another highly
expressed protease in COPD, whose activity has been linked to disease severity, is known
to be tumor suppressive and thus not optimal as a target for the treatment of cancer [96].

Another major driving mechanism in the pathogenesis of COPD is oxidative stress,
which is well established as being causative for cellular proliferation in lung cancer [97].
The dysfunction of mitochondria in the airways and lung parenchyma can influence
COPD pathogenesis, including an imbalance of oxidative stress, which can amplify chronic
inflammation and promote carcinogenesis (Figure 3) [98].

The NF-kappa-B transcription complex (NF-κB) molecule is an important transcrip-
tion factor that promotes the production of inflammatory mediators [99]. The NF-κB
pathway was found to be persistently activated in the airway epithelium of COPD pa-
tients as well as in neoplastic cells of squamous cell cancers [100]. Increased activation of
this pathway can lead to emphysema, small airway remodeling, and, finally, accelerate
cancer development [101]. Phosphorylation and acetylation regulate the activity of NF-
κB -p65, a subunit of NF-κB. Sirtuin-1 (SIRT1), a protein deacetylase, has been shown to
deacetylate NF-κB-p65 and suppress stimuli-induced NF-κB activation [102]. This protein,
however, is reduced in the lungs of COPD patients [103]. The Akt/mTOR pathway, which
is negatively regulated by the SIRT1 protein, is upregulated in lung cancer patients with
mild COPD [104]. Signal transducer and activator of transcription 3 (STAT3) is another
interesting transcription factor that plays a role in many biological functions. Increased
activation of the STAT3 signaling pathway contributes significantly to lung inflammation
and adenocarcinoma formation [105].

Although the exact mechanism underlying COPD and lung cancer is not fully explored,
growing evidence suggests that the two diseases may be linked at the molecular level.
However, the available literature is limited to animal models and small clinical trials. Large
clinical trials and combined models of COPD and lung cancer are required to investigate
the processes that link COPD and lung cancer.
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model of lung cancer development in the setting of emphysema at the alveolar level (B).

5. The Progression of Metabolic Associated Fatty Liver Disease to (Extra)-Hepatic Cancers
5.1. Metabolic (Dysfunction) Associated Fatty Liver Disease

MAFLD, previously known as non-alcoholic fatty liver disease (NAFLD), is the most
common cause of chronic liver disease in Western countries. The change in nomenclature
to MAFLD was recently proposed by a group of experts to better emphasize the essential
role of metabolic disorders in the pathogenesis of fatty liver disease [106]. MAFLD is
diagnosed based on the evidence of hepatic fat accumulation, using biopsy or biomarkers,
in combination with one of the following criteria: overweight/obesity, T2DM, or evidence
of at least two metabolic abnormalities [106].

Metabolic disorders are the major causes of MAFLD. Excessive fat intake, as con-
sumed with the western diet, leads to lipid uptake in the liver far extending the ability
to oxidize the lipids or to export via very low-density lipoprotein (VLDL), resulting in
hepatic lipid accumulation [107]. In addition, the high density of simple carbohydrates,
such as fructose, in the Western diet can attribute to the development of MAFLD. Fructose
is mainly metabolized in the liver to triglycerides via de novo lipogenesis, which results
in an increased hepatic fat content [108]. Insulin resistance and high glucose intake also
aggravate MAFLD development, by stimulating de novo lipogenesis resulting in increased
ROS production [109].

5.2. MAFLD: A Multisystem Disease

MAFLD may be considered a multisystem disease [110,111] (Figure 4). MAFLD has
been associated with an increased risk for cancer [112], as well as CVD and CKD [113,114].
Patients with MAFLD are at increased risk for major adverse cardiovascular events and
CVD mortality [115,116]. In addition, MAFLD was shown the be a predictor of CKD
risk [114]. However, some studies showed that MAFLD was not independently associated
with CKD risk, but that the link between MAFLD and CKD is mainly driven by the
underlying metabolic abnormalities [117].
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The association between MAFLD and hepatocellular carcinoma (HCC) has been
studied most extensively. MALFD significantly increases the risk for HCC [115,118,119]. In
addition, the presence of MAFLD in patients with chronic hepatitis B increased the risk for
HCC [120–122]. However, multiple studies showed that the metabolic disorders in MAFLD
patients were the most important contributors to the increased cancer risk [115,123,124].

MAFLD has not only been associated with an increased risk for HCC but also with
several extrahepatic cancers, including CRC, kidney cancer, thyroid cancer, and breast can-
cer [110–112,119]. Interestingly, the risk for kidney and thyroid cancer remained significant
even after adjustment for waist circumference and metabolic syndrome [112]. The associa-
tion between MAFLD and CRC has been gathering increasing attention over the last few
years. Several epidemiological studies showed that MAFLD is an independent risk factor
for CRC, even after adjustments for age, metabolic syndrome, and diabetes [95,125–128].

5.3. Mechanisms Linking MAFLD to HCC

Over the last few years, MAFLD has become the fastest-rising cause of HCC in the
US [129]. Obesity and T2DM play an important role in HCC development and progression
in MAFLD [130]. It is well established that obesity increases the risk of cancer in general.
The chronic low-grade inflammation from the adipose tissue, triggers secretion of IL-6 and
TNF-α, which are both associated with tumorigenesis [131,132]. In addition, diabetes can
affect carcinogenesis via several mechanisms, including hyperinsulinemia, hyperglycemia,
and chronic inflammation [133].

However, fatty liver disease itself can also affect HCC. Cirrhosis is a major risk factor
for HCC. Epidemiological studies indicate that in 11–38% of the HCC patients cirrhosis
was identified as the underlying etiology [125,126]. In cirrhosis, stellate cells are activated
by inflammatory and pro-fibrotic signals from hepatocytes and immune cells, leading to
increased extracellular matrix deposition, instigating a favorable microenvironment for
tumor cells [127,128].
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Accumulating evidence suggests that steatohepatitis can also stimulate tumorigenesis,
irrespective of cirrhosis, in several ways. Recent studies showed that in individuals with
steatohepatitis, 12–14% of cancers occur prior to cirrhosis [134–136]. Steatosis can lead to
mitochondrial dysfunction and endoplasmic reticulum (ER) stress, resulting in increased
ROS production [137,138]. Oxidative stress is known to lead to DNA damage and activation
of oncogenic pathways such as NF-κB [139]. Steatosis also leads to impaired autophagy,
which is important for catabolizing lipids. Impaired autophagy leads to ER stress, resulting
in increased ROS and inflammation [140,141]. The chronic inflammatory state in people
with steatohepatitis also contributes to hepatic carcinogenesis. Steatohepatitis is charac-
terized by an increase in proinflammatory cytokines including IL-6 and TNF-α. TNF-α
has been studied extensively in cancer research and is known to activate several oncogenic
pathways such as the NF-κB and mTOR pathway [142,143]. IL-6 is the major activator of
STAT3, which is often increased in steatohepatitis patients, and can induce proliferation
and malignant transformation [144]. Inhibition of IL-6 in mice on a high-fat diet was shown
to protect against the tumor-promoting effects of the high-fat diet [145].

Interestingly, MAFLD-associated HCC may also be induced by changes in the gut
microbiome. Several studies have observed microbial dysbiosis in MAFLD patients [146].
Fatty liver disease is associated with gut barrier dysfunction and increased translocation of
bacteria and lipopolysaccharides, which can induce hepatic inflammation and fibrosis [147,
148]. In addition, the microbiome regulates the farnesoid X receptor (FXR), which has
been shown to have anticarcinogenic effects on the liver [149]. However, it is important to
keep in mind that obesity and unhealthy dietary habits affect both MAFLD and microbial
composition and should be considered confounders (Figure 4).

These data build on the evidence that MAFLD may be considered a multisystem
disease, and with the increasing incidence of MAFLD, it is important to study the connection
between MAFLD and other diseases such as cancer (Figure 4).

6. Clinical Considerations

In this review, we discuss several lines of evidence suggesting a common pathophysio-
logic background and a bi-directional relationship between different common multifactorial
diseases and cancer. Although the corresponding evidence base has gained increasing
scientific interest in recent years, there are still no specific therapeutic interventions with
potential clinical applications in this context. Coincidentally, one such example was seen
in the landmark CANTOS trial, in which patients with a previous myocardial infarction
were treated with canakinumab, a monoclonal antibody targeting IL-1β. It has been shown
that canakinumab not only improved cardiovascular outcomes but also reduced the inci-
dence of lung cancer and mortality [150,151]. Although subsequent large phase III trials
specifically in lung cancer failed to show benefit from canakinumab [152], it should be
noted that patients with known cancers were excluded from recruitment in CANTOS, thus
still leaving the question open of whether IL-1β blockade could still prove beneficial in
preventing cancer mortality in patients with existing CVD. As such, concerted research
efforts are necessary in order to elucidate the exact role of IL-1β as well as other potential
therapeutic targets with dual actions on both ends of the bidirectional relationship between
cancer and the aforementioned multifactorial diseases.

Inflammation is often a connection point between cancer and the discussed diseases, so
it represents one of the central therapeutic target candidates. COPD patients, for example,
can be screened for changes in the epidermal growth factor receptor (EGFR) or vascular
endothelial growth factor (VEGF) and, if necessary, treated with immunosuppressive drugs.
Known ones are EGFR inhibitors such as erlotinib [153] or VEGF-binding monoclonal
antibodies such as ramucirumab [154]. Because the presence of receptor mutation de-
termines drug efficacy, specific sub-phenotypes of COPD patients will be susceptible to
anti-inflammatory or other treatment(s) that will influence the incidence of lung cancer. In
other words, it is critical to combine selective biomarkers, carefully stratify at-risk patients
for optimal therapeutic effect, and use specifically targeted therapies to reduce the risk
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of the patients developing any cancer. In addition, a number of future developments
may also accelerate drug discovery in a broader range of chronic inflammatory diseases.
Human genetic studies that link specific inflammatory genes to a common mechanism in
cancer and other diseases may aid in the identification of useful drug targets. Furthermore,
given the significance of oxidative stress in cancer and the diseases discussed here, it has
been proposed that antioxidant therapy may be useful in patients’ treatment by reducing
inflammation and cancer incidence [155,156]. However, when considering antioxidant
therapies, it is important to determine the extent to which oxidative stress plays a role in
the pathology. If oxidative stress is a secondary cause of disease rather than the primary
one, preventing its generation may have little effect on disease progression. A different or
additional therapeutic approach should be considered in that case.

Physicians managing patients with chronic conditions, such as COPD, HF, CKD, or
MAFLD, should maintain an increased level of suspicion for the potential pro-oncogenic
role of these diseases. This review focuses on common multifactorial diseases that have
been shown, in clinical and pre-clinical studies, to have a link with cancer. Nevertheless, it
is worth mentioning that there are other common diseases such as prostatic hyperplasia.
The latter may share similar signaling pathways with prostate cancer since treatments for
benign prostatic hyperplasia may also benefit prostate cancer [157].

Multifactorial diseases and cancer are all driven by shared pathophysiological path-
ways (Figure 5), including inflammation, oxidative stress, and mutations. It is also pertinent
to consider that a considerable part of the shared pathophysiology between cancer and mul-
tifactorial diseases is constituted by preventable or modifiable risk factors, such as smoking,
diabetes mellitus, hypertension, hyperlipidemia, obesity, and metabolic syndrome. Thus, it
is important to impress upon physicians the fact that these traditionally “cardiovascular“
risk factors may also promote other multifactorial diseases as well as incident cancer [158].
As such, patient education programs and preventive efforts could be modified with this
realization in mind. Future research and specifically designed clinical trials based on these
crucial observations are currently highly needed and could potentially have a relevant
clinical impact on the general health of the increasingly aging world population.
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7. Conclusions

There is a bidirectional relationship between cancer and common multifactorial dis-
eases (HF, CKD, COPD, MAFLD), and they share common risk factors and a pathophysio-
logic basis. Although the exact nature of these commonalities and bidirectional interactions
remains incompletely understood, a high index of suspicion for incident cancer combined
with intensification of patient education and modification of shared risk factors are impor-
tant supplementary measures that should be followed. Lastly, although there are currently
no dual-role therapeutic interventions effective for either end of this bidirectional relation-
ship, potential future targets may include immunomodulatory treatments, modulation of
microbiota, and reduction of oxidative stress.
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CDKN2A Cyclin-dependent kinase inhibitor 2A
CEBP CCAAT enhancer binding protein
CHRNA Cholinergic receptor nicotinic alpha
CKD Chronic kidney disease
COPD Chronic obstructive pulmonary disease
COS Cardio-oncology syndromes
CRC Colorectal cancer
CVD Cardiovascular disease
eGFR Estimated glomerular filtration rate
EGFR Epidermal growth factor receptor
ER Endoplasmic reticulum
ESRD End-stage renal disease
FAM13A Family with sequence similarity 13, member A
FXR Farnesoid X receptor
Glu-P-1 2-amino-6-methyldipyrido [1,2-a: 3′,2′-d]imidazole
Glu-P-2 2-aminodipyrido [1,2-a:3′,2′- d]imidazole
GWAS Genome-wide association studies
GYPA Glycophorin A
HCC Hepatocellular carcinoma
HF Heart failure
HHIP Hedgehog interacting protein
HR Hazard ratio
IRF Interferon regulatory factor
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IL-1β Interleukin-1β
IL-6 Interleukin-6
MAFLD Metabolic (dysfunction)-associated fatty liver disease
MGMT O-6-methylguanine-DNA methyltransferase
MI Myocardial infarction
mMDSCs Monocytic myeloid-derived suppressor cells
MMP Matrix metalloproteinases
MPO Myeloperoxidase
NA Not available
nAChRs Nicotinic acetylcholine receptors
NADPH Nicotinamide adenine dinucleotide phosphate
NAFLD Non-alcoholic fatty liver disease
NASH Non-alcoholic steatohepatitis
NF-κB NF-kappa-B transcription complex
RIT Renal replacement therapy
ROS Reactive oxygen species
SIR Standardized incidence ratio
SIRT1 Sirtuin-1
SNPs Single nucleotide polymorphisms
STAT3 Signal transducer and activator of transcription 3
TAC Transverse aortic constriction
T2DM Type 2 diabetes mellitus
TNF-α Tumour necrosis factor α
US United states
VEGF Vascular endothelial growth factor
VLDL Very low-density lipoprotein
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