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Simple Summary: Patients with lung cancer have high rates of brain metastasis (BM). Despite
available therapies, patient prognosis is poor. Studies have shown genetic alterations associated
with the metastatic spread of lung cancer cells. However, the precise mechanisms governing BM
are still unclear. In this review, we comprehensively describe the major steps of metastatic spread of
lung cancer to the brain, addressing the influence of the tumor microenvironment and the molecular
determinants of progression. Furthermore, we highlight the advances in the molecular diagnostics of
BM by liquid biopsies and discuss novel treatment strategies.

Abstract: Lung cancer is one of the most frequent tumors that metastasize to the brain. Brain metas-
tasis (BM) is common in advanced cases, being the major cause of patient morbidity and mortality.
BMs are thought to arise via the seeding of circulating tumor cells into the brain microvasculature.
In brain tissue, the interaction with immune cells promotes a microenvironment favorable to the
growth of cancer cells. Despite multimodal treatments and advances in systemic therapies, lung
cancer patients still have poor prognoses. Therefore, there is an urgent need to identify the molecular
drivers of BM and clinically applicable biomarkers in order to improve disease outcomes and patient
survival. The goal of this review is to summarize the current state of knowledge on the mechanisms
of the metastatic spread of lung cancer to the brain and how the metastatic spread is influenced by the
brain microenvironment, and to elucidate the molecular determinants of brain metastasis regarding
the role of genomic and transcriptomic changes, including coding and non-coding RNAs. We also
present an overview of the current therapeutics and novel treatment strategies for patients diagnosed
with BM from NSCLC.

Keywords: brain metastasis; lung cancer; microenvironment; molecular mechanisms; coding and
non-coding RNAs; therapeutic strategies

1. Introduction

Non-Small Cell Lung Cancer (NSCLC) accounts for the majority (85%) of lung can-
cer cases, with adenocarcinoma and squamous cell carcinoma being the most common
histological subtypes [1]. Tobacco smoking, air pollution, and exposure to radiation and oc-
cupational carcinogens are among the most common risk factors [2]. Increased incidence of
lung cancer has been observed in never-smokers and younger individuals and is frequently
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associated with the adenocarcinoma subtype. It is expected that by 2040, the worldwide
incidence of lung cancer will increase from 2 to over 3 million cases per year, and the
number of annual deaths will rise from 1.8 to over 2.9 million [3]. A limited proportion of
lung cancer patients undergo surgery as the primary treatment since most patients (~75%)
present locally advanced or distant metastatic disease at diagnosis and are not eligible
for curative surgical treatment. Since current treatment strategies are focused on treating
late-stage disease, patient prognosis remains dismal, with high mortality rates.

Metastatic disease is one of the main causes of patient death. Therefore, uncovering
the mechanisms underlying metastasis is pivotal for improving therapeutic strategies and
patient survival [4].

Previous treatment of advanced lung cancer was limited to cytotoxic chemotherapy,
but the identification of oncogenic driver mutations in NSCLC has dramatically changed
the therapeutic approaches in the past decades. Targeted therapy and immunotherapy
have considerably improved survival in selected patients [1]. Large-scale genomic studies
have enabled the identification of activating driver mutations associated with primary lung
cancer. These findings contributed to advances in therapeutics with the development of
tyrosine kinase inhibitors (TKIs), which led to improvements in patient survival. However,
these therapies benefit a fraction of patients with lung adenocarcinoma harboring driver
mutations. Mutations in genes such as the Epidermal Growth Factor Receptor (EGFR),
Anaplastic Lymphoma Kinase (ALK), ROS1 Proto-Oncogene Tyrosine Kinase Receptor
(ROS1), and Serine/Threonine-Protein Kinase BRAF (BRAF) are therapeutic targets in lung
adenocarcinoma, and novel mutations may be introduced as targeted therapies [5]. Other
activating mutations occur in oncogenes such as KRAS and are associated with worse
prognosis, with no approved drugs able to efficiently inhibit KRAS activation [5–7] until
the recent development of novel inhibitors such as sotorasib, shown to efficiently target the
KRASp.G12C mutation in advanced solid tumors [8]. Another KRAS inhibitor, adagrasib,
is under investigation to treat patients with progressive metastatic lung cancer [9]. In a
phase 2 clinical trial, sotorasib, which specifically and irreversibly inhibits the KRASp.G12C
mutation, was tested in a cohort of 126 NSCLC patients, with the majority having previ-
ously received systemic platinum-based chemotherapy combined with immunotherapy
based on PD-1 or PD-L1 immune checkpoint inhibitors (ICIs). Results showed a complete
response in 4/126 patients (3.2%) and a partial response in 42/126 patients (33.9%) with a
median duration of response of 11.1 months. These data showed a clinical response for re-
lapsed advanced KRAS-mutated NSCLC with disease control obtained in >80% of patients.
Median progression-free survival and overall survival were 6.8 months and 12.5 months,
respectively [10]. Novel treatments targeting KRAS-mutated tumors are promising; how-
ever, patient prognosis remains poor with modest progression-free and overall survival
rates, likely due to disease heterogeneity. Recent reviews on targeted therapies with KRAS
inhibitors including a combination with immunotherapies are available in [11–13].

Mutations in EGFR occur in 15–40% of adenocarcinoma cases, occurring more fre-
quently in women of Asian ancestry and never-smokers. TKIs targeting EGFR mutations
include the first-generation drugs gefitinib and erlotinib, and afatinib and osimertinib,
second and third generation, respectively [5]. Although TKIs improved progression-free
survival, mechanisms of acquired resistance are common and lead to disease progres-
sion in most patients [5]. ALK rearrangements are found in ~7% of patients with lung
adenocarcinoma and are mutually exclusive with KRAS and EGFR mutations [6]. The
identification of the ALK rearrangement is predictive for therapeutic targeting by crizo-
tinib. New generations of ALK TKIs ceritinib, alectinib, and brigatinib have been used [5].
ROS1 rearrangements occur in 1–2% of cases and are most common in adenocarcinoma
patients, younger patients (<40 years old), females, and never-smokers. Crizotinib is used
for patients with ROS1-positive tumors [6]. Somatic mutations in BRAF occur in ~3–8% of
adenocarcinoma cases; of these, ~50% are BRAF V600E, which is predictive for vemurafenib
and dabrafenib-based therapies [5]. Genomic studies have revealed additional driver
mutations in NSCLC, which can be explored for targeted therapy.
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Conversely, patients with squamous cell lung carcinoma, which represents about
20–30% of NSCLC, have limited treatment options. Treatment with biomarker-driven
therapies targeting FGFR, PI3K, MET, EGFR, among others, failed to demonstrate activity
in the Lung Cancer Master Protocol (Lung-MAP SWOG S1400). However, an ongoing
phase 2 open label clinical trial (RAGNAR) showed evidence of efficacy for erdafitinib, a
selective pan-FGFR tyrosine kinase inhibitor, in heavily pretreated patients with different
FGFR-positive solid tumors, including squamous and non-squamous cell lung cancer [14].

In the past decade, immunotherapy based on immune checkpoint inhibitors (ICIs)
has shown significant survival benefits for patients with advanced NSCLC. Cancer cells
develop immune evasion mechanisms playing a pivotal role in cancer progression. Mono-
clonal antibodies, such as pembrolizumab and nivolumab, are directed to block the PD-1
receptor in T lymphocytes, preventing immune response inhibition [1,15]. Patients with
advanced NSCLC treated with ICIs have improved survival in comparison to standard
chemotherapy in both first- and second-line therapies. The efficacy of nivolumab monother-
apy in pretreated advanced non-squamous and squamous cell lung cancer showed a 17%
objective rate response (ORR) and a median of 17.0 months of response duration among
patients [16]. The combination of different ICIs with distinct and complementary mecha-
nisms to improve anti-tumor immunity, such as nivolumab targeting PD1 and ipilimumab
targeting CTLA4 in T lymphocytes, was tested in a phase 1, multi-cohort study showing
high response rate and durable response with tolerable safety in NSCLC [17]. However,
despite durable responses, not all patients benefit from ICI treatment [15], highlighting the
importance of identifying biomarkers of immunotherapy response.

In this review, we describe the current state of knowledge regarding the molecular
and cellular mechanisms involved in metastatic spreading of lung cancer cells to the
brain. We discuss the influence of the brain microenvironment, including immune cells
to support tumor cell growth. Moreover, a comprehensive discussion of genomic and
transcriptomic alterations, including coding and non-coding RNAs, as genetic determinants
of brain metastasis in NSCLC is presented. We also provide an overview of the current
therapeutics, new treatment opportunities, and future directions for patients diagnosed
with BM from NSCLC.

2. NSCLC Brain Metastasis

NSCLC frequently metastasizes to bone, brain, lung, and liver. BM accounts for most
of the central nervous system (CNS) tumors, being observed in up to 40% of patients with
different cancer types. Strikingly, BM is about 10 times more common than primary tumors
affecting the CNS [18,19]. Patients with lung cancer have the highest rates of identified
BMs [20]. Approximately 10–20% of NSCLC patients have BM at the time of diagnosis and
approximately 40% will develop BM during the course of disease [21,22]. BMs often appear
as multiple lesions, although one-third of patients present single lesions [23]. BM is highly
prevalent in lung adenocarcinoma, markedly worsening patient outcomes, with a median
survival of up to 15 months for treated patients [24].

The incidence of BM is probably underestimated since routine brain magnetic reso-
nance image (MRI) screening in patients who do not present neurological symptoms is not
recommended. Routine brain MRI would increase the detection of asymptomatic brain
metastasis. However, its use as a populational guideline is controversial due to the high
burden on the patients and the health care system [25,26]. In addition, a proportion of
patients with negative screens may develop brain metastasis within one year [27]. There-
fore, current guidelines support routine neuroimaging scans for more advanced clinical
stages. Moreover, many studies frequently report the detection of BM at the time of initial
diagnosis, but no information is provided on the subsequent sites of metastatic involvement
during the disease course [23]. BM is often associated with severe neurologic and cognitive
difficulties that are responsible for patient morbidity and significantly decreased quality
of life. Headache, followed by neurologic dysfunction, seizures, stroke-like symptoms,
and/or subtle cognitive dysfunction are the most common symptoms [19]. In fact, BM is
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often detected based on neurological symptoms without a diagnosis of a primary lung
tumor. Studies have reported that most BM originating from lung cancer is located in the
supratentorial area of the brain [28] and its distribution depends on the mutational status
of EGFR [29].

Leptomeningeal metastases are a subset of BMs that grow in the lining of the brain
or spine and/or cerebrospinal fluid (CSF) and occur with or without brain parenchyma
metastases. Leptomeningeal metastasis is less common, occurring in 3–5% of patients
with advanced NSCLC, and has been recently reviewed elsewhere [30]. Its incidence has
increased in subgroups of patients who have received targeted molecular therapy due to
the extended survival time. The prognosis of patients with leptomeningeal metastasis from
NSCLC is poor; however, it has improved from a median historical survival (pre-approval
of contemporary systemic treatment) of 1–3 months to 3–11 months with the use of new
therapies [30,31].

The prognosis of patients with BM depends on different factors such as primary tumor
site and other prognostic indicators, including driver mutations. In lung adenocarcinoma,
BM occurs in ~20–40% of patients with ALK rearrangements and ~25% of patients with
EGFR-mutated tumors [32–34]. The graded prognostic assessment (GPA) is a prognostic
index that helps estimate patient survival in the presence of BM. In addition, patient age,
Karnofsky performance status (KPS), extracranial metastases, and number of BMs are
diagnostic-specific prognostic indices for patients with NSCLC. GPA scores range from
0-4, from worst to best prognosis, and define survival times ranging from 3.0–14.8 months
for NSCLC patients [35]. An update of the GPA prognostic index including molecular
markers, the Lung-molGPA, added EGFR and ALK mutation status for patients with
lung adenocarcinoma. Median patient survival ranged from 3.0–46.8 months, although
only 4% of the patients showed the highest scores (3.5–4.0) with a median survival of
~46 months [36]. Extensive efforts have focused on predicting outcomes for patients who
develop BMs.

3. The Development of Brain Metastasis Is a Complex, Multistage Process

The major steps of metastatic spread to the brain are the dissociation of cells from
the primary tumor, invasion of surrounding stroma and basement membrane, cancer
cell intravasation, extravasation, and breaking down of the blood–brain barrier (BBB)
followed by CNS invasion and colonization [18]. BM arises through seeding of circulating
tumor cells (CTCs) into the brain microvasculature. Tumor cells interact with the brain
endothelium, increasing the adhesion of tumor cells and promoting circulatory arrest. Once
trapped, tumor cells start the process of crossing the BBB, which is a crucial step in tumor
dissemination to the brain. The BBB harbors tight and adherens junctions between the brain
endothelial cells, which regulate the flow of ions and nutrients, establishing a selective
permeability barrier that protects the brain from blood-derived toxins and restricts the
migration of leukocytes and monocytes [37–39]. BBB permeability is highly increased
during BM in lung cancer [40], allowing CTCs to penetrate the brain and promote BM
development. Several mechanisms associated with BBB remodeling that facilitate the
migration of tumor cells through the BBB have been identified, including the secretion
of various proteases to degrade tight junction components [41–43]. For example, cancer
cells overexpress enzymes associated with mitogenesis and growth factors, including
prostaglandin-endoperoxide synthase 2 (COX2) and heparin-binding EGF-like growth
factor (HBEGF), allowing cell migration through the BBB [44,45].

Interestingly, tumor cells are also able to increase the expression of cathepsin S, a
protease that is predominantly expressed by leukocytes, to cleave the junctional adhesion
molecules that maintain BBB integrity and thus help tumor cells to break down the BBB [46].
In addition, extravasation of tumor cells, seeding, and formation of micrometastases are
mediated by a combination of circulating proteins, including vascular endothelial growth
factor (VEGF), matrix metalloproteinases (MMPs), among others, which are produced by
tumor cells or cells in the tumor microenvironment (TME). Therefore, metastatic formation
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is mediated by a combination of circulating molecules, mainly proteins secreted by tumor
cells and cells in the TME [23,47] (Figure 1).
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Figure 1. Schematic illustration of brain metastasis development through hematogenous dissemina-
tion. Initially, tumor cells at the primary site acquire invasive properties, break away from the primary
tumor, and invade the surrounding tissues (intravasation) becoming circulating tumor cells (CTCs).
Cell motility is promoted through the interaction between tumor cells and immune cells. Then, CTCs
spread throughout the circulatory system to the brain microvasculature (circulation) and after their
adhesion with help of integrins, they start the extravasation across the blood–brain barrier (BBB).
Tumor cells overexpress enzymes associated with mitogenesis, growth factors, metalloproteinases,
and proteases allowing cell migration through the BBB. Once tumor cells are located in the central
nervous system (CNS), an intense neuroinflammatory response is triggered. After extravasating,
most tumor cells die or enter a state of dormancy (some of them could stay dormant at metastatic
sites for long periods). Few tumor cells are able to proliferate within this new microenvironment and
then form micrometastases and colonize the brain (colonization). The interaction between tumor
cells and immune cells residing in the brain is critical for the establishment and growth of the tumor.
COX2: prostaglandin-endoperoxide synthase 2; HBEGF: heparin-binding EGF-like growth factor;
MMPs: metalloproteinases; VEGF: vascular endothelial growth factor.

To relocate to the CNS, disseminated circulating tumor cells (CTCs) must adapt
to a microenvironment that is fundamentally different from the primary site. Immune
cells, astrocytes, microglia, and neurons form a highly complex and dynamic TME, able
to influence the survival of tumor cells and to modulate immune responses driven by
metastatic brain cells [46,48]. The interaction between metastatic cells and the TME is
critical for growth after cell seeding [23]. There is a complex reciprocal communication
between metastatic tumor cells and their TME, which primes the successful outgrowth of
cancer cells to form metastasis [45,49]. Astrocyte-derived exosomes mediate an intercellular
transfer of PTEN-targeting microRNAs to metastatic tumor cells. As a consequence of
PTEN loss, there is increased secretion of C-C motif chemokine ligand 2 (CCL2), which
in turn induces recruitment of IBA1+ myeloid cells, enhances brain metastatic tumor cell
proliferation, and reduces apoptosis [49]. The loss of BBB integrity is also a result of
neuroinflammation and direct rupture of the barrier by tumor cells. Metastatic cells interact
with neuroinflammatory cells and other components of the brain parenchyma, leading
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to tumor colonization. Secondary tissue colonization is a main bottleneck in metastatic
development. Nonetheless, the pre-metastatic stage of the metastatic cascade remains
poorly characterized. At the moment, studies using brain metastasis initiating cells (BMIC)
show that the pre-metastatic stage of brain tissue colonization involves deregulated genes,
many of which are active in invasive but not in proliferative mechanisms [50]. However, the
process of metastatic brain colonization and changes in the microenvironment of metastatic
tumors are not fully understood [23,51].

BMs, even in initial stages, are surrounded by a significant neuroinflammatory re-
sponse mediated by activated astrocytes and microglia. Given the presence of the resident
microglia and the lymphatic system, the brain is no longer considered a place with im-
munological privileges. The established metastases induce brain damage leading to the
infiltration of immune cells, including CD8+ cytotoxic T lymphocytes. The expression of
PD-1 and PD-L1 proteins in resected BMs indicates an immunosuppressive TME [23]. The
extravasation of tumor cells, seeding, and formation of micrometastases is mediated by
a combination of circulating proteins produced by tumor cells or cells in the TME. After
extravasation, individual cancer cells are immediately surrounded by reactive astrocytes
that act as an efficient first line of protection in the CNS by reducing the number of cells
that initiate potential metastases. This natural defense contributes, in part, to the high
inefficiency of colonization of the brain by cancer cells. Some cancer cells manage to survive
and remain located in the perivascular niche next to the neural stem cells, where cancer cells
have greater access to nutrients and oxygen, contact with the basal lamina of capillaries,
and preferential access to angiocrine growth factors produced by endothelial cells [51].

The proliferation of cells that initiate metastases establishes a variable number of
micrometastases. Some micrometastases can physically interact with reactive astrocytes.
These interactions increase the growth of cancer cells and resistance to chemotherapy-
induced apoptosis [51]. Astrocytes have also been shown to be critical modulators of
immune responses in BM. They interact with inflammatory cells resident in the brain and
are recruited along with the microglia, leading to the establishment of an immunosuppres-
sive microenvironment [49,52]. Thus, astrocytes are emerging as one of the main regulators
of colonization and metastatic growth in the brain [46,53].

Several studies have shown that at every step during the metastatic cascade, can-
cer cells must engage different metabolic strategies, distinct from the primary tumor, to
successfully metastasize [54–56]. While normal brain cells depend on glucose for energy
production, metastatic cancer cells in the brain possess metabolic flexibility and depend
not only on glucose for energy, but also on glutamine and acetate [57]. These metabolic
adaptations are the result of interactions between cancer cells and brain cells including
astrocytes and neurons, which promote rapid metastatic growth in the brain [57–59].

4. Molecular Determinants of Brain Metastasis in Lung Cancer and Their Implications
for Treatment

Increasing evidence suggests that metastasis results from the aberrant activation of
“invasive growth”, a morphogenetic program that occurs during embryonic development
and postnatal organ regeneration, driven by the MET proto-oncogene [60,61]. MET has
been shown to play a central role in BM from lung cancer [62,63]. Additionally, Recepteur
d’Origine Nantais (RON), also known as macrophage stimulating receptor 1 (MSTR1), a
member of the MET family of receptor tyrosine kinases, harbors somatic mutations that
are predicted to cause deleterious effects in BM from lung carcinoma [64]. Hyperactivation
of the WNT/TCF signaling pathway has also been associated with BM formation in lung
adenocarcinoma, mainly through the altered expression of the transcription factors HOXB9
and Lymphoid Enhancer Binding Factor 1 (LEF1), which stimulate tumor cell invasion and
proliferation [65].

Studies have investigated metastatic genomic profiles in lung cancer. Genomic alter-
ations in cancer-related genes in primary and matched metastatic tumors from 15 NSCLC
patients, including 8 lung adenocarcinoma tissues [66], showed a concordance rate of
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94% of recurrent alterations between primary tumor and matched metastasis, with TP53
mutations being the most frequently observed [66]. Genomic characterization of stage
IV lung squamous cell carcinoma of 79 patients reported hot-spot mutations in 8 main
oncogenes (EGFR, KRAS, BRAF, PIK3CA, NRAS, HER2, MEK1, and AKT1) as well as exonic
and intronic mutations of 279 cancer-related genes [67]. The data were also analyzed ac-
cording to two molecular subtypes: cases with fibroblast growth factor receptor 1 (FGFR1)
amplification or mutation or loss of upstream phosphoinositide 3-kinase (PI3K) pathway
genes, i.e., PTEN and PIK3CA. BMs were present in 11% (9/79) of cases, all from patients
with PI3K altered tumors (27%; 9/33 patients). Six of the nine BM cases were further inves-
tigated by whole-exome sequencing (WES), RNA sequencing, and immunohistochemistry,
and compared with a subset of four corresponding primary lung tumors. Results showed
PTEN loss in 4/6 BMs and in all four primary tumors.

In addition, genetic alterations driving BM formation/progression were previously
reported. Whole-exome sequencing of 73 BM cases from lung adenocarcinoma (BM-LUAD)
identified MYC, YAP1, MMP13 amplifications and CDKN2A/B deletions as pathogenic
genomic changes [68]. Additionally, it was demonstrated that overexpression of these
candidate driver genes (MYC, YAP1, or MMP13) promoted BM in patient-derived xenograft
(PDX) mouse models [68]. In another study, by comparing focal somatic copy number
alterations (SCNAs) in matched NSCLC-BM pairs, putative BM-driving genetic alterations
were identified affecting multiple cancer genes, including several potentially targetable
changes in genes such as CDK12, DDR2, ERBB2, and NTRK1 [69]; these results were
validated in an independent cohort of 84 BM samples and characterized SCNAs and
mutations in EP300, CTCF, and STAG2 genes, which play roles in epigenome editing and
3D genome organization [69]. Whole exome sequencing analysis of 12 paired primary
NSCLC and matched BM have also identified BM-associated mutations in known cancer
genes including AHNAK2, ANKRD36C, BAGE2, KMT2C, and PDE4DIP [70].

BMs may harbor high genetic heterogeneity and clonal differences between their
corresponding primary tumors, suggesting that additional molecular changes may be
acquired during metastatic progression [67]. Several studies have been performed in an
attempt to address the question of clonality and molecular heterogeneity between primary
tumors and brain metastasis from same patients. Some studies have collected and profiled
metastatic lesions in an asynchronous mode with the primary tumor, allowing detection of
evolutionary changes over time. In a report by Lee et al. [71], multi-omics sequencing of
seven paired tumors and BM (collected at different time points) from patients with NSCLC,
showed that 67% of mutations were common between metastatic and primary samples. In
addition, these lesions had a similar tumor mutational burden (TMB). Further validation
using publicly available data from a whole exome sequencing study of 35 BM and primary
samples [72] showed 69% of shared mutations and similar TMB frequency. Based on these
findings, the authors suggested that metastatic events occur late during the evolutionary
tumor development and progression cycles, likely upon the establishment of the majority
of somatic mutations in the primary tumor [71]. Although the results of this study are
based on a small sample set of 7 patients, the authors also suggested that a monoclonal
mode of metastatic seeding may be predominant in most NSCLC cases.

Interestingly, Brastianos et al. [72] identified that, although there are genetic similarities
between BM lesions arising in different brain sites as well as temporally separated, there is
high genetic heterogeneity between BM and lymph node metastasis or extracranial distant
metastasis. In addition, they reported actionable changes in BM, correlated with drug
sensitivity to PI3K/AKT/mTOR, CDK, and HER2/EGFR inhibitors [72]. Other studies
found similar results [73] and reported molecular changes likely selected during metastatic
progression, such as deletions of CDKN2A/B which were common to metastatic and primary
samples [68]. A recent whole exome sequencing study of 84 tissue samples from 26 patients
compared genomic profiles of primary lung adenocarcinoma, liver and BM lesions; this
study showed common driver mutations in TP53 and EGFR in primary and metastatic
samples. Additionally, a comparable TMB was present in all samples; however, the liver
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metastases had higher TMB and were more similar to the primary tumors than the BM
lesions [74]. These authors also performed phylogenetic analyses and found that liver
metastasis was genetically divergent from the paired primary tumors at a later stage of
metastatic development compared to BM sites, suggesting that liver metastasis may arise
preferably through a linear mode and BM may be established following a parallel mode
of progression. It is important to highlight some differences among published studies,
which may be due to different patient cohorts, distinct methodologies of sample collection
with metastatic samples being collected either synchronously or asynchronously with the
primary tumors, and different platforms of analyses. Although the current knowledge on
the genetic divergence and phylogenetic evolutionary relationships among BM lesions and
primary tumors, this is still an area that deserves further and detailed investigation.

Genetic studies have been performed to characterize BM. Examples include a targeted
panel of 160 cancer-associated genes assessed in 39 lung adenocarcinoma patients with
synchronous BM (n = 10, BM tissue only), metachronous BM (7/12 paired primary tumor
biopsies and BM tissues) or extracranial metastases [75]. Results from this study showed
aberrations affecting genes in the PI3K/AKT signaling pathway in primary and BM tissues.
Comparing BMs versus extracranial metastases, BCL6 and NOTCH2 variants were the
only variants identified in at least four patients with BMs while appearing in only one or
none of the non-metastatic cases. Unique variants were also detected in 20 genes (TP53,
SMAD4, SF3B1, NOTCH2, mTOR, MSH6, KRAS, KMT2D, KDM6A, IKZF1, GNAS, FANCD2,
ERCC5, EP300, CREBBP, CDK12, BRCA2, BCL6, ATM, and ABL1) in >33% of patients with
BMs. Although there is a need for additional validation, this panel of genes was suggested
to discriminate against the risk of developing BM [75]. More recently, tumor samples
from 91 NSCLC patients (32 of which developed BM) were analyzed by Illumina RNA-
sequencing. This study identified 22 genes (including CELF1, NEURL2, CEBPB, AANAT,
TMEM121, TWIST2, TNN, ST6GAL2, SLC38A4, FFAR4, LRIG3, CYB561, DPP9-AS1, C5orf60,
ZNF843, ANKRD62, ZNF439, and PSG2) that specifically correlated with BM and not with
metastasis to other sites [76].

NGS targeted sequencing of 416 cancer-associated genes in primary lung tumors
(n = 61 patients: 50 adenocarcinoma, 3 squamous cell carcinoma, and 8 mixed histology)
and paired BMs showed that mutations in EGFR, KRAS, TP53, and ALK were concordant
between primary tumors and BMs in >80% of cases. Of these patients, 25 patients (41%)
had synchronous BMs, which showed a larger number of cancer-associated mutations
when compared to primary tumors; this was not observed for patients with metachronous
BM [77]. These data suggest that synchronous BMs are likely to undergo genomic evolution
with the activation of additional oncogenic mechanisms [77]. Another study with seven
lung adenocarcinoma patients with BM identified that the protein expression levels of
TYMS, CDK1, HJURP, CEP55, and KIF11 were highly predictive of BM in these patients [78].

Studies such as those outlined above show the existence of selective molecular mech-
anisms driving clonal evolution of BMs. Clones of metastatic cells growing in the brain
evolve alternative routes, compared to other metastatic sites, mainly due to the hostile
nature of the brain microenvironment for cancer cells. These data also have important
implications to delineate tailored therapeutic approaches and to develop robust, clinically
applicable biomarkers to identify patients at high risk for BM [23,51].

Effective treatments for patients with BM need to consider the molecular changes
specific to metastatic cells, as well as the BM microenvironment [23]. Indeed, targeted
therapies based on primary tumor driver mutations might fail to treat patients with BMs,
due to the molecular divergence between BMs and primary tumors [34]. Current interna-
tional recommendations include the identification of molecular alterations specific to BMs
in tissues and in liquid biopsies, which may be clinically applicable for early detection of
BMs, and detection of BM-specific molecular changes to evaluate therapeutic response [34].

Considering the reported evolutionary changes and genetic differences between pri-
mary tumors and BM, as well as the molecular features that result from selective pressures
of systemic treatments, there is a need for additional molecular profiling studies leading to
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biomarker development in BM. The relevance of novel biomarker discovery in BM and also
extracranial metastasis includes the identification of molecular determinants/drivers of
metastatic progression and the application of this knowledge for more effective treatment
approaches to improve patient survival [79].

Recent studies applying single cell transcriptomic sequencing were able to unlock
novel key molecular features of individual metastatic cells in lung cancer. Among these,
Ruan et al. [80] characterized transcriptome changes in circulating tumor cells in cere-
brospinal fluid of patients with lung adenocarcinoma leptomeningeal metastasis. They
sequenced 792 transcriptomes of 5 patients and 3 controls and found a metastatic signature
of genes with roles in metabolism as well as molecules related to cell adhesion. Furthermore,
this study reported that there is higher heterogeneity among patients when compared to
single cells isolated from the same patient [80]. In addition, Zhang et al. [81] identified
differentially expressed genes between primary lung adenocarcinoma and BM isolated
from two patient-derived xenografts (PDX). The authors suggested that CKAP4 (Cytoskele-
ton Associated Protein 4), SERPINA1 (Serpin Family A Member 1), SDC2 (Syndecan 2),
and GNG11 (G Protein Subunit Gamma 11) are potential biomarkers to aid in prognosis
assessment and therapy of patients with lung cancer BM [81].

Other technologies were applied for digital spatial RNA sequencing profiling of
NSCLC and BM, and allowed a comprehensive assessment of biomarkers associated with
primary and metastatic lesions, including analysis of the primary tumor immune and the
brain microenvironments. Zhang et al. [82] analyzed a cohort of 44 patients with metastatic
NSCLC using the NanoString GeoMx DSP platform. Among their findings, we highlight
the highly immunosuppressive microenvironment associated with BM lesions compared
to primary tumors, with reduced abundance of B and T-cells and higher infiltration of
neutrophils. Their study shed light on the role of molecular changes in the tumor and BM
microenvironments for establishment of the metastatic niche [82]. Studies such as these are
relevant to determine clinically applicable biomarkers for patient treatment.

5. Non-Coding RNAs Play Important Roles in Brain Metastasis from Lung Cancer

Non-coding RNAs (ncRNAs) are regulatory molecules that modulate several biological
functions, including gene expression, cell signaling, and genomic rearrangement [83,84].
NcRNAs are classified based on their lengths: small ncRNAs (sncRNAs; <200 nucleotides)
such as microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs), and long noncoding
RNAs (lncRNAs; >200 nucleotides) [85,86]. NcRNAs play roles in cancer progression, with
specific expression patterns during metastasis development [87]. Alterations in ncRNA
expression levels, mainly in miRNAs, could be associated with the development of BM
in lung cancer since miRNAs have important regulatory roles in different steps of the
metastatic cascade, including migration, invasion, adhesion, colonization, and epithelial-
mesenchymal transition (EMT) [88–90]. MiRNAs can also contribute to disrupting the
BBB [91] by creating a more hospitable environment for metastatic-initiating cells [92],
establishing a pro-metastatic microenvironment [89,93] and modulating cancer stem cell
(CSCs) properties that could contribute to the establishment of BM [94].

The mechanistic roles of oncogenic miRNAs in the development of BM from NSCLC
have been explored. MiR-328 deregulation has been shown to promote BM in patients
with NSCLC, partially by modulation of protein kinase C alpha (PRKCA), leading to high
PRKCA levels and increased cancer cell migration [95]. MiR-378 has also been shown
to be overexpressed and associated with an increased risk of BM and “brain-seeking”
metastatic potential, due to its role in promoting cell migration, invasion, and tumor
angiogenesis through modulation of MMP-2, MMP-9, VEGF, and suppressor-of-fused
(SUFU) genes [96]. SUFU is involved in glioma cell growth and angiogenesis [97], and
metastasis in lung adenocarcinoma [98]. Another report showed that miRNA-197 and
miRNA-184 are overexpressed in EGFR-mutant BM when compared with EGFR-mutant
primary tumors without BM [99]. However, this study did not include EGFR wild-type
tumors from patients with and without BM for comparison with EGFR-mutant cases.
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Hence, more research is needed to understand how these miRNAs affect EGFR regardless
of its status.

Tumor-suppressive miRNAs have also been implicated in metastatic progression. In
animal models, miRNA-146a was suppressed in BM compared to primary tumors [100].
Overexpression of miR-146a suppressed the metastatic potential, including migratory
and invasive activities, through upregulation of β-catenin and downregulation of hetero-
geneous nuclear ribonucleoprotein C1/C2 (hnRNPC) [100]. In line with these findings,
miRNA-95-3p is downregulated in BM of lung cancers compared to primary tumors [101].
Overexpression of miRNA-95-3p suppresses cyclin D1 expression through direct bind-
ing to the 3′ UTR of cyclin D1 mRNA and suppresses invasiveness, proliferation, and
clonogenicity in in vitro assay [101]. Similarly, downregulation of miRNA-145 [102], and
miRNA-375 [103], has been associated with BM formation in NSCLC; evidence suggests
that while miR-145 overexpression reduces cell proliferation, there is no effect on the
migration and invasion ability of cell lines. This indicates that miR-145 downregulation
likely enhances cell proliferation after having reached the metastatic brain site, aiding in
colonization, rather than in the early stages of metastasis [102].

Another miRNA found to be underexpressed in BM, compared to matched primary
lung cancer tissues, is miRNA-768-3p [104]. Subramani et al. suggested that the brain
microenvironment negatively regulates miRNA-768-3p, which enhances KRAS expression
contributing to metastasis [104]. In another study with a cohort of 357 stage I NSCLC
patients, 10 miRNAs correlated with BM (hsa-miR-450b-3p, hsa-miR-29c, hsa-miR-145,
hsa-miR-148a, hsa-miR-1, hsa-miR-30d, hsa-miR-187, hsa-miR-218, hsa-miR-708, and hsa-
miR-375) [105]. Taken together, these findings suggest that the loss of miRNAs with a
tumor suppressive role could activate oncogenic pathways that are hallmarks of cancer,
contributing to tumor development and progression to metastasis.

LncRNAs also play fundamental roles in lung tumorigenesis and metastasis [106,107].
They have been shown to modulate chromatin functions, control membraneless nuclear
bodies’ assembly and function, alter cytoplasmic mRNA stability and translation, and
interfere with signaling pathways, depending on their localization and specific interactions
with DNA, RNA, and proteins [108]. Examples of lncRNAs associated with lung cancer BM
include the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1 or nuclear
enriched abundant transcript 2, NEAT2), which is overexpressed in a variety of tumors,
including metastatic NSCLC [109]. MALAT1 acts through promoting migration of cancer
cells to the brain in an EMT-driven mechanism [109]. Furthermore, MALAT1 promoted mi-
gration and invasion by targeting miR-206 and activating Akt/mTOR signaling in NSCLC
tissues and cell lines [110]. Another lncRNA known in tumor development and progression,
HOX transcript antisense RNA (HOTAIR), was associated with BM from NSCLC [111].
In vitro studies showed that HOTAIR enhances cell migration and anchorage-independent
cell growth [111]. Nonetheless, the exact role and target of HOTAIR remains unknown.

Recently, it was also reported that the histocompatibility leukocyte antigen complex
P5 (HCP5) is a potential driver for BM in lung cancer [112]. Computational bioinfor-
matic analyses suggested that the ferroptosis-related competing endogenous RNA (ceRNA)
HCP5/miR-17-5p/HOXA7 axis may contribute to the development of BM in lung adeno-
carcinoma [112]. In addition, overexpression of AC122108.1 lncRNA promotes BM in lung
adenocarcinoma through the Wnt/β-catenin pathway by directly binding to the aldolase
A (ALDOA) protein; this mechanism enhances the proliferation, apoptosis, invasiveness,
migration, and metastasis of lung adenocarcinoma cells [113]. In patients with limited-stage
SCLC, a recent study using peripheral blood mononuclear cells (PBMCs) identified the
low-level expression of lncRNA XR_429159.1 as a high-risk factor for BM [114]. However,
the underlying mechanisms need to be further explored. Other lncRNAs involved in
promoting metastasis in lung cancer include chromatin-associated RNA 10 (CAR10) [115]
and brain cytoplasmic RNA 1 (BCYRN1) [116].

Recent studies have shown that lncRNAs are closely related to the increased per-
meability of the BBB in BM development and brain tumors [117–120]. In NSCLC, both
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exosomal-derived LINC01356 and lnc-MMP2-2 were found to increase BBB permeability
and promote BM development. While the exosomal lncRNA LINC01356 remodels BBB
by targeting cell junction proteins such as Occludin, Claudin, and N-cadherin [121], TGF-
β1-mediated exosomal lnc-MMP2-2 may destroy the tight junctions of the BBB, thereby
facilitating the passage of cancer cells [122].

Moreover, lncRNAs may interact with immune cells in the brain and contribute to
a permissive environment for tumor growth [123]. For example, glioma cell-derived exo-
somes are able to transport lncRNA-ATB to astrocytes, promoting their activation, which in
turn facilitates invasion and migration of glioma cells [124]. In breast cancer cells, loss of
lncRNA X-inactive-specific transcript (XIST) triggers the polarization of microglia, resulting
in increased expression of cytokines and suppression of T-cell proliferation [125]. Immune
suppression is one of the mechanisms by which microglia promotes tumor progression
in the brain [125]. Another study showed that JAK2-binding long noncoding RNA can
promote breast cancer brain metastasis through a STAT3-dependent mechanism, which
mediated recruitment of macrophages into the brain [126]. In addition, a recent report
demonstrated that lncRNA (BMOR) is important for developing breast-to-brain metastasis
by allowing tumor cells to evade immune-mediated killing in the brain microenviron-
ment [127]. Altogether, these studies evidence the importance of lncRNAs for mediating
communication between cancer cells and the brain microenvironment. Given the impor-
tance of these lncRNAs, it would be interesting to explore whether it is also involved in
lung-to-brain metastasis. Figure 2 illustrates known miRNAs and lncRNAs involved in
several important steps of BM development in lung cancer.
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Strategies that identify and target miRNAs and lncRNAs may be attractive as early
diagnostic and therapeutic options. In recent years, the deregulation of ncRNAs in lung
cancer has prompted preclinical studies examining the therapeutic potential of restoring
and/or inhibiting such molecules [128]. The tissue-specific expression as well as high
stability within body fluids makes them excellent candidates as biomarkers for diagnosis,
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prevention, and treatment of BM [128]. It has recently been demonstrated that miRNAs can
be used to distinguish normal cells from cancerous ones and primary brain tumors from
secondary brain tumors, as well as correctly categorize metastatic brain tumor tissues based
on their expression profiles [93]. These data indicate that miRNAs are promising candidates
for clinical applications in BM. On the other hand, the roles and molecular mechanisms of
many lncRNAs still remain elusive. Though promising, several challenges remain to be
addressed to implement ncRNAs in clinical practice [93,129,130], such as the development
of efficient delivery systems capable of crossing the BBB, with minimal toxicities, and the
successful unloading of ncRNA therapeutics.

6. Advances in the Molecular Diagnostics of Brain Metastasis: Liquid Biopsies

Liquid biopsy is a new diagnostic concept based on the analysis of circulating tumor
cells (CTCs), and/or molecules originated or secreted by tumor cells. Molecules derived
from body fluids that are useful for liquid biopsy tests include circulating tumor DNA
(ctDNA) and RNA (ctRNA), proteins, and microvesicles (e.g., exosomes) [131]. The ctDNA
and ctRNA (coding and non-coding) are passively released from apoptotic or necrotic
tumor cells, or are actively secreted by cancer cells [131].

Liquid biopsies are a minimally invasive alternative to tissue biopsies, particularly for
tissues that are difficult to obtain, such as the brain. Furthermore, liquid biopsies can be
serially repeated since they are minimally invasive and have low cost [132]. Liquid biopsies
have an enormous potential to monitor treatment response, quantify minimal residual
disease, and assess the emergence of clones resistant to therapy (Figure 3). Several types of
body fluids are useful in the development of liquid biopsy diagnostic tests in cancer: blood,
pleural effusion, and CSF [131]. Cancer-specific changes can be measured in liquid biopsies,
including genomic, transcriptomic, proteomic, and CTC quantification. Translation of liquid
biopsy tools into clinical practice is transforming diagnosis in oncology, as demonstrated
by a large number of liquid biopsy diagnostic tests entering into the clinical setting [133].
Indeed, the first approved commercial liquid biopsy test detects EGFR mutations in ctDNA,
and it is useful to select metastatic NSCLC patients for EGFR-TKIs [134,135].

CTCs are isolated or clustered tumor cells released by the primary tumor or metastasis
that leaks into the bloodstream and migrates towards the metastatic site. The frequency of
CTCs is found on the order of 1–10 CTCs/mL of whole blood in patients with metastatic
disease [136]. Different methods for enrichment, isolation, and identification of CTCs
were developed according to their physical and biological characteristics. In lung cancer,
isolation by size of epithelial tumor cells (ISET) was the earliest size-based method used for
CTC detection, showing high sensitivity and reproducibility [137]. High levels of CTCs
have been associated with worse outcomes in lung cancer. In 2017, Lindsay et al. evaluated
the total number of CTCs as a prognostic marker in 125 treatment-naive patients with
advanced NSCLC. Vimentin-positive CTCs were assessed according to treatment and the
presence of EGFR, ALK, and KRAS mutations; a number higher than 5 CTCs was associated
with reduced survival and an increase in vimentin-positive CTCs was associated with
EGFR-mutated tumors, suggesting the presence of epithelial–mesenchymal transition char-
acteristics [138]. Vimentin is a filamentous protein expressed in mesenchymal cells, and it
is known to maintain cellular integrity and provide resistance against stress [139]. It has
been often recorded in cancers, including NSCLC and BM, as a marker of tumor cell inva-
sion via its expression during the aberrant activation of epithelial–mesenchymal transition
(EMT) [138]. During EMT, vimentin modulates genes for EMT inducers, as well as some key
epigenetic factors. It suppresses cellular differentiation and upregulates their pluripotent
potential by inducing genes associated with self-renewability, which increases the stemness
of cancer stem cells, facilitating tumor spread and making tumor cells more resistant to
treatments [140]. Vimentin overexpression has been associated with increased cancer cell
growth, invasion, and migration, suggesting its potential application in cancer diagnosis
and treatment [139]. Another study showed that the presence of CTCs was associated with
low response rates, as well as shorter progression-free and overall survival, in patients with
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advanced NSCLC treated with both targeted- and chemotherapy [141]. CTCs derived from
brain metastases were shown to have mutations in adaptive, cytoprotective genes with roles
in the Keap1-Nrf2-ARE pathway, helping metastatic-initiating CTCs to survive in the blood
circulation [142]. Therefore, CTCs may be an ideal source for determining the molecular
portrait of metastasis where tumor biopsies are not clinically feasible. Importantly, CTCs
can be expanded in vitro and in vivo, the latter by establishing CTC-derived xenografts
as a means to characterize CTCs capable of initiating metastasis. Such applications have
the potential to demonstrate the molecular mechanisms of metastasis initiation driven by
CTCs and are promising in the discovery of novel molecular diagnostic and therapeutic
strategies [143].
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CTCs detected by liquid biopsies will help understand the molecular aspects of
metastatic progression. Indeed, CTCs have been indicated as clinically applicable for
many years, and a plethora of studies have demonstrated the correlation between CTC
counts and metastatic disease in different cancer types [144]. In NSCLC patients with
BM, CSF has been shown to be useful for CTC detection [145,146]. Recent functional
studies have established in vitro and in vivo models from CTC-derived metastatic cells
and are valuable to reveal molecular alterations specific to aggressive, metastatic-enabling
clones [143]. Further development of methods for detection of metastasis-initiating CTCs
will help elucidate the processes by which metastasis is established into the brain and
extracranial sites. Darlix et al. [147] reported a prospective study for detection of sus-
pected leptomeningeal metastasis in 40 patients with breast cancer. The authors tested the
CellSearch® system, a clinically validated and FDA-approved test for CTC detection [147]
and were able to identify CTCs in the cerebrospinal fluid of all cytology-positive sam-
ples. Interestingly, they detected CTCs in five cytology-negative samples, demonstrating
improved sensitivity of CTC detection using the CellSearch® system. Furthermore, they
were able to detect HER-2 positive CTCs in the CSF of HER-2 negative tumors. This same
system has been previously used to evaluate detection of both CTCs and exosomes in
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pancreatic cancer patients and was shown useful to accelerate diagnosis and treatment of
surgically resectable cases [148]. Such studies highlight the importance of liquid biopsies
as a potential tool to study molecular changes specific to more aggressive circulating tumor
cells, as well as to refine molecular diagnostics and aid in treatment decisions that will
impact patient survival [147]. Furthermore, the development of liquid biopsy-CTC-based
biomarkers can be useful as a complementary tool to aid diagnostic imaging, augmenting
early detection and, consequently, treatment intervention of occult BM [149].

Among cancer biomarkers, the proteome is a major source of circulating molecules that
can inform clinically useful decisions [150]. A few examples include the circulating protein
biomarkers CEA, PSA, β-hGC, CA 15-3, and CA 19-9 [151]. Carcinoembryonic antigen
(CEA) is the most studied biomarker in lung cancer, investigated as a prognostic biomarker
for BM development. High CEA serum levels were associated with BM in NSCLC [152].
CEA was shown as a prognostic biomarker for BM, as well as cytokeratin 19 fragments
(CYFRA 21-1), cancer antigen 125 (CA125), cancer antigen 19-9 (CA19-9), and squamous
cancer cell antigen in NSCLC [153]. Cancer antigen 125 has been used as a clinical tumor
marker for prognosis and therapy monitoring in ovarian and breast cancer patients [154].
However, other studies reported CA-125 as a marker for worse prognosis in lung can-
cer [155] and a prognostic biomarker in BM [153]. In addition, high serum levels of lactate
dehydrogenase (LDH), CEA, CYFRA 21-1, and CA125 were independently associated with
BM in a large cohort of geriatric patients with lung adenocarcinoma [156]. Distinct from the
genome, the proteome composition can change in response to variations in intracellular and
extracellular conditions. Considering that gene expression implicates alternative splicing
and post-translational modifications, the number of expressed proteins vastly outnum-
bers the number of genes. Therefore, proteome analysis can uncover molecular pathways,
protein–protein interaction networks, and events underlying cellular phenotypes associated
with the disease. The evolving field of oncoproteomics will likely derive novel biomarkers
ready to use in liquid biopsies for clinical practice applications [151].

7. Treatment of BM from Lung Cancer

Primary management of BM predominantly has consisted of local treatments including
surgery, stereotactic radiation or large field radiation therapy based on the knowledge of
the heterogeneous penetration of systemic therapies into the brain. More recently, advances
in systemic treatment were developed, particularly with the introduction of molecularly
targeted therapeutics and immunotherapies. Nevertheless, direct evidence of systemic
therapy in BM is limited since the presence of BM is generally an exclusion criterion in
randomized trials, or patients with BM are underrepresented in these trials [157–160].
A comprehensive review of treatment for BM in patients with NSCLC is available by
Tsui et al., 2022 [160].

Treatment for brain metastases comprises two broad categories, of symptomatic man-
agement and tumor-directed therapies [23]. Corticosteroids, such as dexamethasone,
represent the main treatment for symptomatic patients, frequently prescribed in response
to signs of increased intracranial pressure due to peritumoral edema [23]. Anticonvulsants
may be prescribed to prevent seizures, and systemic steroids alone may improve neurologi-
cal function and prolong survival by approximately two months [161]. Most therapies may
include a combination of surgery (aiming at diagnosis and brain decompression), and/or
adjuvant radiotherapy or systemic therapies. Other modalities include Stereotactic Radio-
surgery (SRS) and whole-brain radiotherapy (WBRT) (Figure 4). The approach adopted for
a given patient will depend on the performance status, and the distribution of intracranial
and extracranial disease [162,163]. Novel methods for minimally invasive neurosurgery
were demonstrated to have advantages such as inexpensive instruments, straightforward
use and operation, and accurate positioning. Modern technologies for minimally invasive
surgery are suitable for clinical practice in medical institutions [164].
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Corticosteroids have long been used to treat peritumoral edema. Their effects on im-
proving symptoms are beyond the reduction of inflammation but include an upregulation
of tight junction proteins (such as ZO-1 and occludin) [165], which are important in the
maintenance of the blood–brain barrier’s structure and function. Endothelial cells within
and around the tumor are damaged by the presence of the tumor and the corresponding
inflammation, leading to increased permeability of vessels and extravasation of fluid [166].
Despite the advantages of corticosteroid use, their symptom relief is temporary and depen-
dent on the control of the local disease. In addition, the side effects of prolonged use are
well known, such as diabetes, weight gain, cushingoid features, hypertension, myopathy,
and osteoporosis—with increased risk of fractures [167]. Therefore, the recommended
dose is the minimum needed to control symptoms, varying from 4 mg/day to 16 mg/day
depending on the patient’s symptoms [168].

The use of anticonvulsants for seizure prophylaxis is controversial. Despite being
largely used in clinical practice, there is a paucity of high-level studies supporting their
use. Current guidelines do not support the use of anticonvulsants for patients with newly
diagnosed brain tumors without a history of seizures. For patients undergoing surgical
removal of tumoral lesions (which could be at potential risk of developing epileptogenic
foci), there is insufficient evidence to support the use of anticonvulsants within the periop-
erative period [169]. In the case of seizures, the most commonly used agents are phenytoin,
levetiracetam, valproic acid, and carbamazepine.

Surgical resection of BM may provide important benefits: symptom relief, de-obstruction
of CSF pathways, dismissal of corticosteroid use, and samples for histopathologic and
molecular analysis [19]. Indications for surgical resection include single or few intracranial
lesions (up to three), large lesions, and accessible sites (i.e., sites where surgical corridors
will not determine new deficits). En bloc resection seems to decrease the risk of future
leptomeningeal dissemination and is preferable to piecemeal resection, even though larger
tumors may require some intraoperative internal decompression in order to prevent addi-
tional neurological deficits [170,171]. Moreover, gross-total resection may improve overall
survival [172]. Neuronavigation and intraoperative ultrasound are helpful for precise
tumor localization. As with other brain tumor surgeries, brain mapping, awake craniotomy,
and intraoperative monitoring are good options for safer resection.
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Overall median survival rates after surgical resection of BM range from 9.8 to
24 months [173–175]. Within one year, survival rates are about 40–45% [173,176]. Fac-
tors determining better outcomes and prolonged survival are lower number of BM, lower
age, better preoperative clinical performance, absence of extracranial metastasis, and asso-
ciation with other treatment modalities (i.e., radiotherapy and immunotherapy) [173–178].
For single BM, survival can be longer than two years in cases of complete resection and
smaller tumor size [179,180].

Radiation therapy plays an important role in the management of BM. Post-surgical
radiotherapy may reduce the risk of local recurrence, even though it is not clear whether it
changes overall survival (probably because of initial poor clinical conditions) [181]. WBRT
is commonly used for multiple lesions inaccessible for surgical resection. However, it carries
a significant risk of neurocognitive decline and diffuse leukopathy. Therefore, stereotactic
radiotherapy or stereotactic radiosurgery are preferable, as they target the lesions without
causing diffuse brain damage [182,183].

The molecular characterization of lung adenocarcinoma was pivotal to patient man-
agement. However, this knowledge for SCLC and the squamous subtype of NSCLC had
a lower impact in patient treatment, mainly due to the low incidence or absence of tar-
getable mutations in these tumor subtypes [159]. Current guidelines for BM treatment
recommend targeted therapy only for those patients with oncogenic driver mutations [157].
Small molecule treatments have proven beneficial for palliative relief. For example, pa-
tients with NSCLC BM and positive for the EGFR mutation have shown meaningful CNS
efficacy after treatment with third generation of EGFR TKIs such as icotinib [184] and
osimertinib [185–187]. Similarly, intracranial response was observed in patients with BM
treated with the third generation of TKIs targeting ALK rearrangements, alectinib [188],
brigatinib [189,190], and ceritinib [191]. Other therapies have been explored for NSCLC,
with BM showing promising results, such as capmatinib [192] and tepotinib [193], both tar-
geting MET alterations; selpercatinib targeting RET fusions [194,195]; entrectinib [196], and
larotrectinib targeting tropomyosin receptor kinase (TRK) fusion-positive tumors [197,198];
lorlatinib targeting ROS1 [199]; and dabrafenib plus trametinib targeting BRAF V600E [200],
among others [160,201].

The reduced penetration of chemotherapy agents through the BBB has limited its
use as a primary treatment for BM in NSCLC [144]. Pemetrexed-cisplatin was shown
to be effective for treatment of BM in patients with NSCLC with an objective response
rate of 41.9% [182]. The FDA-approved drug Entrectinib was developed to target NTRK
fusion as well as ROS and ALK tyrosine kinases and is capable of crossing the BBB. This
drug has shown positive intracranial response rates in ROS-positive NSCLC [202,203],
and NTRK fusion-positive solid tumors [196]. In addition, Lorlatinib, a potent brain-
penetrant, third-generation tyrosine kinase inhibitor, has shown clinical activity in patients
with advanced ROS1-positive NSCLC with BM [199]. Moreover, chemotherapy combined
with immunotherapy has been shown to enhance the efficacy of immunotherapy, opening
new windows for new first-line therapeutic strategies to benefit patients with advanced
NSCLC [204,205].

Immunotherapy using ICIs is used in the management of NSCLC, particularly for
patients without molecularly targetable disease. The benefit of ICIs in oncogene-targetable
NSCLC is limited. Cumulative evidence suggests an interplay with tumor cell oncogenic
signaling and tumor immunogenicity, leading to non-T cell-inflamed environment and
resistance to ICIs. This complex interaction and balance between the TME and tumor cells
triggers immune evasion mechanisms, including T cell exclusion, induction of regulatory
T cells (Treg), and other immune suppressor cells, increasing PD-Ll expression, among
others. For instance, poor efficacy of ICI monotherapy has been reported in patients with
EGFR mutations as a consequence of characteristic low TMB and high expression of PD-L1
in these tumors. Conversely, patients with ALK and ROS1 fusion-positive tumors present
a relatively high prevalence of PD-L1 expression, but low TMB and short progression-
free survival after monotherapy with ICI, indicating that subsets of NSCLC with EGFR
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and ALK/ROS1 positive mutations present minimal benefit from ICI despite high PD-
L1 expression [206]. In contrast, KRAS mutated NSCLC presents high TMB, increased
infiltration of lymphocytes PD-L1+, and an inflammatory tumor microenvironment, being
more responsive to ICIs [207]. Therefore, NSCLC cases with distinct genomic subsets and
specific oncogenic drivers show heterogeneous response to ICIs. To date, there is limited
prospective data on the efficacy of ICIs therapy in NSCLC with driver mutations, mainly
because ICIs clinical trials consistently exclude EGFR, ALK, and ROS1 mutated tumors,
thus precluding meaningful clinical information [208].

As previously acknowledged, patients with active BM are frequently excluded from
clinical trials testing ICIs in NSCLC; therefore, the safety and activity of ICIs as a single-
agent or combined with chemo or radiotherapy modalities are still under investiga-
tion [160,204]. A non-randomized, open-label, phase 2 trial showed that pembrolizumab
provides similar response rates in intracranial and extracranial tumors, with improved
overall survival in NSCLC BM presenting with PD-L1 expression ≥1% [209]. Therapy
with pembrolizumab (anti–PD-1 monoclonal antibody) in patients with treatment-naive
and previously treated PD-L1–positive advanced/metastatic NSCLC showed improved
outcomes and fewer adverse events compared to chemotherapy alone in a pooled analysis
of the Keynote-001, -010, -024, and -042 clinical trials, supporting the use of pembrolizumab
monotherapy for these patients [210]. Additionally, Powell et al. [211] reported a pooled
analysis of Keynote-021, -189, and -407 including 1298 NSCLC patients, of which 171 had
baseline BM. In this study, patients with or without BM, treated with pembrolizumab plus
platinum-based chemotherapy, showed improved clinical outcomes vs. chemotherapy
alone across all PD-L1 positive samples [211]. In their study, patients with BM treated with
pembrolizumab plus chemotherapy had a median overall survival of 18.8 months com-
pared with 7.6 months with chemotherapy alone, and median progression-free survival of
6.9 and 4.1 months, respectively. Therefore, combined treatment regimens were suggested
as a standard-of-care option for patients with advanced NSCLC, including those with
stable brain metastases [211]. Similarly, the CheckMate 9LA, an international, randomized,
open-label, phase 3 trial, showed that treatment with nivolumab plus ipilimumab combined
with two cycles of chemotherapy resulted in superior overall survival when compared
to chemotherapy alone, and suggested the use of this therapeutic regimen as a first-line
option in advanced NSCLC [212]. In a systematic review and meta-analysis, superior
overall survival and progression-free survival was reported for patients with advanced
NSCLC treated with ICIs compared to chemotherapy alone. This study also reported that
a combination of treatment with nivolumab/ipilimumab plus chemotherapy resulted in
further improved overall survival and progression-free survival of patients with BM [213].

Although the combination of radiation and targeted therapy or immunotherapy in
the management of patients with BM NSCLC is controversial, clinical trials evaluating
the role of local radiation with these therapies are ongoing (NCT04905550; NCT02978404;
and NCT03916419, among others). Despite encouraging results with systemic therapy, the
incidence of BM is still increasing. In addition, CNS progression and therapeutic resistance
urgently require combinatorial strategies, including local therapy and novel CNS-penetrant
drugs that can adequately treat intracranial metastases.

8. Conclusions and Perspectives

Approximately 40% of NSCLC patients develop BM during their disease course, lead-
ing to high morbidity and mortality rates. Management of patients with BM is challenging,
and a multidisciplinary approach is necessary for treatment and disease control. In light
of the increasing incidence of BM and poor clinical management, ongoing advances in
multimodal treatments and targeted therapies are needed, including the development
of CNS-penetrant agents that adequately target molecular alterations present in BM. In
order to achieve effective and personalized treatment approaches for CNS metastases,
-omics profiling should be integrated with microenvironment analyses. Research into
the genetic variants and ncRNA expression may help stratify the lung cancer population
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by the risk of developing BM. Identifying the interactions between tumor cells and the
brain microenvironment is also a key step in developing treatment strategies to block
metastatic progression.

Improved treatment modalities have been implemented with the development of
immune checkpoint inhibitors in combination with other systemic therapies. Although
there is an observed gain in survival, patients with NSCLC and BM are still underrepre-
sented in clinical trials, and there is a need for an assessment of routine MRI screening and
biomarker identification.

The application of screening tools such as an MRI scan to identify patients with a
higher risk of developing BM has the potential to improve patient outcomes. This is
especially relevant since a proportion of patients with negative neuroimaging screens will
develop a BM within one year of diagnosis; however, it remains controversial whether
there is a need for routine neuroimage screens in patients with the early clinical stages
of NSCLC.

Efforts for functional assessment of metastatic-competent cells have been described
with in vitro and in vivo characterization of CTCs in liquid biopsies, as described in this
review. Such studies are needed since the molecular mechanisms underlying the metastatic
steps are not fully understood, mainly due to most studies focusing on brain lesions only,
and not looking into isolating and identifying metastatic-enabling circulating cells. By
integrating molecular analyses of BM collected at different time points during tumor evolu-
tion, researchers will aid in understanding disease progression in lung and other cancers.
Furthermore, the application of advanced technologies, including single cell sequencing,
will offer novel opportunities for analysis of CTC-derived metastasis, unlocking key tran-
scriptomic and molecular changes associated with the metastatic cascade. Although high
dimensional and more complex single cell sequencing analyses are still challenging, they
hold potential for precision oncology in the context of complex and heterogeneous diseases
including NSCLC-BM.

Therefore, it is urgent to fully elucidate the molecular mechanisms of BM, aiming
at the development of successful therapeutic interventions, which will ultimately change
the dismal prognosis of NSCLC patients with BM. Additionally, combined efforts to fully
understand disease heterogeneity and metastatic evolution will lead to the development of
better diagnostics for early detection of BM before clinical manifestation, improving patient
outcomes and providing better chances of cure.
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