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Simple Summary: In this review, we have conducted an extensive literature review and have drawn
from our collective experiences to outline critical insights in designing preclinical studies for botanical
foods as anticancer investigational new drug (IND) applications as well as to highlight the critical
criteria when initiating early-phase clinical trials for botanical food products. This review is for
those who wish to understand how botanical foods and their derivatives can contribute to cancer
pathobiology, as well as to develop relevant therapeutic approaches to treat cancer by conducting
clinically oriented and evidence-based translational studies under United States Food and Drug
Administration (USFDA) regulatory frameworks.

Abstract: Cancer progression and mortality remain challenging because of current obstacles and
limitations in cancer treatment. Continuous efforts are being made to explore complementary and
alternative approaches to alleviate the suffering of cancer patients. Epidemiological and nutritional
studies have indicated that consuming botanical foods is linked to a lower risk of cancer incidence
and/or improved cancer prognosis after diagnosis. From these observations, a variety of preclinical
and clinical studies have been carried out to evaluate the potential of botanical food products as anti-
cancer medicines. Unfortunately, many investigations have been poorly designed, and encouraging
preclinical results have not been translated into clinical success. Botanical products contain a wide
variety of chemicals, making them more difficult to study than traditional drugs. In this review, with
the consideration of the regulatory framework of the USFDA, we share our collective experiences
and lessons learned from 20 years of defining anticancer foods, focusing on the critical aspects of
preclinical studies that are required for an IND application, as well as the checkpoints needed for
early-phase clinical trials. We recommend a developmental pipeline that is based on mechanisms
and clinical considerations.

Keywords: botanical food products; botanical drugs; cancer target therapy; preclinical study; investi-
gational new drug; early-phase clinical trials
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1. Introduction

Although extensive efforts have been dedicated to improving therapeutic strategies,
cancer remains a significant global health burden and a leading cause of death [1]. For many
decades, cancer treatment strategies have been limited to conventional approaches such as
surgery, radiotherapy, and cytotoxic chemotherapy using single agents or combinations. In
addition to surgical excision and local radiotherapy, cytotoxic chemotherapy still serves as
the first-line therapy for most cancer patients but has reached a therapeutic plateau [2]. To
address the gaps in cancer care, effective and evidence-based curative interventions need
to be tailored for and integrated into different cancer therapeutic strategies [3].

A growing number of multi-omics technologies, as well as advanced experimental
and computational tools, have allowed researchers to delve deeper into the complexities
of cancer [4]. Within the last two decades, cancer discoveries have been made in terms of
genetic alterations in cells and tissue biology, and responses to therapy at the molecular and
cellular levels. These investigations have revealed that cancer is not a single disease [5], but
a heterogeneous group of diseases, where each is characterized by phenotypic and geno-
typic hallmarks [6]. These new pieces of knowledge have changed treatment paradigms,
most notably in two ways. First, molecular profiling and subtyping of tumors have led
to precision cancer therapy, where treatments can be individualized toward subsets of
cancer cells harboring druggable genetic or genomic abnormalities [7]. This concept has
contributed to the development of small molecules and monoclonal antibodies that stop
uncontrolled cancer cell growth by: (1) interrupting oncogenic signals that are responsible
for tumor growth and cell division (e.g., anti-HER2, anti-EGFR, and CDK4/6 inhibitors);
(2) initiating programmed cancer cell death (e.g., PPARi and anti-bcl2); and (3) starving
cancer cells by depriving them of the hormones/growth factors they need to grow (e.g.,
anti-estrogens and -androgens). The second paradigm is targeting critical molecular and cel-
lular components of the tumor immune microenvironment, such as engineered antitumor
immune cells (e.g., CAR-T/CAT-NK) and immune checkpoint inhibitors (e.g., anti-PD-1/L1
and anticytotoxic T lymphocyte antigen-4 monoclonal antibodies [CTLA-4]) [8].

Although significant advances in therapy have been made for oncogene-driven cancers
and in immuno-oncology, both approaches still face significant challenges because such
treatments are effective only in a subset of patients whose cancers express the relevant
targets [9,10]. Often, cancers are difficult to treat because their progression and response to
treatment are determined by network architectures rather than a single molecular target or
cell type [11].

To achieve long-term survival benefits, drug combinations simultaneously target
multiple molecular alterations or cellular compartments, and thus have been extensively
discussed and actively tested in preclinical and clinical settings [12,13]. The cancer treatment
paradigm is shifting from the traditional “one-drug/one-target/one-disease” approach to
a “network-targets/multiple-component therapeutics” approach [14,15]. Designing these
multiple therapeutic approaches will be a challenging but promising cancer therapeutic
strategy in the future [16,17].

The shift in the approach to cancer therapy has led to the search for multitarget
anticancer drugs [18,19]. Because of their heterogeneous chemical properties, botanical
medications have become a focus for potential therapies due to their ability to target mul-
tiple oncogenic signaling pathways and cellular compartments simultaneously [20–22].
Botanical foods such as edible plants (e.g., fruits, vegetables, nuts, and grains), edible
mushrooms (e.g., white button, shiitake, maitake, and oyster), and edible algae (e.g., sea-
weed) contain many constituents (carotenoids, phenolic acids, polyphenols, carbohydrate
polymers, and lipids) and have anticarcinogenic properties with or without low systemic
toxicity [23,24]. However, much of this knowledge has come from limited research on a
few cancer cell lines, and there is seldom evidence from animal models or human clinical
trials [25,26]. Although many widely used drugs were originally isolated from medici-
nal plants [27], the US Food and Drug Administration (USFDA) has never approved any
food-derived botanical product as an anticancer medicine [28]. Unlike the traditional
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drug development pipeline with a defined molecule, the drug development of botanical
products from foods is challenging due to their chemical heterogeneity [29]. To define the
utility of the natural constituents present in botanical foods and to translate affordable and
targeted cancer therapy strategies to cancer patients, significant efforts are needed from
mechanism-driven and clinically relevant testing and standardization.

The intent of this review is not to provide an overview of anticancer foods along
with their phytochemical profile and mechanism of action, because there have been a
wide variety of review articles in this direction. Rather, we would like to share our col-
lective experiences in the characterization of anticancer foods under USFDA regulation.
The Botanical Drug Development Guidance for Industry was issued by the USFDA in
2016 [30], whereas instructional and explanatory publications were published in 2019 [28]
and 2020 [31]. Under the regulatory framework of the USFDA, the development of botani-
cal foods as anticancer medicines is a stepwise procedure that involves multidisciplinary
approaches. The core questions of the entire process would relate to efficacy/safety studies
and regulatory issues. Here, we draw from our experiences to outline critical insights in
designing preclinical studies for investigational new drug (IND) applications as well as to
highlight the critical criteria when initiating early-phase clinical trials for INDs. We present
a step-by-step pipeline for developing anticancer drugs from botanical foods based on a
comprehensive analysis of current obstacles and progress. The steps that are unique to or
different from botanical foods, i.e., those pertaining to conventional single-agent anticancer
drugs, are indicated by the star-shaped icons (Figure 1).

Figure 1. Stepwise development pipeline of botanical foods as anticancer medicines. Abbre-
viations: QC, quality control; GMP, good manufacturing practices; PD/PK, pharmacodynam-
ics/pharmacokinetics; IND, investigational new drug; NDA, new drug application. Pentagrams label
the unique steps that applied to botanical food development compared to conventional drug develop-
ment (the figure is prepared with Figdraw, https://www.figdraw.com, accessed on 10 January 2023).

Table 1 provides explanations and summary of seven critical checkpoints that are
considered in developing botanical foods as anticancer medicine from our collective expe-
riences. The points that are particularly in need of botanical foods are emphasized with
bold characters.

https://www.figdraw.com
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Table 1. Seven critical checkpoints in the developing anticancer botanical drugs from plant-based foods.

No. Checkpoints Explanations

1 Propose hypothesis based on
“prior human experience”

The documented history of human data would allow the researchers and
regulatory agents to proceed directly into a clinical evaluation of efficacy and
safety. This could potentially shorten expensive preclinical development
efforts, as well as reduce the likelihood of development failure.

2 Establish mechanism-based and
clinically relevant in vitro bioassays

A bioassay that reflects the drug’s presumed mechanisms of action or
measures the drug-responsive cancer marker should be developed if the
active constituents of foods cannot be quantified chemically. This would help
assess product batch quality and activity.

3 Choose clinically representative animal
models for testing

Selecting a model that reflects the pathobiology of the cancer (carcinogenesis,
progression, and metastasis) as well as the clinically relevant biomarkers and
endpoints that can provide supportive evidence for future
clinical development.

4
Perform rigorous quality control
measurements and assays to ensure the
therapeutic consistency

Therapeutic consistency is maintained, including the source and quality of
botanical raw materials, assuring manufacturing processes are GMP
compliant, and performing extensive chemical and
biological characterization.

5
Design clinical trials rationally by selecting
the target population with evidence-based
indication and clinical need

For both ethical and safety concerns, lower-risk cancer patients are
recommended. For the botanical food product with clinical indications and
an expected mechanism of action, first-in-human studies should focus on
toxicity determination and proof-of-concept target engagement PD studies,
while randomized control trials (RCTs) may be preferred in
Phase II/III study.

6
Conduct reverse translational studies to
discover mechanisms underlying patient
outcomes and clinical observations.

Reverse translational studies, also known as bedside-to-bench research,
allow for seamless and cyclical research, where observing patient responses
can stimulate new hypotheses that may help refine and guide bench research
that can lead to future clinical trials.

7
Introduce advanced multitarget
and computational
characterization techniques

Botanical foods can target multiple pathways simultaneously acting on a
large response network. Using a single biochemical assay or bulk analysis of
genes/proteins has insurmountable limitations. The development of
computer-based network pharmacology along with state-of-the-art
single-cell and spatial multi-omics analysis would help to define the
“network-targets, multiple-component-therapeutics” concept.

2. From Botanical Foods to Anticancer Therapeutics: The Science beyond the Myth

The public and social media have widely promoted the concept of “anticancer super
foods” when referring to foods that claim to protect humans against cancer incidence
and progression. While the concept may have been exaggerated, there is some validity
to the claims. “Anticancer super foods” largely consist of botanical foods, such as edible
mushrooms, berries, broccoli, tomatoes, walnuts, grapes, and others [32]. As noted above,
botanical foods contain phytochemicals that display cancer therapeutic potential based on
their ability to interfere with key molecular events or networks in cancer initiation and
progression [25,33]. A wide range of laboratory and clinical settings have been explored to
investigate the anticancer properties of botanical foods. Many reviews and books have been
written about the progress made [34–37], but health care professionals face a dilemma when
advising their patients about consuming “anticancer foods”. Physicians and nutritionists
are hesitant to offer any straightforward and actionable advice because there is a lack of
evidence from scientifically conducted clinical trials [38–40].

To fully understand the obstacles faced by health care professionals, we have evaluated
several professional sources (Table 2) to extract clinically useful or applicable information
on “anticancer foods”. The Complementary and Alternative Medicine for Health Profes-
sions website by the National Cancer Institute (NCI) provides evidence-based Physician
Data Query (PDQ) information on over 200 types of food and food-derived supplements,
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which include information about how drugs interact with food and dietary supplements
during cancer therapy [41]. “About Herbs, Botanical & Other Products,” a website created
by the Memorial Sloan Kettering Cancer Center, provides evidence-based information on
foods and herbs, clinical summaries, uses and benefits, mechanisms of action, herb–drug
interactions, and warnings [42]. “Foods and Herbs in the Natural Medicines Comprehen-
sive Database” is an encyclopedic web resource that provides references on safety, adverse
effects, dosing and administration, effectiveness, drug–herb interactions, lab interactions,
pharmacokinetics, and mechanisms of action [43–45]. The American Cancer Research
Institute, the NCI drug dictionary [46], and the United State Department of Agriculture
(USDA) Food Data [47] are other sources [48] we also investigated.

Table 2. The clinically advisable or actionable databases on “anticancer foods” for researchers,
industry sponsors and health professionals.

Name of Database Food/Supplement Information Provided Reference

National Cancer Institute (NCI)
Complementary and Alternative Medicine
Cancer Therapy Interactions with Food
and Dietary Supplements (Physician Data
Query, PDQ®)

Over 200

General information on foods/supplements
List of antioxidants, herbs, and foods
Foods, dietary supplements,
and cancer drug interactions
Interactions of foods with cancer therapies
Food and dietary supplement summary

[41]

Memorial Sloan Kettering Cancer Center
Integrative Medicine About Herbs,
Botanicals, & Other Products

Over 290

Clinical summary
Food source
Purposed uses and benefits of food and herbs
Mechanism of action, herb–drug, and
herb–lab interactions
Contraindications and adverse reactions

[42]

The Natural Medicines
Comprehensive Database for
Foods and Herbs

Over 1200

Overview of foods and herbs
Warnings, safety, adverse effects, dosing,
administration, and effectiveness of
foods and herbs
Drug/Supplement interactions
Condition/lab interactions
Pharmacokinetics and overdose
Mechanism of action

[43–45]

NCI Drug Dictionary Over 200

Scientific names of food and herbs
General studies and the description of
food/substance
Potential benefits and adverse effects
Active clinical trials using the agent

[46]

US Department of Agriculture
Food Data Central
Foundation & Experimental Foods

Over 700

The chemical composition of food
Analytical methodology
Food procedures research purpose
Study design, results, and
supplemental information

[47]

American Institute for Cancer Research
AICR’s Foods that Fight Cancer™

26 types of
plant-based foods

Food ingredients
Ongoing area of investigation in
labs and humans
“Convincing” or “probable” evidence
“Limited suggestive evidence”

[48]

Our review of these six databases has led to the identification of the ten botanical
foods that have evidence-based anticancer activity (Table 3). In the table, we focus on
the information from food–drug interactions in cancer therapy. A more comprehensive
presentation of information regarding bioactive molecules in foods, their mechanisms of
action, and functional endpoints is provided in Supplementary Table S1. Aside from the
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foods listed in Table 3, there are several other botanical products that are also studied for
their anticancer activities, such as tea [49], coffee [50], and spinach [51]. The six databases
listed in Table 2 provide comprehensive information about these botanicals.

Table 3. Ten “anticancer foods”: interactions with drugs and review of evidence.

Foods Food–Drug Interaction Level of Evidence References

Edible Mushroom

Cyclophosphamide In vitro or animal study

[39–48,52,53]

Tamoxifen In vitro or animal study

Cytochrome P450 2C9 and 3A4 In vitro or animal study

Immunosuppressants Theoretical based on pharmacology

Antidiabetic drugs In vitro or animal study
Lower-quality randomized controlled trial

Theoretical based on pharmacology

Warfarin Anecdotal evidence

Antihypertensive drugs Theoretical based on pharmacology

Pomegranate

Cytochrome P450 2C9 and 3A4 Nonrandomized clinical trial

[39–48,54–60]

Cytochrome P450 1B1 and 2D6 In vitro or animal study

ACE inhibitors Nonrandomized clinical trial

Antihypertensive drugs Nonrandomized clinical trial

Rosuvastatin (Crestor) Anecdotal evidence

Warfarin (Coumadin) Anecdotal evidence

Carbamazepine (Tegretol) In vitro or animal study

Tolbutamide (Orinase) In vitro or animal study

Grape

Cytochrome P450 1A2, 2C19, 2D6, 2E1, and 3A4 Lower-quality randomized controlled trial
In vitro or animal study

[39–48,61–66]Cytochrome P450 2C9 In vitro or animal study

Cyclosporine (Neoral, Sandimmume) Lower-quality randomized controlled trial

Phenacetin Lower-quality randomized controlled trial

Anticoagulant/Antiplatelet drugs In vitro or animal study

Midazolam (versed) In vitro or animal study

Cinnamon

Cytochrome P450 2C9, 3A4, 2A6, and 2D In vitro or animal study

[39–48,67–71]Antidiabetic drugs Lower quality randomized controlled trial

Hepatotoxic drugs Theoretical based on pharmacology

Statins Case–control study

Pioglitazone In vitro or animal study

Garlic

Cytochrome P450 2E1 and 3A4 Nonrandomized clinical trial,
lower quality randomized controlled trial

[39–48,72–79]

Cytochrome P450 2C9 and 2C19 In vitro or animal study

Tacrolimus (Prograf) Case–control study

Antidiabetic drugs Lower-quality randomized controlled trial

Protease Inhibitors (Darunavir, Saquinavir) Nonrandomized clinical trial

Anticoagulant/Antiplatelet drugs Theoretical based on pharmacology

Antihypertensive drugs Theoretical based on pharmacology

Atazanavir (Reyataz) Anecdotal evidence

Isoniazid In vitro or animal study

Warfarin (Coumadin) Anecdotal evidence

Insulin In vitro or animal study

P-Glycoprotein substrates Clinical cohort study
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Table 3. Cont.

Foods Food–Drug Interaction Level of Evidence References

Broccoli Cytochrome P450 1A2 and 2A6 Lower-quality randomized controlled trial [39–48,80,81]

Tomato Cytochrome P450 1A2, 2C9, 2D6, 2E1, and 3A4 Clinical cohort study
In vitro or animal study

[39–42,82]

Walnut Cytochrome P450 2A2, 2B1, 2B2, 2C6, 2C11, and
3A1

In vitro or animal study [39–42,83]

Ginger

Cytochrome P450 2C9, 2C19, 2D6 and 3A4 In vitro or animal study

[39–43,84–91]

Anticoagulant/Antiplatelet drugs Nonrandomized clinical trial

Nifedipine (Procardia) Nonrandomized clinical trial

Warfarin (Coumadin) Lower-quality randomized controlled trial

Losartan (Cozaar) In vitro or animal study

Phenprocoumon (Marcoumar) Anecdotal evidence

Antidiabetic drugs In vitro or animal study

Calcium channel blockers In vitro or animal study

Cyclosporine (Neoral, Sandimmune) In vitro or animal study

Metronidazole (Flagyl) In vitro or animal study

NSAIDS (diclofenac or ibuprofen) Clinical cohort study

Tacrolimus In vitro or animal study

Cyclosporine In vitro or animal study Clinical cohort study

Berries

Cytochrome P450 1A1, 2A2, 3A1, 2B1, 2B2, 2C6
and 2C11

In vitro or animal study

[39–43,92–96]
Buspirone (BuSpar) Nonrandomized clinical trial

Flurbiprofen (NSAID)) Nonrandomized clinical trial

Antidiabetic drugs In vitro or animal study

Botanical food products are widely accepted as non-toxic agents, but consuming
botanical products derived from plants may expose cancer patients to risk from food–drug
interactions related to cytochrome P450 (CYPs) enzymes [97,98]. CYPs are heme monooxy-
genases that convert endogenous and xenobiotic substrates (drugs, phytochemicals, etc.)
into metabolites that can be readily excreted or transported [99]. Hepatic and intestinal
tissues are the primary sites of expression for CYPs, but expression can also be found
in other organs and tissues, such as the kidney [100]. Studies have demonstrated that
bioactive compounds from botanical foods (e.g., fruits, vegetables, mushrooms, and grains)
can inhibit or induce the activity of CYPs, which may alter drug modification/levels and
the magnitude of exposure, leading to toxicity and adverse events [97,98]. Approaches
for studying food/herb–drug interactions include, but are not limited to, conventional
biochemistry and enzymatic assay, cell-based studies, ex vivo, and animal studies. For
example, in an earlier study on food/herb–drug interactions, we used rat liver purified
NAD(P)H: quinone acceptor oxidoreductase (NQO1) to conduct enzyme kinetic assays.
From there, we have determined that flavonoids isolated from Chinese herbs inhibit NQO1
in a fashion identical to that of dicoumarol, an anticoagulant drug. The study’s findings
suggest that these herbs may be linked to the mechanism for blood coagulation, and thus
should be used with caution by patients prescribed anticoagulant drugs [101]. From the
standpoint of safety, cancer patients and health care providers should be aware of the
possible interactions between plant-derived products and other prescribed drugs.

Although some health care providers are enthusiastic about using plant foods as
cancer therapy from the limited data obtained in in vitro, in vivo, and in silico approaches,
most require much more knowledge of the mechanisms of action of these agents. Before
designing preclinical and clinical studies, it is important to be aware of the unique physio-
logical and pharmacological processes that take place in the human body when consuming
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botanical foods or related products compared to the processes involved in consuming
conventional single-agent synthetic drugs. Figure 2 illustrates how botanical food products
(whole foods, food extracts, and mixtures taken as dietary supplements) are liberated via
oral consumption and are subsequently digested in digestive organs after oral consumption.
The gastrointestinal tract, particularly the small intestine, plays a central role in processing
food products, where bioavailable chemical constituents are absorbed and metabolized by
intestinal epithelia [102,103]. Afterward, the bioactive molecules are transported by the
bloodstream to target organs, where the bioactive constituents exert their anticancer effects
once it is delivered to cancer tissues/cells

Figure 2. The physiological and pharmacological processing of botanical foods as anticancer medicine
in cancer patients. Pentagrams label the unique processes that are applied to botanical food devel-
opment compared to conventional drug development Abbreviations: CYPs, cytochrome P450 en-
zymes; EVs, extracellular vehicles. (The figure is prepared with Figdraw. https://www.figdraw.com,
accessed on 18 January 2023).

Unlike synthetic drugs that are artificially modified for bioavailability and therapeutic
effects, the bioactive compounds such as carotenes, flavonoids, and phenols found in
botanical foods are naturally occurring chemicals. Therefore, the intrinsic bioavailability
of functional molecules is a critical factor, which can ultimately affect their anticancer
activity [104]. The physical, chemical, and biological assessments of the bioavailability
of the active constituents in candidate food products are essential in the early phase of
development. Botanical food products that contain orally bioavailable chemicals that have
or are suspected to have anticancer properties are candidates for in-depth investigations.

In addition to bioavailable phytochemicals, extracellular vehicles (EVs) derived from
plant foods are emerging as novel functional components. EVs are lipoprotein structures
with a wide range of sizes, ranging from 20 to 500 nm. The fruits, flesh, and roots of many
plant species can be used to isolate plant-derived EVs (P-EVs), which contain proteins,
RNAs, and lipids [105]. From immunomodulation to cancer development, EVs play an
influential role in human physiological and pathological processes [106]. Consisting of a
lipid bilayer, EVs are stable and are orally bioavailable, and therefore, P-EVs have been
proposed as promising therapeutic agents [107]. In a recently published study, broccoli-
derived EVs were used to package RNA-based drugs to improve their bioavailability and

https://www.figdraw.com
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stability before reaching target organs [108]. As a novel drug-delivery carrier, P-EVs hold
promising potential for clinical application in the treatment of different diseases including
cancers [109].

The small intestine is also the site where food-induced immune responses are pro-
cessed [110]. Gut-associated lymphoid tissues (GALTs) prime the immune response by
triggering and promoting systemic immune responses in the lamina propria, intraep-
ithelial lymphocytes, mesenteric lymph nodes, Peyer’s patches, and isolated lymphoid
follicles [111,112]. For instance, carbohydrate polymers and/or polysaccharides, which
are enriched in edible mushrooms and whole grains, are captured by GALT, where the
gut-resident immune cells are primed, the immune-activating signals (e.g., cytokines and
primed innate immune cells) [113–115] consequently triggers anticancer immunity by pro-
voking both innate immune cells and adaptive immune cells (neutrophils, dendritic cells,
T/NK cells) [116] and/or reprograms tumor immunosuppressive cells (M2-macrophage,
myeloid-derived suppressive cells [MDSCs]), ultimately leading to immune-mediated
anticancer activity [117].

In addition to the gut epithelial barrier and mucosal immune system, gut-microbiome
(including microbiome-encoded enzymes) has proven as another determinant of drug phar-
macokinetics and therapeutic response by modifying the drugs’ physicochemical properties
(i.e., solubility and permeability) and/or transforming the drugs’ activity (i.e., microbe-
mediated prodrug activation, or drug metabolism or inactivation) [118]. Particularly for
botanical food products which are orally consumed, extensive research has suggested a
mutual interface between the gut microbiome and botanical food products. Phytochemicals
present in botanical foods can modulate the gut microbiota composition by selectively
inhibiting some pathogenic microorganisms, thus reducing competition within microbial
populations, and ultimately promoting homeostasis within the gastrointestinal tract [119].
Furthermore, the gut microbiome-encoded enzymes metabolize phytochemicals, in turn,
may also increase their bioavailability and bioactivity [120]. In brief, inter-individual vari-
ability in gut microbiome composition would influence individual response to botanical
food’s anticancer response. Therefore, the researchers must not overlook the impacts
on/from gut-microbiome in botanical food intervention studies.

In summary, scientists could better conceptualize and design preclinical and clinical
research toward transforming botanical foods into anticancer therapies if they have a
comprehensive understanding of the interface between food and drugs, as well as the
physiology and pharmacology of foods in humans.

3. Designing the Preclinical Study: Consideration of the Regulatory, Scientific, and
Clinical Settings Prior to Human Studies

Under the regulatory framework in the United States, botanical foods include ed-
ible plants, algae, fungi, and combinations thereof [30]. If a study’s ultimate goal is to
investigate whether the botanical product may “treat, cure or prevent any disease involving
safety and clinical endpoint evaluation”, the USFDA needs to approve an Investigational New
Drug (IND) application prior to conducting human studies. Published by the USFDA in
2016, the Botanical Drug Development Guidance for Industry [30] states that IND applications
must include: (1) the source, chemistry, and manufacturing process of “the candidate
drug”, in addition to prior human use experience and clinically relevant biological assays
to demonstrate a consistency of action; (2) adequate preclinical toxicology/pharmacology
data to assess the efficacy versus the safety of the testing drug, particularly if the doses
and durations are higher than in prior trials; (3) pharmacokinetics and pharmacodynamics
(PK/PD) information and evaluation of potential interactions with other drugs or botani-
cals; and (4) the human study protocol, including human subject enrollment, dosing and
administration pattern, safety evaluation criteria, and clinical endpoints. Most of the infor-
mation can be determined and justified primarily through thoughtfully designed preclinical
studies. To ensure a successful translation of preclinical findings into clinical settings, it is
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imperative to incorporate regulatory requirements, clinical needs and scientific questions
when designing preclinical studies.

3.1. Establishment of a Mechanism-Based and Clinically Relevant In Vitro Bioassay

The traditional method of developing drugs from natural products uses defined
chemical constituents, such as isolated pure natural compounds or synthetic chemicals
based on natural products [121]. However, botanical foods contain various types and
levels of functional molecules, and therefore it is often impractical to chemically identify
and quantify all the active constituents within the botanical products [122]. A cytotoxic
assay of cancer cells in culture is frequently used in preclinical studies as a demonstration
of the anticancer activity of candidate compounds, including botanical drugs and food
extracts. A classic example of a cytotoxic assay is the colorimetric MTT/MTS assay, which
measures overall cellular metabolism via NADPH oxidoreductases by the formation of
an insoluble colored formazan [123]. When the candidate drug significantly reduces the
activity of the MTS/MTT test of a cancer cell line, the drug is considered to assert a
“promising anticancer effect”. Unfortunately, this type of study is only based on results
from a simple cytotoxic and colorimetric assay is inadequate because: (1) cytotoxicity is
not a synonym for anticancer activity because cytotoxicity describes the cell-killing ability
of given treatments in both normal and malignant cells [124]; and (2) colorimetric assay
would yield false positive/negative data on most plant extracts contain natural pigments,
particularly flavonoids, carotenoids, and chlorophylls [125]. When dealing with a botanical
drug consisting of a heterogenous chemical mixture, the USFDA suggests developing
a mechanism-based and clinically relevant in vitro biological assay that can reflect the
product’s known or intended mechanism of action and/or relate to the surrogate diagnostic
biomarker of the cancers [30].

3.2. Selection of Clinically Representative Preclinical Models: From Wet (In Vitro, Ex Vivo, and In
Vivo) to Dry (In Silico)

Following the drug development dogma of “safety vs. efficacy”, all anticancer drugs,
including botanical products, must be evaluated for therapeutic surrogate markers to
determine their efficacy as well as rational endpoints to reduce treatment-related risks.
Some standard criteria include, but are not limited to, disease indication, targeted popu-
lation selection, pharmacology/toxicology, a biomarker system to predict the effect, and
a way to monitor the adverse events [126]. These standards can be implemented in the
appropriate preclinical models, which can increase the success of clinical trials and eventu-
ally, a productive anticancer drug development [127]. Unfortunately, there is a significant
in vitro/in vivo disconnection in botanical product anticancer medicine development due
to the complexity of chemical profiles in botanical foods when compared to single small
molecules with defined physical, chemical, and biological properties [128].

However, the development of sophisticated clinically relevant ex vivo models, such as
organs on a chip (OoCs) with human microsomal systems and patient-derived organoids,
may assist in drug development with botanical food molecules and in evaluating between
drug indications with an accurate recreation of the human organ function [129]. More
importantly, combining the multi-omics-based in silico model, network pharmacology,
and single-cell and spatial multi-omics techniques can transform the traditional “one-
drug/one-target/one-disease” approach into a new approach that implements “network-
targets, multiple-component-therapeutics” [130]. These new and advanced approaches
will provide critical insight into current trials and inspire further improvements.

3.2.1. In Vitro Models: Choose and Use the Cancer Cell Lines Wisely

Cancer cell lines are straightforward in vitro models to use in drug development [131].
However, it is important to consider that cancer cell lines have their limitations and draw-
backs. Some of these difficulties include: (1) single-cell lines culture in a two-dimensional
(2D) dish do not interact with other cell types typically present in the tumor microenvi-
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ronment; (2) the original tissue architecture is lost, thus the growth of the cancer cells is
not influenced by paracrine chemicals [132]; and (3) it is difficult to replicate the effects of
in vivo drug absorption, distribution, metabolism, and excretion (ADME) in cancer cell
lines [133]. These limitations suggest that cancer cell lines in culture may not accurately
address the critical mechanisms that influence a drug’s action in vivo, but due to their
endless supply of biological materials for experiments, they still provide the largest variety
of in vitro models for obtaining mechanistic and therapeutic insights [132]. Choosing can-
cer cell lines for single-agent drugs with defined targets and/or mechanisms of action is
straightforward. Cancer cell lines that have matched the histological and molecular features
of their respective cancers should be considered in vitro model systems of the diseases
from which they are derived [134,135]. For instance, the American Type Culture Collection
(ATCC) provides 46 cancer cell panels that are grouped by either tissue of tumor origin
(e.g., breast cancer cell panel and colon cancer panel,) or by the molecular signature (e.g.,
EGFR genetic alteration cell panel and PI3K genetic alteration cell panel). For botanical
products with a presumed mechanism of action or treatment indications, the concept that
pertains to conventional anticancer drugs would be also suitable.

However, for botanical products with unclear mechanisms or multitarget potentials, it
is crucial to use multiple cancer cell lines along with normal cell lines at the early stages of
drug screening to determine the treatment indications and mechanism of action [135]. The
screening strategy set up by the US NCI on the 60-cancer-cell-line panel (NCI-60) should
be considered [136]. In studies where NCI-60 was used for botanical product screening,
researchers have characterized the potential mechanism of natural products by examining
associations of molecular genomic features in NCI-60 cancer cell line panels with in vitro
response by treating with compounds derived from botanical natural products. From there,
the author has suggested potential mechanisms of action of certain natural products and
their novel associations of in vitro response with gene expression [137].

3.2.2. Ex Vivo Models: Patient-Derived Organoids and Organs on a Chip

As discussed previously, the drawback of cell line models for anticancer drug devel-
opment is difficult when evaluating the complex tumor microenvironment composed of
different cell types (e.g., immune cells and firboblast) [132] as well as the ADME process
from multiple organs (gut, liver, kidney, etc.) via drug metabolizing enzymes and efflux
transporters [133]. It is important to consider advanced ex vivo models that harbor vari-
ous cell types, particularly for botanical drugs with mixture components that may target
multiple pathways/cells.

Human liver microsomes, containing a wide variety of drug-metabolizing enzymes
such as CYPs, are the most budget-friendly ex vivo model to evaluate drug metabolism
and food–drug interactions [138]. For example, in the herb-based bioactive flavones study
described above, a CYP kinetic analysis was performed on human liver microsomes incu-
bated with various concentrations of CYP substrates in the presence of natural products.
The study found that seven CYP isoforms from human liver microsomes are inhibited
by the flavones, suggesting that the flavones may interact with drug metabolism in some
patients [139]. The cutting-edge technology of human organs on a chip (OoCs), such as
human liver on a chip and gut on a chip, are emerging ex vivo models that can bridge the
gap between animal studies and clinical trials in predetermining the potential food and
drug interactions [140]. However, due to the high costs and complexity of these techniques,
there are few published studies of these methods applied to botanical drugs.

Patient-derived organoids (PDOs) are three-dimensional (3D) cultured multicellular
clusters derived from the patient’s original tumors. The studies on PDOs and anticancer
treatments have been promising and suggest that PDOs may be an ideal platform to identify
and assess the efficacy of anticancer medications, ultimately leading to the optimization
of treatment plans [141,142]. PDOs have been widely proposed for small-molecule drug
development [143], but the application of PDOs in botanical drugs is still in its early stages.
Under the framework of immune-oncology, some recent studies have explored the potential
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of PDOs in tumor immunity by co-culturing PDOs with tumor-reactive T cells or NK cells,
suggesting that PDOs can be used to determine if T/NK cells are effective at killing tu-
mors [143–145]. There is a major group of botanical drugs classified as immune modulators
because they exert immune priming, modulating, and reprogramming functions toward
innate and adaptive immunity [146]. In the same vein, PDO and immune cells co-culture
models would also be suitable to investigate botanical immune-drugs [143–146].

3.2.3. In Vivo Models: The Bridge between Cells and Human

Animal models can be manipulated to mimic human disease conditions. Selecting the
appropriate animal model that can accurately represent the pathobiology of cancer in the
identified human population, as well as choosing the clinically relevant surrogate markers
and endpoints with rational experimental design are essential prerequisites to ensure that
sufficient and valid evidence is collected from animal studies to move toward clinical
development [147]. Conventional models, such as subcutaneous cell-derived xenograft
models in immunodeficient mice, are crucial during the early phase of drug discovery to
ensure that the molecules have the appropriate pharmacology and activity in the in vivo
system [148]. The effect of the drug on the primary tumor can be determined using
xenografts derived from patients’ solid tumors (PDX). PDX in immunodeficient mice is
widely used to model tumor heterogeneity in patients [149].

However, in the context of immunotherapeutic drug development, xenograft models
in immunodeficient mice are not suitable because they lack an intact immune system [150].
Many anticancer foods often exert immune regulatory and/or anti-inflammatory activity,
reflecting that innate and adaptive immunity in animal models are essential to validate
anticancer immunity induced by botanical-derived drugs [146]. Thus, syngeneic mouse
models, which consist of tumor tissues derived from the same mouse strain and retain intact
immune systems, are particularly relevant for immunotherapy studies. Ideally, humanized
mice and PDX models that harbor patient tumors as well as an intact human immune
system can be used to evaluate botanical immuno-drugs [151]. However, the utility of such
a model in botanical drug development is limited due to costs and accessibility.

To investigate botanical food intervention in animal models, the administration route
and manner in animal models need to be properly designed to mimic drug liberation
in humans. There is still a lack of standardization in diet design in food intervention
animal studies of cancer [152]. Most food intervention studies administer the foods via
the diet, either by incorporation of experimental food ingredients into an open formula
semi-purified diet or by addition of a food extract to a standard chow diet [153]. However,
many closed-formula natural ingredient chow diets contain unknown compounds that
may impact the study endpoints and results. For example, soy is commonly used as a
protein source in laboratory chows, and this may inadvertently introduce phytoestrogens
into the diet in the form of isoflavones [154]. Open-formula semi-purified diets provide
an advantage over standard chow if the food intervention involves a modification of
lipids (e.g., corn oil, nuts oil) [155]. For foods with defined active constituents, custom
manufacturing the active ingredients into semi-purified diets or into standard chow diets
is possible.

Some studies have adopted the oral gavage method, where tubes are used to deliver
an exact amount of the food extract to the animal to ensure that the food products are
ingested regardless of regular background diet intake [153]. Considering human food
intake patterns and human physiological/pharmacological processes for botanical food
products (described in Section 2, Figure 2), we cautiously propose oral gavage as the ideal
method in animal studies. A counterargument for oral gavage is that it stresses the animals
and is limited to water extraction of the foods, but variations in quantity and frequency of
food intake among the animals must be addressed and minimized. As such, gavage with a
fixed amount/time of testing product ensures a steady quantitative intake from time to
time and animal to animal. For the experimental foods with unknown active ingredients,
administration of food extract via oral gavage should be considered. Furthermore, in
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humans, botanical foods may only be delivered through diet in large amounts. Generally,
oral administration is more appropriate when botanicals are consumed as pills, capsules,
other than bolus doses by humans.

The other variable to account for is the choice of experimental controls. For the
treatment-naïve (non-treatment) control, either a control diet without adding experimental
food ingredients or vehicles without testing products can be applied to animals in non-
treatment control. It is also important to introduce a reference (positive) control, which
involves giving a group of animals an approved drug that reflects the presumed action
of the testing botanical drug. Furthermore, pharmacology and toxicology indices need
to be determined before human studies. This is especially important for food-based
interventions, where the dose of whole food extract or food-based natural products in
experimental animal studies is generally higher than the dose in a normal human diet [156].
Therefore, justifying the safety of megadose foods in an animal model will be critical. Safety
concerns are the primary focus of the assessment, where the following events should be
closely monitored: body weight measurements, behavior surveillance (food intake and
activity level), target tissue weight, liver/kidney morphology at necropsy, and clinical
evaluation of hepatic function (e.g., ALT and AST) [157]. Animal-based pharmacodynamics
and pharmacokinetics (PD/PK) are other important aspects of preclinical studies. In
PD studies, PD biomarkers that reflect the drug’s effect on the target in an organism
are quantitatively measured. PSA is an example of a well-established PD biomarker for
drugs targeting the AR receptor signaling pathway in prostate cancers [158]. However, the
quantitative PK measurement obtained from systemic exposure is challenging for food-
based products because botanical drugs often contain multiple chemical molecules, and the
active constituents may not be defined. According to the USFDA guidance, a PD or clinical
endpoint assessment may be employed if there are no quantifiable active constituents
available for in vivo PK studies [30].

3.2.4. In Silico Models: Multi-Omics and Systems Biology Approaches Reinforce
Anticancer Foods Research

As noted above, in anticancer drug treatment, a “one-drug/one-target/one-cancer”
approach is problematic because cancer biology is complex on both spatial and temporal
dimensions [11]. Additionally, drug responsiveness is affected by network architecture
and systemic regulation compared to single molecular targets or cell types [15]. With the
emergence of systems biology and multi-omics techniques, the cancer research paradigm
has transformed, especially in the field of anticancer drug development [14,15]. Systems
biology techniques have influenced wet lab-based preclinical studies and clinical trials
in the development of botanical drugs with multiple components, multiple targets, and
potential systemic effects [19,20].

A network pharmacology approach supports the development of multitarget anti-
cancer drug development by using advanced computational methods based on systems
biology. This approach includes the identification of multiple targets, analysis of functional
pathways, computing networks and connectivity, and predicting of drug indications and
interactions [159]. Network pharmacology thus opens new avenues for a botanical drug
when it comes to understanding the biological systems and the development of the com-
plex bioactive components found in medicinal plants [160]. As we have conducted our
research, however, we also have encountered and realized the limitations of such methods.
The input data of network pharmacological analysis are the chemical library of the active
components in botanical products and the biological library of the targets acting on diseases
of interest. For botanical products with defined chemical profiles, network pharmacological
approaches facilitate the identification of compound- and disease-related genes, as well
as the construction of protein–protein interaction (PPI) network. From there, by using
network analysis, key nodes are identified while key biological pathways are predicted.
Consequently, additional network validation is performed to successfully validate the in-
teraction between highly active constituents and their putative targets [159–161]. However,
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network pharmacological approaches for botanical foods cannot be achieved given that
the chemical constituents are not fully characterized. Therefore, efforts need to be made
to thoroughly characterize such chemical profiles via analytical chemistry study and to
conduct state-of-the-art single-cell and spatial multidimensional analysis, which would
help to define the “net-work-targets, multiple-component-therapeutics” concept.

On the other hand, the interface between “drug” and “food” becomes particularly
meaningful when food-derived nutrients are used as therapeutic agents. The concepts
and methods of pharmacogenomics and nutrigenomics have been proposed to address
individualized medicine and nutrition [161,162]. Both technologies are related to character-
izing a wide range of gene variants and single-nucleotide polymorphisms (SNP), which are
correlated with a person’s health status along with validating and incorporating genotype-
based strategies to optimize health and prevent diseases [161,162]. Pharmacogenomics
has been introduced into cancer care and involves characterizing polymorphisms of drug-
metabolizing genes (CYPs) and efflux/transport genes (ATP-binding cassettes) that define
drug responses. The application of pharmacogenetics narrows the therapeutic index of
chemotherapeutic drugs and reduces the risks for life-threatening adverse effects [163]. In
nutrigenomics, it is becoming possible to integrate nutrition into therapeutic strategies and
interventions for cancer by identifying the “nutrients-gene-cancer” network that underlies
cancer initiation and progression [164]. It is crucial that the interface between “food–drug
interactions via gene networks” be considered during the development of botanical drugs
from botanical foods [165]. Food–drug interaction via the CYPs system is an example of
this approach. As explained in Section 2, foods composed of complex chemical mixtures
can inhibit and/or induce the activity of drug-metabolizing enzymes and transporters,
understanding and assessing these interactions via “omics techniques” and “computer-
based approaches” can provide great insights that conventional wet-lab approaches cannot
achieve [166,167].

4. Critical Considerations in Clinical Studies under IND Regulations

As noted above, there is increasing interest in investigating botanical mixtures as
anticancer products, especially from botanical foods. These products are generally thought
to have therapeutic activity without significant toxicity [23,27]. However, demonstrating
therapeutic efficacy, characterizing the pharmacology, and ensuring consistent quality
in clinical trials are particularly challenging. In 2016, the USFDA published a guide,
Botanical Drug Development Guidance for Industry to advise and facilitate the development
of a putative botanical drug. The guide provides critical considerations for clinical trials
and recommendations on preparing INDs and new drug applications (NDA) [30]. For
botanical products, the typical clinical trial design elements still apply, including study
design (single arm or multiple arms), primary objectives and endpoints, target-patient
selection (eligibility criteria), IND dosage and administration (treatment plan), scheduled
clinical observations and tests, anticipated toxicities, and adverse events. This guide to
botanical drugs particularly emphasizes the “totality-of-the-evidence” approach for reliable
consistency, and the description of “prior human experience” [28,30,31]. We draw on
our experiences in studying white button mushrooms (WBM, Agaricus bisporus) as an
anti-prostate cancer IND under USFDA regulation in this section.

4.1. The “Totality-of-the-Evidence” Approach for Reliable Consistency of IND

The “totality-of-the-evidence” approach is a concept used to describe how proposed
biosimilars should be developed based on a reference medicine. In a stepwise process,
analytical, non-clinical, and clinical studies are conducted to determine the quality, safety,
and efficacy of a proposed biosimilar. Similarly, to ensure therapeutic consistency, the
“totality-of-the-evidence” approach for a food-based botanical drug requires a manufactur-
ing process that includes rigorous quality control (QC) and the development of clinically
relevant bioassays [28,30,31]. As discussed in Section 3.1, a clinically relevant bioassay that
reflects the product’s intended mechanism of action and/or relates to a surrogate biomarker
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of a certain cancer is desired due to the heterogeneous mixture of botanical INDs which
often lack quantitative chemical QCs [28,30,31].

4.2. Choosing the Appropriate Patient Population

Ideally, clinical study participants for botanical drug-based cancer treatment should be
from the intended target population. It is important to justify drug indications and target
populations based on “prior human experience” as well as the mechanism-based, clinically
relevant preclinical studies [28,30,31]. It is critical to understand the chemical and biological
potency of a botanical product when applying it to cancer patients with various histological
and molecular subtypes. Unlike chemically synthetic molecules, natural molecules from
botanical medications may act as weak partial agonists/antagonists of therapeutic targets,
which would lead to fewer side effects. In terms of safety versus efficacy pertaining to
patient selection, patients with low-risk or low-grade cancer (e.g., low-risk prostate cancer,
low-risk differentiated thyroid cancer, or low risk of breast ductal carcinoma in situ) that
have a low chance of metastasizing may benefit from using botanical products as their initial
cancer treatment [168]. For cancers with aggressive histological or molecular subtypes,
receiving harsher treatment as early as possible would be needed for a better prognosis.
As a result, evaluating cancer risk based on histological features and molecular markers,
coupled with the understanding of the chemical and biological properties of food products,
help to establish the feasibility of applying botanical foods to cancer patients.

4.3. Critical Safety Concerns in Early-Phase Clinical Studies

“Safety versus efficacy” is a major source of failure in clinical studies, especially
in early-phase clinical trials where safety evaluation is the priority [169]. It is pertinent
to note that often the initial evidence cited for undertaking clinical trials of food-based
products for cancer treatment comes from low/regular dietary food intake in epidemiologic
nutritional investigations. However, anticancer interventional studies regularly introduce
larger doses of food-based products (whole extract or supplements) that are taken in the
diet. Knowledge of pharmacodynamics and pharmacokinetics (PD/PK) is essential in
evaluating the safety of any anticancer medication, including those from natural sources.
This is often done in the context of Phase I clinical trials. The quantitative PK measurement
of systemic exposure is challenging for food-based products because botanical drugs such
as WBM contain multiple chemicals, and the therapeutically active constituent may not be
known [30]. In most cases, PD markers are also surrogate endpoint markers for determining
the link between drug dose, target effects, and biological tumor response since they reflect
the drug’s effect on the target in an organism [170].

In addition, food–drug interactions can be antagonistic, where a natural product could
inhibit certain drugs’ metabolism, leading to dose-related toxicities. In some cases, a plant-
derived product may contain molecules that act as competitive antagonists or agonists
for certain receptors [171]. An example of a weak partial agonist is genistein, a soybean
flavonoid that blocks estrogen receptors. In the presence of tamoxifen, genistein can act as
an agonist to activate the receptor, supporting the use of small doses of this food-derived
product as a medication for breast cancer [172]. However, there is insufficient evidence to
support the use of phytoestrogens in the entire general population, including patients with
benign breast disorders, those at risk of breast cancer, and even cancer survivors [172].

Lastly, the objectives and endpoints should be carefully considered when formulating
a clinical trial. Clinical trials typically have a primary objective or endpoint, where other
objectives and endpoints are added to address the safety and efficacy of the drug. However,
different phases of trials have different objectives. An early-phase clinical trial assesses a
drug’s safety and tolerability, whereas a late-phase trial assesses its efficacy [173]. Endpoints
must be established to measure objectives in each stage of clinical development. Ideally,
the endpoints should be clinically relevant, sensitive to intervention effects, practical
to measure, and unbiased [174]. For botanical drugs that have heterogeneous chemical
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mixtures and many potentials for systemic effects, multiple endpoints should be considered
to address the objectives of the trials.

4.4. Diversity of Research Participants and Their Dietary Background

Recently, the USFDA has issued new draft guidance on a diversity plan to enroll
participants from different racial and ethnic populations when proposing clinical trial
designs for investigational products. The USFDA states that “the diversity plan” will be
considered “an important part” of the product’s development program. Enhancing clinical
trial diversity is ethical and scientifically imperative [175]. Due to the ethnic heterogeneity
of the US population, patients with different genetic backgrounds may have different
safety and efficacy signals, even when they receive the same therapy. The lack of diversity
may yield a biased understanding of the safety and efficacy of novel therapies across
population subgroups.

In food-based clinical studies, diversity is particularly meaningful and essential, given
the assortment of dietary preferences, general health conditions, and gut microbiomes
among people from different cultures and races [176]. A botanical food’s or a botanical
drug’s PK properties may be affected by the gut microbiome and diet by interfering with
absorption, metabolism, and activity, ultimately affecting how effective the product is
against cancer [177].

4.5. The Challenges of Using a Placebo in Botanical Foods Intervention Studies

Designing and using placebo controls are critical in clinical studies. However, in food
intervention studies, it is occasionally often impractical or impossible to design a placebo
product that is physically identical to the investigational drug without sacrificing sensory
qualities. Moreover, for the botanical food products of which the active constituents are
not known, it is technically unachievable to create placebo products without pharmaceu-
tical activity. We have reviewed several published reports that address which products
were suitable for placebo controls in food intervention studies [178,179]. However, based
on available literature botanical products that are suitable for use as a placebo in food
interventions are largely lacking [178]. The specific guidelines or standards of botanical
food-placebo design, including usage requirements, preparation specifications, quality
assessments, and reporting guidelines should be developed further to improve their us-
age [179]. The USFDA’s guidance suggests consulting their regulatory office for using of
such placebo in botanical foods intervention studies [30].

5. Case Study: Development of White Button Mushroom as Anticancer Botanical
Medicine at the City of Hope

At the City of Hope, our laboratory has more than 20 years of experience and has
established records in defining anticancer foods under both preclinical and clinical settings.
The foods under investigation include but are not limited to WBM [180–185], grape seed ex-
tract [186–188], pomegranate [189], blueberries [190,191], Eugenia jambolana Lam berry [192].
WBM products (WBM tablets generated from fresh freeze-dried WBM) were approved
as IND by the USFDA for clinical intervention studies. We have completed phase I trials
in prostate cancer (NCT00779168) and breast cancer (NCT00709020). A phase II trial for
prostate cancer (NCT04519879) and a prevention trial for women with a high risk of breast
cancer (NCT04913064) are currently open for recruitment.

5.1. “Prior Human Experience” of Mushroom Products as An Anticancer Medicine

In many cultures, edible or medicinal mushrooms are used as traditional herbal
medicine. Several mushroom species have been shown to exhibit anticancer effects in vitro,
in vivo, and also in humans [193]. There is extensive “prior human experience” with
using the mushroom-derived product as anticancer medicine, suggesting that bioactive
ingredients in mushrooms may play a significant role in cancer prevention, reducing the
risk of recurrence, and therapy [194,195]. A large cohort, long-term follow-up study in
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36,000 Japanese men over decades suggests an association between eating mushrooms
and a lower risk of prostate cancer [194]. Another meta-analysis from more than 19,500
cancer patients also suggested a strong association between higher mushroom consump-
tion and a lower risk of cancer, particularly breast cancer [195]. WBM is the most com-
mon and budget-friendly edible mushroom in North America. Our laboratory has thus
pioneered preclinical and clinical studies for WBM on breast cancer [180–185,196]. To
mimic these molecular effects in the laboratory, we have established an ER-positive breast
cancer cell line overexpressing aromatase, MCF-7aro, to screen for possible aromatase
inhibitors [197]. From such bioassays, we have determined that extracts of the afore-
mentioned foods [180,186,189,192] as well as phytochemicals [135–138] inhibit aromatase
activity, thus suppressing estrogen-dependent breast cancer cells. A next-generation MCF-
7aro/ERE cell model-based luciferase assay has been successively developed to simul-
taneously screen aromatase inhibitors, ERα ligands, and estrogen-related receptor alpha
(ERRα) ligands,. MCF-7aro/ERE is derived from MCF-7aro by stably transfecting with
pGL3(ERE)3-Luc, a promoter-reporter plasmid that contains ERE (estrogen-responsive
element) and a luciferase expression reporter. Additionally, ERE-mediated luciferase gene
expression reporter activity is quantified through a luminescence-based approach [198].
Known as “AroER Tri-Screen”, this robust and biologically relevant assay is used to charac-
terize AIs, ER agonists, and/or ER antagonists found in the environment (environmental
endocrine disruptors) [199,200] or in natural products [200].

Another bioassay has been developed to screen for molecules interacting with LNCaP
cells, which is an androgen receptor (AR)-positive and prostate-specific antigen (PSA)-
expressing prostate cancer cell line. We have used an LNCaP-PSA luciferase assay to screen
for androgen receptor (AR) inhibitors from both USFDA-approved compounds and natural
products [201]. The activation of AR is the driving force of prostate cancer. In contrast,
PSA serves as a diagnostic and surrogate endpoint marker for pharmacological strategies
against AR activation in prostate cancer [158]. The LNCaP-PSA luciferase assay has been
developed by transfecting a PSA promoter-firefly luciferase plasmid into LNCaP, an AR-
positive prostate cancer cell line. As a result of the transfection, AR activation-induced PSA
promoter activity is measured by luminescence signal [201].

By establishing clinically relevant in vitro bioassays for breast cancer (AroER Tri-
Screen assay) and prostate cancer (LNCaP-PSA luciferase assay), we have shown that
WBM extracts significantly inhibit aromatase activity and ER activation in breast cancer
cells [180], and also interrupt the AR activation and PSA expression in prostate cancer
cells [184]. We have also identified a series of ER antagonists, Ais, and AR antagonists via
the above assays using over 400 purified natural product compounds from the National
Cancer Institute/NCI Natural Products Repository.

5.2. Various Preclinical Models and MultiTarget Profiling Approaches Applied in Our Study

Our lab applied various preclinical models and multitarget profiling approaches to
define the biological activities that WBM exerts. The preclinical models included cell lines,
PDX models, syngeneic mouse models et al. State-of-the-art techniques such as nuclear
receptor coregulator interaction assays, single-cell and spatial multidimensional profiling
analysis, cytokine array, and multiplex flow cytometry were applied.

In our study of the antiandrogenic activity of WBM in prostate cancer, 5 prostate
cancer cell lines (LNCaP, VCaP, PC-3, DU-145, and 22RV1) that have captured histological
(prostate adenocarcinoma) and molecular features (AR-positive, AR-negative, AR-variants)
of human prostate cancers are selected and 1 prostate normal epithelial cell line (RWPE1)
have been used as in vitro models [181,184]. We have used both subcutaneous cell-derived
xenograft models (DU-145 and PC3 prostate cancer cells engrafted in NSG mice) [181] and
AR-positive/PSA-expressing prostate cancer PDX model (TM00298 PDX tumors engrafted
in NSG mice) as in vivo models [184]. The tumor growth rate and tumor volume are
evaluated as the responsive index. We also have measured PSA expression as a pharmaco-
dynamic (PD) biomarker in PDX models [184]. In such studies, we also have introduced
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enzalutamide, an USFDA-approved synthetic AR antagonist for prostate cancer, as the
reference drug. From there, we have identified that WBM extract exerts antiandrogenic
activity, which is phenotypically similar to the therapeutic effect of enzalutamide [184].
Conjugated (9Z, 11E)-linoleic acid (CLA-9Z11E) is an active component that we have iden-
tified in the WBM extract [180,181]. By conducting AR Coactivator Interaction Assays
for a direct interaction of CLA-9Z11E with AR, we have found that CLA-9Z11E exerts a
strong antagonistic potency against the AR coactivator [184]. The knowledge gained from
this study indicates that WBM intake affects prostate cancer by interfering with the AR
signaling axis.

In another study about the immunomodulatory effects of WBM in prostate cancer,
the syngeneic mouse model [mouse prostate cancer cells (TRAMP and Myc-CaP cells)
allografted in C57BL/6 or FVB mice, respectively] has been used. We have introduced
Lentinan, the bioactive β-glucans and potent immunomodulator isolated from Shiitake
mushrooms, as the reference drug [185]. Lentinan has been approved and used as an adju-
vant therapeutic drug for multiple types of cancer in Japan and China [202,203]. By feeding
immunocompetent mice with WBM extract and Lentinan, we have demonstrated that the
cytokine signatures associated with treatments of WBM and Lentinan greatly overlap. We
also have observed that both WBM and Lentinan have decreased the total counts of MDSCs
in peripheral blood and spleen. Our results have implied that β-glucans are probably a
major component of WBM that modulates immune function [185]. As mentioned previ-
ously, we are further exploring WBM-induced immune-mediated anticancer effects with a
state-of-the-art single-cell and spatial multidimensional profiling analysis.

5.3. The “Totality-of-the-Evidence” Approach for WBM Product as IND

The “totality-of-the-evidence” approach is a rigorous quality control (QC) process
that is recommended by the USFDA for food-based botanical drugs [28,30,31]. We use this
approach in phase I/II trials treating prostate cancer with WBM. Freshly grown WBMs
are collected and processed into a freeze-dried powder at a US-based farm that is Good
Agricultural and Collection Practices (GACP) and Good Manufacturing Practices (GMP)
compliant. The mushroom farm’s in-house laboratory carries out initial QC on raw material
(freeze-dried WBM powder in our study), including physical properties (particle, moisture),
chemical hazards (heavy metals), and microbiological contamination (yeast, mold, E. coli,
salmonella, etc.). The raw materials are then shipped to a third-party facility to produce
WBM tablets in accordance with GMP standards. Finally, we perform the LNCaP-PSA
luciferase assay and qRT-PCR of PSA expression as the mechanism-based and clinically
relevant bioassay quarterly to document the stability and bioactivity of WBM tablets (IND).

5.4. Designed and Conducted Clinical Interventional Studies on Human

Based on “prior human experience” and mechanism-based clinically relevant preclin-
ical studies, our team at the City of Hope has conducted the first single-arm open-label
clinical phase I trial of WBM tablets in 36 patients with biochemically recurrent (BCR)
prostate cancer. It is a trial without a placebo control, in which both the investigators and
the patients are aware of the drug being given while the patients in the control groups
do not receive WBM tablets [183]. In this trial, we have evaluated the feasibility, toxicity,
and biological activity of prolonged therapy with WBM tablets. Phase I is designed as a
dose-escalation study, with six different dose levels of the mushroom product given to
patients with BCR prostate cancer after previous local therapy. PSA is used as a PD marker
to determine the WBM drug effect [183]. Two patients have exhibited a complete response,
with a reduction in PSA that reaches undetectable levels, and two other patients have
experienced partial clinical and PSA responses, while the other thirteen patients have some
reduction in PSA from the baseline. Responsive patients have also experienced a decline of
myeloid-derived suppressor cells (MDSCs) in blood circulation, which is correlated to PSA
reduction [183]. Taken altogether, these findings suggest that bioactive chemicals in WBM
may exert both antiandrogenic and immunomodulatory effects.
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Based on our phase 1 trial findings, we have conducted several reverse-translational
studies to understand the various biological activities that WBM exerts. Through those stud-
ies, we have demonstrated that WBM contains AR antagonists that can block the activation
of AR signaling, which is the driving force of prostate cancer progression [184]. The knowl-
edge gained from this study indicates that WBM intake affects prostate cancer by interfering
with the AR signaling axis. Additionally, we have learned from our preclinical studies and
previous human-based evidence that WBM may also contain immune-regulatory and anti-
inflammatory chemicals that may synergistically contribute to their anti-prostate cancer
properties [185].

We thus have designed two cohorts in our currently ongoing open-label randomized
control (RCT) phase 2 trials (NCT04519879) using WBM. Patients with BCR prostate cancer
(cohort 1) and low-risk prostate cancer (cohort 2) are chosen as the targeted populations.
The neuroendocrine type of prostate cancer is more aggressive and is excluded from
our clinical trial [183]. Particularly for those patients with low-risk cancer, the growing
clinical evidence indicates that administering more aggressive treatment such as surgery or
radiation at the early cancer stage does not necessarily prevent men from having a poor
outcome and can result in serious urinary and/or sexual side effects [204]. As a result,
many patients with low-grade and low-risk prostate cancer are advised to be on active
surveillance to avoid the side effects associated with these aggressive treatments [205].
Another scenario is BCR prostate cancer patients who experience an increase in PSA
after treatment with surgery or radiation. Regarding drug therapy, androgen deprivation
therapy (ADT) remains the regimen of choice, however, the side effects of ADT have a
significant negative impact on the quality of life [206]. We have hypothesized that for
patients with low-risk prostate cancer under active surveillance or BCR prostate cancer,
the use of botanical products that contain natural-form bioactive molecules will be a safe
alternative treatment that can prevent or delay the progression to advanced disease [207].
In considering that WBM has both antiandrogen and immunoregulatory activity, multiple
endpoints are designed to explore various functions of WBM. PSA is the surrogate endpoint
marker for pharmacological strategies against AR activation; PSA progression time is a
secondary endpoint to predict disease progression. Furthermore, an exploratory objective
for our phase II trial is to measure changes in immune mediators such as cytokines or
immune cells. Moreover, our ongoing phase 2 trial are aiming to enroll participants from
different racial and ethnic groups. The efforts include delivering the flyers in different
languages, reaching different cultural communities, etc.

The information gained from the aforementioned studies has greatly improved our
overall understanding of how WBM may contribute to the prevention and treatment of
prostate cancer while serving as an important scientific basis for the future development of
WBM as anticancer medicine.

6. Discussion and Outlook

There is an enthusiastic public interest in the idea of anticancer superfoods since
these foods are considered by many in the public to be safer than synthetic drugs because
anticancer superfoods are natural products. Following a diagnosis of cancer, nearly half of
American patients begin taking food-derived products or seek advice on consuming these
products [208]. However, health professionals are reluctant to offer actionable advice to
patients on such products because they doubt their efficacy and safety. Generally, these
concerns include but are not limited to (1) whether food products should be incorporated
into a treatment plan; (2) which products are safe and effective to use as treatments; and (3)
whether food products are antagonistic to standard treatment with chemotherapy or im-
munotherapy. The most fundamental reason for the hesitation in clinical decision-making
by physicians is the lack of science-based and clinically proven results demonstrating the
efficacy of anticancer superfoods. Mechanism-based and clinically targeted development of
plant foods as cancer therapeutics are needed by both the public and health professionals.
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Among the controversies about anticancer foods is whether they should be consumed
as whole foods or as dietary supplements derived from them. It is a concern that the
manufacturing and application of dietary supplements in cancer care are largely unregu-
lated [209] According to the scientific literature, plant-derived functional foods may target
multiple oncogenic signaling pathways and cellular compartments at the same time via
heterogeneous molecules that are present in plants, rather than by an isolated chemical
constituent [23–27,30–35]. By using the network pharmacology approach, it has been
shown that phytochemical mixtures in whole foods may have networking (additive or
synergistic) effects on cancer [210,211]. From our studies on WBM, we also demonstrated
that WBM provides antiandrogen effects via CLA-9Z11E and immunoregulatory functions
through β-glucans. Isolated CLA-9Z11E or β-glucan exhibited either antiandrogen or
immunoregulatory effects whereas WBM whole food extract have exhibited both properties
simultaneously [184,185]. Another example is our study on grape seed extract (GSE) in
breast cancer models. GSE has suppressed tumor angiogenesis in breast cancer xenograft
tumors by interfering with the vascular endothelial growth factor (VEGF) signaling path-
way. Interestingly, when the bioactive polyphenol in GSE has been depleted, the extract
loses its antiangiogenesis activity [187,188]. It is possible for single compounds to have
weaker anticancer effects or lose their bioactivity without coexisting with other molecules.
Pharmacology/toxicology properties, bioavailability, and dosage are the most critical con-
siderations for isolated compounds [212]. However, one has to admit that it is easier to
standardize the production and regulation of purified bioactive components with defined
physical, chemical, and biological characteristics [209]. It remains unclear whether whole
food extract or the bioactive ingredient should be considered as the anticancer candidate
agent [213]. Future studies that assess botanical food products should consider these crite-
ria (Figure 1 and Table 1) to define the whole food product and/or isolated compounds as
an anticancer botanical drug.

Another trending discussion with great clinical interests involves combining botanical
products as (neo)adjuvant treatments or concurrently with conventional cancer treatments
such as chemotherapy, radiotherapy, and immunotherapy [214,215]. Such combinations
and possible additive or synthetic interactions with conventional drugs may improve the
outcome and reduce risks. However, this means that physicians will need to be fully aware
of the benefits and especially the risks that are potentially caused by food–drug interac-
tions [165–167]. As we have discussed in Section 2 (Table 2), experimental evidence for such
interactions is well defined and documented in the literature but the same cannot be stated
for the botanical drugs with unknown active ingredients. A major concern about the latter is
the fact that their food/herb–drug interactions are still theoretical [94]. It is noteworthy that
newly published preclinical and clinical studies have reported on the benefits of combining
botanical drugs and conventional treatments, such as reducing chemotherapy-related side
effects [216] and overcoming chemoresistance [217]. On an even more positive note, among
the fields that are advancing rapidly is the development of botanical immune drugs in
cancer therapy [146]. In our research on the WBM, we have learned that the botanical
polysaccharide (i.e., β-glucan) in mushrooms or yeast exerts potent immune-regulatory
activity by reprograming immune cells and signaling. Therefore, yeast- or mushroom-
derived β-glucan have been actively proposed as (neo)adjuvant treatments to enhance or
prime the responsiveness of cancer immune therapy [218,219]. These efforts include both
preclinical and clinical studies by combining mushroom or yeast-derived polysaccharides
with immune checkpoint inhibitors such as anti-PD1/PD-L1 [220,221].

As a final note, we hope that this article will provide researchers, health care providers,
and industry sponsors with landscape-based perspectives and insights. This article is for
those who wish to understand how botanical foods and their derivatives contribute to
cancer pathobiology, as well as develop relevant therapeutic approaches to treat cancer
by conducting clinically oriented and evidence-based translational studies under USFDA
regulatory frameworks.
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