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Simple Summary: Cancer treatments usually gain good responses; however, some tumors relapse
frequently. Acute Myeloid Leukemia (AML) is notorious for its robust relapse. This is attributed
to the leukemic stem cells (LSCs). We used a murine syngeneic leukemia model, ML23, to identify
and study LSCs in syngeneic settings. Hereby, we present the prospective isolation of a defined
LSC sub-population, encompassing the potency to pass disease from mouse to mouse. We further
provide molecular insights and whole transcriptome analysis. Importantly, the ML23 LSC sub-
population expresses therapeutic targeted genes and provides a model for research in immune-
competent animals.

Abstract: Acute Myeloid Leukemia (AML) is a severe disease with a very high relapse rate. AML
relapse may be attributable to leukemic stem cells (LSC). Notably, the “cancer stem cell” theory, which
relates to LSCs, is controversial and criticized due to the technical peculiarities of the xenotransplant
of human cells into mice. In this study, we searched for possible LSCs in an immunocompetent
synergetic mice model. First, we found phenotypic heterogeneity in the ML23 leukemia line. We
prospectively isolated a sub-population using the surface markers cKit+CD9−CD48+Mac1−/low,
which have the potency to relapse the disease. Importantly, this sub-population can pass in syngeneic
hosts and retrieve the heterogeneity of the parental ML23 leukemia line. The LSC sub-population
resides in various organs. We present a unique gene expression signature of the LSC in the ML23
model compared to the other sub-populations. Interestingly, the ML23 LSC sub-population expresses
therapeutic targeted genes such as CD47 and CD93. Taken together, we present the identification and
molecular characterization of LSCs in a syngeneic murine model.

Keywords: syngeneic model; AML; leukemic stem cell

1. Introduction
1.1. Acute Myeloid Leukemia (AML)

Leukemia is a severe life-threatening disease that affects children and adults. Patients
suffer an increased proliferation of leukocytes and the inhibition of normal blood cell
production [1]. Acute Myeloid Leukemia (AML) is a malignancy of the myeloid progenitor
cells [2]. It is prevalent in the elderly, and the five-year survival rate of patients >60 years
is less than 15% [3]. In this process, bone marrow (BM), blood, and other tissues are
infiltrated by malignant leukemic cells [4]. The classification of the types of AML used
to relay phenotypes have moved to genetics in recent years [5]. Genetic alteration of
the malignant cells hampers the differentiation of erythrocytes, platelets, monocytes, and
granulocytes [6]. AML patients also suffer aberrations of their BM, causing insufficient
hematopoiesis and immune activities. Garry Gilliand et al. suggested that most AMLs are
driven either by mutations that activate signal transduction pathways, thereby enhancing
proliferation or survival of progenitors, or by mutations effecting transcription factors (TF),
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such as the HOX genes, hindering normal hematopoietic differentiation and enhancing self-
renewal [7,8]. In a previous work, we presented the leukemia model for AML, ML23, which
is similar to the second type, using the over expression of Meis1, HoxA9, and HoxB5 [9].
Interestingly, mouse models can recapitulate human AML, allowing for functional studies,
drug development, and detailed molecular studies [10].

1.2. Leukemic Stem Cells

Previous works on AML in a murine xenograft model have reported the prospective
isolation of a sub-population of cancer cells that can pass AML [11]. These cells, defined as
leukemia-initiating cells (LICs), possess some similarities with hematopoietic stem cells
(HSCs), such as multipotency and self-renewal characteristics [12]; therefore, they are also
referred to as leukemia stem cells (LSCs). Later studies have reported the identification
of sub-populations that bear the engraftment potency of other cancers, which are some-
times referred to as “cancer stem cells” (CSCs) [13–16]. AML often presents a cellular
hierarchy that may resemble normal hematopoiesis [14]. Malignancy is preserved using
LSCs; moreover, while differentiated cells may encompass a large portion of a cancerous
mass, they lack the ability to relapse [17]. Importantly, new therapeutics are tested to
target the dominant blast population of leukemia; however, researchers might not test
for the targeting of the LSCs [18,19]. Moreover, localization of LSCs in supporting niches,
and their relatively slow cycling, may protect them from some of the common and new
treatments [19,20]. AMLs are notorious for relapsing [3,19,21]. Identification, functional
examination, and molecular study of presumable LSCs in additional leukemia models will
enable the development of better treatments [3,22,23].

1.3. Murine Models for AML

Mouse models have been leading cellular and molecular leukemia research for over
70 years [1,24]. From carcinogen-induced leukemia [25], random transgenics, genetically engi-
neered mice [26], and xenotransplantation—each has advantages and limitations [10,27–29].
Importantly, animal models allow for better experiments and pioneered the prospective
identification of LSCs [10,11]. Many molecular and cellular discoveries were possible only
thanks to mice models, while each model is truly limited. Importantly, a major criticism
of the “cancer stem cell” theory was supported by some mice models [30]. Strasser et al.
demonstrated an extremely high frequency of leukemic cells that robustly pass the disease,
disputing the concept of a minor LSC sub-population [30]. Interestingly, the xenotransplant
of human leukemia into mice was initially recognized as requiring a supplementation of
human cytokines [11], and the multiple interactions of malignant cells with their niche are
not fully recapitulated, casting doubt on LSC identification [11,31] across species. Moreover,
xenotransplantation requires the host to be immune deficient; however, currently, there is a
high interest in immune–leukemia interactions. Therefore, additional independent models
of leukemia in syngeneic mice are of interest.

1.4. A Novel Murine Model of AML LSC

In this study, we utilized an AML-induced model with the transgenic expression of
defined oncogenes [9]. First, we realized the heterogeneity of surface markers on the ML23
leukemia line. Then, we fractionated the malignant cells into sub-populations and tested
their ability to pass the disease. Importantly, we identified one defined sub-population that
encompasses the potency of the passage and found it to fully reconstitute the heterogeneity
of the original ML23 leukemia line. This fulfills the practical definition of LSCs, shown here
in a syngeneic mice model. Analysis of whole transcriptome data identifies a unique set of
differentially expressed genes, including additional markers which allow for validation.
Finally, we found differential expression of several targets for treatments that may provide
novel ways to better treat AML and hopefully eradicate the disease.
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2. Materials and Methods
2.1. Animals

Mice were kept in the specific pathogen-free (SPF) unit at the Ben-Gurion University;
all experiments were performed according to ethical committee approval and under local
and state regulations, protocols IL01-01-2017D and IL29-05-2021C. Leukemia lines were
previously described [9].

2.2. Blood Sampling and FACS Processing

Mice were bled into 150 µL of Alsever’s solution. Samples were then treated with
10 mL ACK buffer for 2 min and centrifuged at 1600 RPM for 5 min. The supernatant was
removed, and pellets were washed in 5 mL sample media (SM, PBS with 2 mM EDTA
and 2% FCS). Antibodies of Biolegend (San Diego, CA, USA): CD45.1 APC, CD45.2 pacific
blue, Mac1 PE-Cy7, B220 APC-Cy7, CD3e PE, Lineage-PacificBlue (Including- anti Ter119,
Mac1, Gr1, CD3e, CD4, CD8 and B220), c-Kit Alexa780, Sca1-APC, CD150-PEcy7, CD48-
Percp cy5.5, CD9-APC, CD34-PE, CD84-PE. Cells were stained on ice for 1 hr and washed.
Flow cytometry analysis of the reporter expression frequencies (ZsGreen+) and the surface
markers’ expression were performed on the Gallios Flow Cytometer (Beckman Coulter,
Brea, CA, USA). Fluorescence activated cell sorting (FACS) data analysis was performed
using Kaluza v1.2 (Beckman Coulter). Sorting was performed on FACSAria III (BD), as
previously reported [9].

2.3. RNA Sequencing and Analysis

Following the isolation of sub-populations, we used the NEXTflex Rapid Directional
RNA-Seq Kit (catalog NOVA-5138-01) for library construction; then, we used the Qubit DS
DNA chip for quality assurance. The G-INCPM facility performed the RNA-sequencing,
yielding 5–15 million single-reads of 61 bases per sample. Data were analyzed using Partek
Genomics Suite (Partek, Inc., St. Louis, MO, USA), briefly: alignment was carried out
with STAR v2.5.3a (reference index: mm10–Ensembl Transcripts release 92), quantification
with the Partek algorithm (Quantify to annotation model (Partek E/M)) followed by
normalization and differential expression analysis DEseq2 v3.5. For principal component
analysis (PCA), reads were converted to Log of base 2, we used cutoff 6 in at least one
sample, and Partek PCA by variance. Annotated GO gene lists were obtained from MGI
and included in the supplementary material (Table S1).

3. Results
3.1. ML23 Leukemia Line Can Passage Serially and Present Heterogeneity

We have previously managed to produce murine AML-like cells through the overex-
pression of 3 oncogenes: Meis1, HoxA9, and HoxB5 [9]. Bone marrow or spleen cells were
extracted from diseased mice and proved potent for passage into secondary and tertiary
recipients, as previously reported (Figure 1a, similar to published [9], independent experi-
ments). The development of leukemic cells was monitored by measuring the expression
of the fluorescent reporter ZsGreen+ in peripheral blood (PB) samples. We found a small
percentage of cells with a high expression of ZsGreen+ 3 and 4 weeks after the passage
(Figure S1: ML23 line presents consistent and stable leukemia development). Therefore,
we could determine the propagation of leukemic cells derived from ML23 transplanted
cells. We chose 12 surface markers that characterize HSCs (cKit, CD150), progenitor cells
(Flk2, CD48, Tie2, CD9), or differentiated cells (CD16/32, Gr1, Esam1, Mac1, CD11c, F4/80).
While not all of the markers show heterogeneous expression, Mac1, CD9, cKit, CD48, F4/80,
GR1, and CD11 did (Figure 1b, extending panel of previous publication [9]). Similar to
AML cells, the ML23 cells contain heterogeneity among the leukemia cells. This is demon-
strated by the various cell markers and their expression, with some populations having
the ability to spread the disease [11]. Thus, ML23 can effectively pass and present with the
heterogeneity of surface markers.
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Figure 1. ML23 leukemia line passage serially with heterogeneous phenotype: (a) Mice were injected
with leukemic ML23 cells from frozen stocks. After leukemia detection in PB, cells were harvested
from the BM and injected into other recipients. FACS plot of the primary recipient is of one month
after transplantation, and, for the secondary recipient, is from 2 to 3 wk after passage. (b) mFACS plots
showing the expression of the indicated markers (X axis), along with the ZsGreen reporter (Y axis).

3.2. Prospective Isolation of LSC in the ML23 Leukemia Line

We sought to sort the ML23 cells into sub-populations and assay their ability to
transfer the disease (Figure 2a). We chose four markers that showed heterogeneous
CD9, cKit, CD48, and Mac1(Figure 1b). CD48 and cKit were described as HSC mark-
ers and revealed a heterogenous expression within the ML23 cells [9]. Mac1 serves as a
marker for the myeloid lineage cells [32]. CD9 serves as a marker for leukemic cells and
HSCs [33,34]. These four markers enable us to separate the ML23 cells into distinctive
sub-populations (Figure 2b). The sort was of ZsGreen + cells; defined population were
P9 = CD9 + cKit + Mac1 + CD48-, P10 = CD9-cKit + Mac1 + CD48+, P11 = CD9-cKit + Mac1-CD48+,
P12 = CD9-cKit-Mac1-CD48+. We transplanted each sub-population into four different
groups of mice, while an equal number of cells were transplanted into each mouse. Mice
that received P11 cells developed increasing amounts of ZsGreen+ cells in PB. In contrast,
none of the other groups of mice (P9, P10, P12) developed the disease, as we saw only a little
or usually no expression of the reporter ZsGreen+ from these groups (Figures 2c and S2:
FACS plots for ZsGreenin the different subpopulations of ML23). Mice from sub-population
P11 also developed enlarged lymph nodes, visibly white bones, and an enlarged spleen.
These physiological characteristics are common features of leukemia [4,35,36]. In contrast,
none of the other groups portrayed these characteristics (Figure 2d).
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Figure 2. Prospective isolation of LSCs in ML23 (a) schematic illustration of experimental design.
Fresh Leukemic cells were sorted into four sub-populations, and each sub-population was trans-
ferred into a new host and its effects were examined. Gating for ML23 sub-populations using
cKit/CD9 and CD48/Mac1. (b) FACS plots of leukemic cells, pre-gated ZsGreen+, as sorted into
defined sub-populations. (c) ZsGreen+ expression levels from each transplanted sub-population.
P11 sub-population transplanted mice presented high ZsGreen+ expression; others did not. (d) Or-
gans from animals that received the indicated sub-population of ML23. Enlarged spleen, white
bones, and enlarged LN are shown from P11. Representative data are shown from one out of three
independent experiments.
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3.3. The P11 LSC Sub-Population Reconstitutes the Heterogeneity of ML23

After establishing that sub-population P11 has the potential to relapse disease, we
wanted to examine if it reconstituted only itself or perhaps additional sub-populations
of the parental ML23 line. We extracted cells from the group of mice injected with the
P11 sub-population (Figure 3a) and stained for the four surface markers. Interestingly, all
four sub-populations (P9, P10, P11, and P12, as defined above, for short P9 CD9+, P10
cKit+Mac1+, P11 cKit+Mac1-, P12 cKit-) were present in the primary mice transplanted
with P11 sorted-cells (Figure 3b). Hence, mice transplanted with P11-gated cells (Figure 3a)
developed malignant cells with a heterogenous phenotype (Figure 3b). Moreover, the re-
lapsed heterogeneity showed a cell distribution pattern which resembles the original ML23
leukemia. Thus, the P11 sub-population presents both self-renewal characteristics and the
potency to reconstitute the heterogeneity of the original ML23 leukemia. Accordingly, P11
is a bona fide LSC sub-population.
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3.4. ML23 Sub-Populations Distribute in Various Organs 

Figure 3. P11 LSC can reconstitute the heterogeneity of ML23: (a) Sorted P11 sub-population
(CD9-cKit+Mac1-CD48+), which were transplanted into the recipient mice. (b) P11 sub-population
reconstituted the heterogeneity of ML23 in the recipient mice (the primary recipient of P11-sorted
cells). Representative data are shown from one out of three independent experiments.

3.4. ML23 Sub-Populations Distribute in Various Organs

LSCs are suggested in some models to localize in the BM [37]. We sought to examine
the distribution of the sub-populations of ML23 leukemic cells in the syngeneic ML23
model. A previous study suggested that the spleen contains high amounts of leukemic
cells and shares the same engraftment as cells from the BM [38]. Thus, we examined
BM (femur, tibia, and pelvis), spleen, lymph nodes (LN), and thymus. In all examined
organs, large amounts of the leukemic ML23 cells that comprised the four sub-populations
were evident at advanced stages of the disease. We had no specific reason to suspect
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major differences between the BM of the femur, tibia, and pelvis; indeed, these showed a
similar composition of the sub-populations (Figure 4). Interestingly, we found a similar
distribution pattern of the sub-populations in the organs; the largest sub-population was
P12, whereas the rarest sub-population was P9. We also found that, unlike other organs,
the spleen had higher frequencies of the sub-population P10 (Figures 4 and S3: Distribution
of the sub-populations of ML23 in various organ). Importantly, we found that the LSC
sub-population, P11, was observed in all organs in a similar relative amount, except for
the spleen, where it was expressed in lower levels relative to the other organs (Figure 4).
Hence, in this syngeneic ML23 model, phenotypic LSCs distribute to the multiple organs
examined w/o significant restriction to the BM.
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Figure 4. The sub-populations of ML23 distribute broadly in various organs. The average percentage
expression (from ZsGreen+ cells) of each of the four sub-populations (P9—12) as measured using
FACS analysis for cells extracted from six different tissues of ML23 leukemic mice. Cells were
PRE-GATED to ZsGreen+, at least 90% in each sample (not shown). Data are shown from three
independent experiments.

3.5. The Unique Gene Expression Signature of LSC

Next, we examined the transcriptome of the sub-populations of the ML23 leukemia
line. We harvested cells from three diseased mice and sorted them into the four sub-
populations for RNA-seq, as described in Materials and Methods. We defined statistical
cutoff, which considered the average expression of each gene from the non-LSC sub-
populations compared to the average expression in the LSC (P11), the false discovery rate
was (FDR < 0.1, fold change > 2 or <−2). Out of 20,020 genes, we found 470 significantly
and substantially downregulated or upregulated (Figure 5a, Table S2). PCA found that
P12 appears to be closest to P11, while P9 is the farthest sub-population (Figure 5b). We
also found that the P12 cells shared a similar gene expression profile to P11 compared to P9
and P10, as can be seen in the uniqueness of the expressed genes in P11, which is partially
shared with P12 (Figure 5c). Thus, P12 is the closest population to P11.
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Figure 5. LSCs presenting a unique gene expression signature: (a) Some 470 genes (out of 20,020) are
differentially expressed between the LSC sub-population (P11) and the other populations (FDR <0.1,
fold change >2 or <−2). (b) PCA showing the 4 sub-populations (P9—P12). (c) Heatmap showing the
470 differentially expressed genes. (d) RNA expression signature of the four surface markers was
found close to its expression at the protein level and used for validation (compare with Figure 3).

To validate our data, we first examined the RNA expression of the four cell surface
markers (CD9, cKit, CD48, and Mac1) to determine if mRNA expression correlated with
surface proteins from which cells were sorted (Figure 3). Clear agreement was seen for
all mRNA expressions with the cell surface markers’ prevalence within the four sub-
populations (Figure 5d). We can see the high expression of Cd9 mRNA only in P9; Cd48
is highly expressed in all the sub-populations except for P9 (Figure 5d). These findings
also match the expression levels of the two subunits of the surface marker protein Mac1
(Itgam, Itgb2), where both P9 and P10 showed expression; however, P11 and P12 lacked it
(Figure 5c). Although surface expression levels and mRNA expression levels do not have
to match because there are several regulation processes between mRNA transcription and
protein synthesis, our findings validate the data and ensure that no error was made from
the processing of the cells to data analysis.
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3.6. Additional Surface Markers Validate Differential Expression on LSCs vs. Other ML23
Sub-Populations

Out of the specific LSC-expressed genes, we focused on a few surface markers. Some
85 markers are upregulated or downregulated in P11 (Figure S4: LSC has a unique surface
markers pattern: Table S3). We chose two additional surface markers: CD34 and CD84
(Figure 6a). These markers were reported to be overexpressed [11] or underexpressed [39]
in other LSCs. Fresh cells were collected and stained for the four initial surface markers
in addition to CD34 and CD84, allowing for the identification of the expression on the
previously defined sub-populations. We found clear staining for CD34, showing higher
expression on the P11 and P12 cells; on the other hand, CD84 showed higher levels in the
P9 and P10 cells (Figure 6b, c). Thus, additional surface markers selected from the RNA-seq
data show the same trend of protein expression at the surface of the cells, further validating
our data and suggesting good predictive value from RNA to proteins.
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3.7. Specific Drug-Targeted Genes Expressed in ML23 Cells

More than a dozen unique LSC immunophenotypic components were reported for
the drugs that were developed [40]: CD123/IL-3 receptor [41,42], CD44 [43], CD33 [44],
CD47/SIRPα receptors [45,46], CD96 [47], CD93 [48], CD25, CD32 [49], Tim-3 [50], CD99 [51],
and IL1-RAP [52]. We examined the differential expression levels of these clinically relevant
drug target proteins on our ML23 LSCs, as well as on P11 versus the rest of the leukemic
cells (P9, P10, and P12). We found that CD47 and CD93 are overexpressed in the P11
sub-population compared to the other sub-populations of ML23 (Figure 6d). Thus, our
data demonstrate the possible preferential targeting of LSCs in this model using clinically
relevant surface markers. The identification of differentially expressed drug-targets may
allow for the elimination of more potent cells that relapse disease.

4. Discussion
4.1. Overview

In this study, we sought to identify LSCs in the ML23 murine leukemia model. ML23
leukemic cells effectively pass in syngeneic C57Bl/6 mice and present with a heterogeneity
of 7 surface markers out of the 12 examined. We sorted four sub-populations for functional
testing and found one, P11, to encompass robust passage potency. P11 not only passaged
the disease but also retrieved ML23 heterogeneity. We report the unique transcriptome
signature compared to the other sub-populations, with 470 defined genes. Additional
surface markers, out of these 470 genes, validate our data. Finally, we show the differential
expression of new AML targets, including the preferential expression of CD47 and CD93
on the ML23 LSCs.

4.2. Heterogeneity of ML23 Cells

Previous works on murine models for AML, such as the MLL-AF9 model, have
presented the heterogeneity of the leukemic cells. Heterogeneity was reported for cKit and
CD24 [53,54]. Similar to the work of Saadatpour A. et al., 2014, our ML23 model presented
a heterogenous expression of the surface markers Mac1, CD9, cKit, CD48, F4/80, GR1, and
CD11c [53]. We selected four main markers to separate four sub-populations, namely gated
as P9-P12. As reviewed by Pollyea and Jordan, AML hierarchy entails a process in which
a single cell forms a heterogeneous lineage. Intriguingly, our model, similarly to human
AML, can be inherently heterogeneous [40,55].

4.3. Prospective Isolation of LSCs and the Reconstitution of the Disease

ML23 heterogeneity enabled us to prospectively isolate four sub-populations. The
“cancer stem cell” theory is under controversy, with major interest in better understanding
and eradicating malignant diseases [30,56]. LSCs were first described in a xenotransplant
model [11,12]. Xenogeneic models benefit the direct study of primary human patient
cells. However, some human and murine cytokines and ligands–receptor interactions
are incompatible [27]. Xenotransplantation also requires a severe immune deficient host,
limiting an important aspect of leukemia study and treatment [10,28,29]. In contrast,
syngeneic models benefit from perfect compatibility of the leukemic cells and the host, with
no immune deficiencies [29]. In this research, we identified the sub-population P11 as bona
fide LSCs. The P11 sub-population passaged disease and retrieved the heterogeneity of the
ML23 leukemia line, similar to human AML LSCs [57]. Interestingly, unlike the MLL-AF9
in which LSCs were reported as Mac1-high [36], ML23 P11 LSCs are Mac1-low. Clearly,
not all human leukemias have defined LSCs. Importantly, not all murine AML models
have LSCs, as reported by Strasser et al. [30], driving the controversy over the CSC theory.
Hereby, we report the identification of LSCs in the ML23 syngeneic model. Additional
syngeneic models, having no incompatibilities limitations, will better determine which
types of leukemia may follow CSC theory and which do not.
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4.4. Distribution of Leukemia and LSC

The distribution of the ML23 sub-populations among different tissues demonstrates
an advanced stage, as the leukemic cells were harvested from the mice when the ZsGreen+
reporter was close to 90% in the PB (Figure 4). Leukemia development in mice from
ML23 can be detected early by identifying a small percentage of ZsGreen+ cells, while
no other phenotypic evidence of AML is presented. This is in agreement with human
AML progression, which is accompanied by the collapse of the BM niche by changes in
the vascular structure and ends with osteoblast loss [58–60]. AML cells were shown to
utilize the BM signals and catalyze the process of niche remodeling and adaptation to
leukemogenesis, therefore impairing normal hematopoiesis [61]. Interestingly, hampering
the connection between LSCs and the BM niche and promoting the reconstitution of normal
HSCs has become a goal for new treatments [61]; one may test such novel treatments
in the ML23 model. Moreover, the xenotransplantation of human AML into immune-
deficient mice suggests a restricted localization of LSCs to the BM in some cases [62]; thus,
studying syngeneic mice models is of high interest to gain a better understanding and
broader applicability of new treatments. For example, Acute Lymphoblastic Leukemia
(ALL) is known to reside not only in the BM, but also in the central nervous system [63].
Importantly, ALL can relapse after treatments and possesses an important target for novel
CAR-T cell therapies [20]. Our findings suggest that, during the advanced disease stage,
LSCs may spread across multiple organs and therefore require systematic treatments to be
eradicated [64]. The capability of the ML23 cell line to serve as a model for early and for
late stages allows it to contribute as a research tool for the critical assessment of treatments.

4.5. Molecular Signature of LSCs

RNA-seq was performed to confirm the uniqueness of the LSC sub-population, P11,
by comparing it to the rest of the sub-populations. P11 showed a unique gene expression
signature, which includes an extensive set of enriched or suppressed genes. Among the
enriched genes in P11, we could identify genes with proliferative behavior or genes affiliated
with an active cell cycle, such as MYBBP1A [65] (Table S2). We also found a similarity in the
gene signature between P11 and P12 that was different from P9 and P10. This information
may indicate a possible hierarchical structure between the ML23 sub-populations. This
is in agreement with previous studies, where heterogeneous AML cells demonstrated
a hierarchy resembling the hematopoietic tree [18]. This hierarchy separates AML cells
into groups according to their genomic, functional, and clinical properties, where it was
shown that patients with a short survival suffered from enriched HSC-specific genes [18].
Therefore, as with human AML, our ML23 leukemia can present a hierarchy that can affect
the outcome to certain treatments based on the composition and the stemness of the disease.
Further research of this data may present a functional role to the other sub-populations
or the interactions between them. From the RNA-seq of the surface markers CD34 and
CD84, we found that CD34 is highly expressed in P11 and 12 but lacks the expression of
CD84. These findings also correlate with the protein expression levels on the cell’s surface
(Figure 6a–c). Expression levels of CD34 are in correspondence with the previous work of
Lapidot et al., where LSC presented CD34+ expression [11]. Moreover, CD84- expression of
P11 coincides with the idea of P11 as LSC, where CD84- expression was shown to be in less
differentiated hematopoietic cells [39].

4.6. Possible Treatments to Eradicate Leukemia and LSCs

We compared the expression levels of genes that are up to date, proposed as LSC
targeted therapy [40]. Among the ML23 sub-populations, we found markers (CD47 and
CD93) that are upregulated in P11 and P12 and which also characterize LSC in the ML23
model (Figure 7). This is in agreement with previous studies on human LSC in AML,
wherein CD47 and CD93 were expressed [45–48]. The conservation of a specific marker
between mice and human is not trivial. However, when looking at LSC markers of AML,
we must consider the subtype of AML and the variabilities among individuals [66]. Thus,
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we can see that our LSC, P11, showed to be beneficial as a model for CD47 and CD93
therapeutic research, while additional leukemia lines are needed to represent the pleura of
AML subtypes fully.
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