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Simple Summary: Pancreatic ductal adenocarcinoma (PDAC) accounts for more than 90% of all
pancreatic malignancies, and has a generally poor prognosis. Although it is the most common
neoplastic disease of the pancreas, differential diagnosis is hindered by the lack of accurate and
reliable diagnostic assays. Identification of molecular signatures for PDAC diagnosis offers a solution
to improve the clinical and patient management. However, comprehensive omics profiling is time-
and relatively cost-intensive and limited by tissue heterogeneity. Thus, it is not implemented in
clinical routine. In this study, we investigate the feasibility of MALDI-MSI in combination with
a neural-network-based analysis for accurate classification of pancreatic-ductal-adenocarcinoma
patients. We provide evidence of the usefulness of this technology to support PDAC assessment
which is promising for pathological aid.

Abstract: Despite numerous diagnostic and therapeutic advances, pancreatic ductal adenocarcinoma
(PDAC) has a high mortality rate, and is the fourth leading cause of cancer death in developing coun-
tries. Besides its increasing prevalence, pancreatic malignancies are characterized by poor prognosis.
Omics technologies have potential relevance for PDAC assessment but are time-intensive and rela-
tively cost-intensive and limited by tissue heterogeneity. Matrix-assisted laser desorption/ionization
mass spectrometry imaging (MALDI-MSI) can obtain spatially distinct peptide-signatures and en-
ables tumor classification within a feasible time with relatively low cost. While MALDI-MSI data
sets are inherently large, machine learning methods have the potential to greatly decrease processing
time. We present a pilot study investigating the potential of MALDI-MSI in combination with neural
networks, for classification of pancreatic ductal adenocarcinoma. Neural-network models were
trained to distinguish between pancreatic ductal adenocarcinoma and other pancreatic cancer types.
The proposed methods are able to correctly classify the PDAC types with an accuracy of up to 86%
and a sensitivity of 82%. This study demonstrates that machine learning tools are able to identify
different pancreatic carcinoma from complex MALDI data, enabling fast prediction of large data sets.
Our results encourage a more frequent use of MALDI-MSI and machine learning in histopathological
studies in the future.
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) accounts for more than 90% of all pancre-
atic malignancies, and has generally a poor prognosis [1]. With a 5 year overall-survival
of less than 8%, PDAC is the fourth most frequent cause of cancer-related deaths world-
wide [2]. Projections indicate that the number of PDAC diagnoses as well as PDAC-related
deaths will more than double in the next decade in the United States [3] and in European
countries [4]. This is due to lifestyle habits such as alcohol and tobacco abuse, which are
known to increase the risk of several other cancers and also seem to play a role in the
development of PDAC [4–8]. Pancreatic ductal adenocarcinoma (PDAC) and ampullary
carcinoma (AC) are gastrointestinal cancers with overlapping clinical symptoms [9]. Al-
though several studies hypothesize that pathogeneses and molecular composition are
different, the clinical regime and therapy remain similar [10]. Moreover, existing studies
demonstrate that the 5 year overall-survival-rate of patients with PDAC is lower in com-
parison with patients with AC [11]. Pancreatic ductal adenocarcinoma of the pancreas and
ampullary carcinoma arise in close proximity to each other [12]. As a result, differential
diagnosis of PDAC remains clinically challenging. Differential diagnosis is hindered by the
lack of accurate and reliable diagnostic assays. Identification of molecular signatures for
PDAC diagnostics offers the possibility of improving the clinical and patient management.
However, common tissue-based proteomic and genomic techniques require large amounts
of homogenized tissue material, which does not enable a direct correlation of molecular
alterations with tissue histology.

Matrix-assisted-laser-desorption/ionization (MALDI) imaging technology combines
common mass spectrometry with histological approaches. This technique is suitable for
analyzing molecules (e.g., metabolites, proteins, peptides, lipids and glycans) and their spa-
tial distribution in a single tissue-section in an unsupervised and label-free manner [13–16].
MALDI mass spectrometry imaging (MALDI-MSI) enables the high-throughput determina-
tion of spatial molecular-signatures in a clinically acceptable period and at relatively low
cost, in comparison to other omics technologies. This provides new capabilities to classify
different patient subgroups and even supports prediction of disease progression and/or
resistance development.

In previous studies, MALDI-MSI was applied to in situ proteomic analysis of pre-
neoplastic lesions in pancreatic cancer in genetically engineered mice [17]. In the study,
intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasm (IPMN)
could be discriminated from normal pancreatic tissue and early pancreatic ductal adenocar-
cinoma. Further studies have shown differences in the chemical structure of phospholipids
and their distribution patterns in human pancreatic islets with intra-islet spatial resolution
using MALDI-MSI [18]. Besides the investigation of the underlying mechanism, several
proof-of-concept studies demonstrate the potential of MALDI-MSI in combination with
machine learning algorithms to identify peptide signatures of prognostic relevance in
pancreatic cancer [19,20].

In recent years, neural networks gained great popularity in many machine learning
tasks such as image and speech recognition [21], image segmentation [22], and various
classification tasks. Convolutional neural networks especially outperform many classi-
cal machine-learning approaches [23]. Neural networks are able to approximate highly
complex decision functions, through their layer structure. Each layer consists of so-called
neurons, which themselves contain weights and a nonlinear gating function. During
training, the weights are tuned to solve the task at hand, which typically goes hand in
hand with intrinsic learning, a meaningful feature-representation of the given data [24]. In
the context of MALDI-MSI, machine learning algorithms have been used less frequently.
Most studies make use of statistical methods, such as hierarchical clustering [25] or linear
discriminant analysis (LDA). The high-dimensional nature of MALDI-MSI spectra often
prohibits applying machine learning directly to the raw spectrum. Thus, strategies for
feature selection or dimension reduction are employed to enable machine learning tools to
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be used. The most commonly used techniques are peak picking [26], principal component
analysis (PCA), and non-negative matrix factorization (NMF) [27].

In this proof-of-concept study, we investigate the feasibility of a neural network-based
analysis of MALDI-MSI data for accurate classification of pancreatic ductal adenocarcinoma
(Figure 1). We explicitly rely on the inherent feature-selection capability of neural networks,
and evaluate the feasibility of feeding the full-scale spectral data to the classification
methods in order to reduce the problem-specific modeling overhead as well as human
interaction, and allow all available data to be used.
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Figure 1. MALDI-MSI workflow for pancreatic-cancer-tissue assessment. (A) Pancreatic-cancer-tissue
sample preparation includes deparaffinization, antigen retrieval followed by tryptic digestion and
matrix application. (B) In situ determination of spatial mass to charge (m/z) signatures by means of
MALDI mass spectrometry imaging. (C) Univariate testing of MALDI-MSI-derived data provides
single discriminative m/z values, which can potentially identify distinct tissue types. Machine learning
by neural-network strategies provides (D) an accurate classification of pancreatic-cancer types, which
is potentially sufficient for clinical routine.

2. Materials and Methods
2.1. Patient and Sample Cohort

Tissue microarrays (TMAs) from formalin-fixed paraffin-embedded tissue from patients
diagnosed with exocrine pancreatic cancer, in particular pancreatic ductal adenocarcinoma
(PDAC) and ampullary carcinoma (AC) were prepared at the University of British Columbia
Research (Table 1). The use of these samples is covered by ethical approval from the Uni-
versity of British Columbia Research Ethics Board H22-00073. Besides PDAC and AC, the
investigated cohort included tissue material of other pancreatic cancer types, which are:
acinar cell carcinoma, carcinoma NOS, benign chronic pancreatitis, intraductal papillary-
mucinous carcinoma-invasive, intraductal papillary-mucinous carcinoma-noninvasive, mu-
cinous cystic neoplasm-noninvasive, mucinous noncystic carcinoma, neuroendocrine tumor,
pseudo-papillary tumor, serous cystadenoma, and signet-ring cell carcinoma.
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Table 1. Clinicopathological characteristics of our patient cohort.

Study
Group PDAC AC Other PC

Total n 446 260 103 83

Age at Surgery
>60 years 311 (70%) 187 (72%) 74 (72%) 50 (60%)
<60 years 135 (30%) 73 (28%) 29 (28%) 33 (40%)

Sex
female 211 (47%) 118 (45%) 45 (44%) 48 (58%)
male 235 (53%) 142 (55%) 58 (56%) 35 (42%)

Regional Lymph Nodes
pN0: No regional

lymph-node-metastasis 115 (26%) 64 (25%) 50 (49%) 1 (1%)

pN1: Regional
lymph-node-metastasis 241 (54%) 180 (69%) 51 (50%) 10 (12%)

pNx: Cannot be assessed 90(20%) 16 (6%) 2(2%) 72 (87%)
Histologic Grade

G1: Well differentiated 4 (1%) 3 (1%) 1(1%) -
G2: Moderately differentiated 287 (64%) 181 (70%) 96 (93%) 10 (12%)

G3: Poorly differentiated 72 (16%) 65 (25%) 6 (6%) 1 (1%)
not assessed 94 (21%) 11 (4%) - 72 (87%)

2.2. MALDI-MSI

Formalin-fixed paraffin-embedded (FFPE) tissue sections (tissue microarrays) were
prepared as described before [28]. Briefly, 6-µm thick tissue-sections were mounted onto
conductive glass slides, coated with indium tin oxide (Bruker Daltonik GmbH, Bremen,
Germany). Sections were preheated to 80 ◦C for 15 min, followed by paraffin removal,
and heat-induced antigen retrieval. Trypsin solution (20 µg Modified Porcine Trypsin in
800 µL digestion buffer (20 mM ammonium bicarbonate with 0.01% glycerol) was applied
by an automated spraying device (HTX TM-Sprayer, HTX Technologies LLC, ERC GmbH,
Riemerling, Germany), at 30 ◦C. The tryptic digest was performed in a humidity chamber
for 2 h, at 50 ◦C. Matrix solution (7 g/L a-cyano-4-hydroxycinnamic acid in 70% acetonitrile
and 1% trifluoroacetic acid, at 75 ◦C) was applied using an HTX TM sprayer. A RapifleX
MALDI Tissuetyper with flexImaging 5.1 and flexControl 3.0 software (Bruker Daltonik
GmbH, Bremen, Germany) was used in positive-ion reflector mode, detection range of
800–3200 m/z, 500 laser-shots per spot, a sampling rate of 1.25 GS/s (gigasamples per
second) and a raster width of 50 µm for MALDI-MSI data acquisition. External calibration
was carried out using a peptide calibration standard (Bruker Daltonik GmbH). After matrix
removal, TMA sections were stained with hematoxylin and eosin, for histology. Tumor
regions were digitally annotated in the QuPath open-source software by a pathologist, and
transferred into SCiLS Lab software (Version 2019c Pro, Bruker Daltonik GmbH).

2.3. Processing of MALDI-MSI Data

MALDI-MSI raw data were converted to SCiLS Lab base data .sbd file and SCiLS Lab
extended file .slx format using SCiLS Lab software version 2019c Pro (Bruker Daltonik
GmbH). Data were set to total ion count without baseline removal. Patient tissue cores
were categorized into ductal adenocarcinoma and non-PDAC (AC+ other pancreatic cancer
types) attributes, to split the data into independent data sets (different tumor or patient-
characteristics) for analysis. For peak detection and alignment, a standard segmentation
pipeline (SCiLS Lab software) was used with the following parameters: width = 0.2 Da,
maximal interval processing, total ion-count TIC normalization, medium noise reduction
and no smoothing (Sigma: 0.75) [29,30].
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2.4. Univariate Statistical Analyses

Supervised receiver-operating-characteristic (ROC) analyses were applied to identify
m/z values, which are discriminative between tumor tissue regions of pancreatic ductal
adenocarcinoma (PDAC) and ampullary-carcinoma (AC) tumor tissue regions. Area-under-
the-curve values (AUC) close to 0 and 1 indicate that m/z values (peptides) are discriminatory.
A comparable number of spectra must be used for the ROC analyses, and 10,000 spectra
were randomly selected per group. Finally, m/z values with an AUC > 0.7 or <0.3 and a
p-value < 0.001 (Wilcoxon rank-sum test) were selected as discriminative markers.

2.5. Protein Identification by Electrospray Ionization Tandem Mass Spectrometry

In order to identify the proteins corresponding to MALDI-MSI-derived m/z values
(peptide), bottom-up liquid chromatography-based mass spectrometry (LC MS/MS) was
performed on adjacent tissue sections, as previously described [26,31]. Briefly, tissue
deparaffinization, antigen retrieval and tryptic digest were performed, as for the MALDI-
MSI analyses. Using 40 µL of 0.1% trifluoroacetic acid, peptides were extracted from
the tissue section. The peptide solution was desalted and purified using a ZipTip® C18,
following the manufacturer instructions. Eluates were vacuum concentrated (Eppendorf®

Concentrator 5301, Eppendorf AG, Hamburg Germany) and reconstituted separately in
20 µL 0.1% trifluoroacetic acid. A total of 2 µL eluate were injected into a NanoHPLC
(Dionex UltiMate 3000, Thermo Fisher Scientific, Waltham, MA, USA) coupled with an
ESI-QTOF mass spectrometer (Impact II™, Bruker Daltonic GmbH, Bremen, Germany). All
raw spectra from the MS/MS measurement were converted to Mascot generic files (.mgf)
using the ProteinScape software. Mascot search engine (version 2.4, MatrixScience; London,
UK) and UniProt database were used to analyze mass spectra. The search was performed
with the following set of parameters: (i) taxonomy: human; (ii) proteolytic enzyme: trypsin;
(iii) peptide tolerance: 10 ppm; (iv) maximum of accepted missed cleavages: 1; (v) peptide
charge: 2+, 3+, 4+; (vi) variable modification: oxidation (M); (vii) MS/MS tolerance: 0.8 Da;
and (viii) MOWSE score > 25.

The comparison of MALDI-MSI (Supplementary Table S1) and LC−MS/MS m/z
values (Supplementary Table S2) required the identification of more than one peptide
(mass differences < 0.3 Da). The peptides with highest MOWSE peptide score and small-
est mass differences between MALDI-MSI and nanoLC-MS/MS data were accepted as
correctly identified.

2.6. Model Architectures for PDAC Classification

In order to classify PDAC, several neural network-based classifiers were employed.
Firstly, a 2-layer residual network with skip connections between each layer, where the
input of the proceeding layer was passed unmodified to the subsequent layer as additional
input. In the following, this model is denoted as Residual.

Secondly, an encoder-only variant of the Transformer architecture [32] was imple-
mented. The size of the attention matrices used in this model is n × n, where n denotes
the sequence length. As each spectrum consists of several thousand data points, applying
a Transformer to the full-scale sequence is unfeasible; therefore, the sequence length was
reduced using a pooling layer with a kernel-size of 4, based on each peak consisting of
3 individual data points, before passing the input to the encoder. We refer to this architec-
ture as Transformer-1/2.

All models were implemented using the PyTorch (version 1.3.1) framework, and
the trainable weights were initialized by randomly selecting values from a truncated
normal distribution. Experiments were conducted using the Adam optimizer and rectified-
linear-units (ReLU) activation functions. Different hyperparameters such as learning rate,
batch size and kernel size were tested. The configurations resulting in the overall best
performance on the test set for each architecture are shown in Table 2.
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Table 2. Parameter configurations for network models.

Model Kernel Size Channel Learning Rate Batch Size Heads Pooling Size

Residual (200, 100) (16, 8) 1 × 10−5 100 - -
Transformer 1 (256, 256) (16, 8) 1 × 10−4 100 2 4

Transformer 2 (512, 512) (16, 8) 1 × 10−4 500 2 8

2.7. Dataset Design

The data points were converted to NumPy arrays using the NumPy toolbox and a
Python-based development environment. We kept the full mass range and stored the
spectral data and corresponding label and coordinate information in HDF5 format. A
custom tool was used to manually assign spectra to tissue samples. Patient tissue samples
with fewer than 20 spectra were excluded, and spectra were normalized to unit median.

The TMA was randomly split into three subsets, which can be seen in Supplementary
Figure S1. For both classes (Ductal, non-PDAC), around 70% of the data were used for
training the machine learning algorithms, further divided into a training dataset (50%
of patient samples) and a validation dataset (20%). The remaining 30% were used as
a test dataset to evaluate the classification performance and were not used during the
training phase.

We applied 3-fold cross-validation to create distinct data sets for training by repeat-
ing the random-splitting process three times (Dataset 1–3). The patient- and spectra-
distributions in the training, validation, and test datasets varied slightly among different
splits, due to the assignment process. The splitting was performed by selecting full patient
core-tissue samples randomly without replacement, and assigning them and all associated
spectra to one of the three datasets until the desired size was reached (Table 3, Supplemen-
tary Figure S1).

Table 3. Dataset sizes after random split (percentage of total in parentheses).

Training Validation Testing

Dataset 1
267 (51.1%) cores 100 (19.2%) cores 100 (19.2%) cores

14,384 (50.3%) spectra 5578 (19.5%) spectra 8627 (30.2%) spectra

Dataset 2
270 (51.7%) cores 97 (18.6%) cores 155 (29.7%) cores

14,323 (50.2%) spectra 5611 (19.7%) spectra 8619 (30.1%) spectra

Dataset 3
254 (48.7%) cores 102 (19.5%) cores 166 (31.8%) cores

14,297 (50.1%) spectra 5577 (19.5%) spectra 8679 (30.4%) spectra

2.8. Filtering of Noise Spectra

We implemented a filter to remove spectra with little or no relevance, based on an
informativeness score. The informativeness of each spectrum was measured in terms
of the number of peaks greater than the variance within the spectrum. We considered a
spectrum informative whenever the number of such peaks exceeded a predefined threshold.
We restricted the range of data points to evaluate the first 60% of data points in a given
spectrum, since there were few peaks present in higher Dalton ranges. We provide a visual
interpretation of our measure of informativeness in Supplementary Figure S2.

2.9. Classification

Following the preprocessing steps above, the spectra and (during training) class-label
information were directly passed to the neural networks. All network classifiers were
trained on batched single spectra from the training data-set, monitoring the performance
on the validation data-set. The model with the highest accuracy score on the validation
data-set was selected to evaluate the performance on the unseen test-data.
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Accuracy, sensitivity, and specificity metrics were computed on the unseen test-data in
order to measure the performance for each classifier. This evaluation was performed on an
individual spectrum level, counting the number of correctly classified spectra to determine
the metric scores. In addition, a majority voting-strategy was employed to assign one class
to each patient, based on the classes of all associated spectra in that patient’s sample, and
metrics were also evaluated on the patient level.

All metrics were averaged over the three different data splits, described in Section 2.7.
All experiments were performed on a 2 × 6-core Intel Xeon Gold 6128 CPU @ 3.40 GHz
with 24 logical cores and 3× GeForce RTX 2080 Ti GPUs with 11 GB of memory each.

3. Results
3.1. Acquisition of MALDI-MSI Data

We evaluated the feasibility of MALDI-MSI to classify pancreatic ductal adenocarci-
noma. Tissue samples were diagnosed from 446 patient-derived tumor-tissue specimens
categorized as ductal adenocarcinoma patient (n = 260), non-PDAC (n = 186, including
103 ampullary carcinoma). The analyzed tumor-tissue-regions underwent peptide signa-
ture extraction, which resulted in 435 aligned m/z values in the mass range m/z 800–3200 Da
for tryptic peptides. Representative average spectra from AC (the most common type in
the non-PDAC group) and PDAC tissue sections (tumor region) are shown in Figure 2.
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Figure 2. MALDI-MSI derived signature. Average spectra (435 m/z values) from AC (left) and PDAC
(right) tumor regions (black line in the H&E staining of representative tissue cores).

3.2. Discriminative m/z Values between Pancreatic Ductal Adenocarcinoma and
Ampullary Carcinoma

As pancreatic ductal adenocarcinoma and ampullary carcinoma arise in close proxim-
ity to each other, a differential diagnosis of PDAC remains clinically challenging. In order
to demonstrate that the MALDI-MSI derived m/z values in PDAC are biologically relevant,
we performed a univariate pairwise test (ROC) between PDAC and AC. Univariate analysis
of MALDI-MSI data was used to determine single m/z locations that are discriminative be-
tween pancreatic ductal adenocarcinoma and ampullary carcinoma tissue (tumor regions).
Receiver-operator-characteristic (ROC) analysis was applied to the total 435 aligned m/z
peaks from tumor-region areas of tissue sections from PDAC and AC (pairwise compar-
isons). The intensity distributions of 131 m/z values could be identified as discriminative
between PDAC and AC (AUC values of >0.7 or <0.3; p < 0.001). Representative selections
are shown in Figure 3.
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(A) m/z 840 Da are decreased and (B) m/z 958 Da are increased in ampullary carcinoma, in comparison
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3.3. Discriminative Proteins Identified from Pancreatic Carcinoma Tissues

MALDI-MSI-derived m/z values were identified using complementary nanoLC- MS/MS
(Supplementary Table S2). Three proteins, corresponding to 7 MALDI-MSI derived m/z
values (Table 4), fulfilled the criteria to be assumed as identified [26]. The m/z values
(peptides; Table 4) from PLEC, AHNAK and COL6A3 proteins show significantly higher
intensity-distributions in the tumor region of ductal adenocarcinoma, in comparison with
ampullary carcinoma (Figure 4). The PLEC protein drives proliferation, migration and
invasion in PDAC [33] and is a potential marker for identifying preinvasive lesions [34].
The AHNAK protein is involved in cell proliferation and migration, and thus may affect
PDAC outcomes [35]. The COL6A3 protein is described in tissue as well as serum, and is a
potential prognostic factor for pancreatic adenocarcinoma [36,37]. These findings support
potentially interesting and plausible biological roles in pancreatic ductal adenocarcinoma.
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Table 4. Differential intensity distributions of m/z values (MALDI-MSI) and their corresponding
proteins in tissue sections from pancreatic ductal adenocarcinoma and ampullary carcinoma tissue
(tumor regions).

MALDI
IMS m/z

Value

ROC
[AUC]

AC/PDAC

LC-
MS/MS
[Mr+H+

cal.]

Deviation
[Da]

MOWSE
Score Sequence Protein Gen

Symbol

1459.7 0.721 1459.8631 −0.16 38.2 K.IGDLHPQIVNLLK.S Collagen alpha-3(VI) chain
COL6A31586.8 0.700 1586.9265 −0.16 47.7 R.LQPVLQPLPSPGVGGK.R

1267.7 0.715 1267.6529 0.01 53 K.AEGPEVDVNLPK.A Neuroblast
differentiation-associated

protein AHNAK

AHNAK1655.8 0.719 1654.8170 0.96 107.4 K.VDIEAPDVSLEGPEGK.L
1461.7 0.710 1461.7366 −0.04 78.1 R.SQVMDEATALQLR.E

Plectin PLEC1479.8 0.714 1479.7914 −0.03 58.9 R.SLQEEHVAVAQLR.E
2115.1 0.701 2115.0175 0.08 69.6 R.AGTLSITEFADMLSGNAGGFR.S
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Figure 4. Discriminative protein markers for pancreatic-ductal-adenocarcinoma and ampullary-
carcinoma tissue sections. (A) The m/z 1459 Da assigned to COL6A3, (B) m/z 1479 Da assigned to
PLEC and (C) m/z 1267 Da assigned to neuroblast differentiation-associated protein show increased
intensity-distributions in ductal adenocarcinoma, in comparison with ampullary-carcinoma tumor
regions (black lines delineate tumor-border area). (D) For orientation, hematoxylin and eosin (H&E)
staining are provided.

However, the highest AUC is 0.7, which needs to be improved to support PDAC as-
sessment in a clinical setting. Mc Combie et al. [38] demonstrated the multivariate statistical
treatment of MALDI imaging-data initially. Multivariate approaches are advantageous in
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MSI, since they involve the complete mass-spectral information, reduce data dimensions,
and obtain differences that are impossible to detect using univariate tests [39–41]. More so-
phisticated machine-learning algorithms aim at revealing more of the intrinsic information
hidden in the data by exploring statistical correlations, retrieving data subsets with spectra
similarities as well as applying supervised classification methods.

3.4. Pancreatic-Ductal-Adenocarcinoma Classifier Identification by Using
Neuronal-Network-Evaluation Strategies

In order to increase prediction accuracy of PDAC, we explore the feasibility of MALDI-
MSI combined with neuronal-network-evaluation strategies. To reduce the impact of
imbalanced training data for convolutional neural networks [42], the classification was
performed for PDAC (n = 260) against all non-PDAC tissues (n = 186, which includes
103 AC and 86 other pancreatic cancer types). The parameter search for all models was
carried out using a random-search routine [43]. For the Residual and Transformer models,
a high sensitivity to the choice of learning was observed on this data set; other parameters
such as batch size and number of epochs did not show a similarly pronounced effect. Lower
learning-rates result in the reported accuracies, whereas higher learning-rates hinder con-
vergence during training. Different network depths were tested, but experiments showed
that increasing the layer count ultimately harms the overall classification accuracy. Filtering
out noise spectra as described in Section 2.8, resulted in the exclusion of approximately 13%
of spectra (2183 measurements), resulting in a 3% increase in prediction accuracy for all
tested models. The filter was applied to the whole data set before the creation of subsets for
training and testing.

Interestingly, some of the samples were consistently labeled incorrectly, across the
different model architectures. These samples may express low tumor-cell content and
be dominated by the morphological structures of the tissue. Furthermore, the variance
within the second class Non-PDAC is high, with multiple subtypes, which may express
different spectral patterns. Neural networks tend to work better if the number of features
(spectrum size) is relatively small, compared to the number of samples in the data set.
However, further investigations with larger cohorts are needed to confirm this trend. Both
the Residual model and the Transformer model achieve an average accuracy of 80% on the
spectral and patient level over all splits. The highest accuracy on a single split is achieved
by the Residual model, with a prediction accuracy of up to 86% on the spectral level and
86% on the patient level. The performance of the Transformer model on the same split is
less accurate, with 85% on the spectral level and 86% on the patient level (see Table 5). The
attention mechanism in the Transformer architecture does not improve prediction accuracy,
compared to the skip connections in the Residual network.

The sensitivity of the Residual network for the ductal histotype is 0.79 on the spectral
level and 0.82 for patient prediction. Similarly, the prediction sensitivity of the Transformer
model is 0.81 (spectrum) and 0.83 (patient) for the ductal class. The Transformer model
achieves a 7% gain on sensitivity compared to the Residual model. Due to the nature of
the given two-class problem, the specificity of the Transformer model is 2% lower than the
Residual specificity for the ductal class on the patient level (see Table 6).

Table 5. Results for neural-network models. Given are the model classification-accuracies for single
spectra (spec) and full patient (sample) predictions.

Model Split Accuracy (Spec) Accuracy (Sample)

Residual I 0.86 0.86
II 0.76 0.77
III 0.77 0.76

0.80 0.80
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Table 5. Cont.

Model Split Accuracy (Spec) Accuracy (Sample)

Transformer 1 I 0.85 0.86
II 0.78 0.77
III 0.77 0.77

0.80 0.80

Transformer 2 I 0.83 0.84
II 0.77 0.76
III 0.78 0.79

0.80 0.80

Table 6. Sensitivity and specificity metrics distinguished by histotype (PDAC and non-PDAC). Non-
PDAC denotes all tumor and non-PDAC types labeled in the given data set. Reported are the results
for all models.

Model Class Spot/Patient Sensitivity Specificity

Residual PDAC Spot 0.79 0.90
Non-PDAC Spot 0.90 0.79

PDAC Patient 0.82 0.90
Non-PDAC Patient 0.90 0.82

Transformer 1 PDAC Spot 0.81 0.89
Non-PDAC Spot 0.89 0.81

PDAC Patient 0.83 0.88
Non-PDAC Patient 0.88 0.83

Transformer 2 PDAC Spot 0.76 0.87
Non-PDAC Spot 0.87 0.76

PDAC Patient 0.78 0.89
Non-PDAC Patient 0.89 0.78

4. Discussion

MALDI-MSI combines spatial molecular (mass-spectrometric) analysis with conven-
tional histological tissue-assessment. This technology enables the simultaneous analyzing
of the spatial distribution of hundreds of m/z values without prior knowledge (label-free).
MALDI-MSI is performed in high-throughput format (less than 5 min/mm2 analysis time)
with relatively low consumable cost (less than EUR one hundred per glass-slide). Tissue
microarrays can be used to transfer up to 100 samples onto a single slide, again reducing
the cost per patient-sample. These advantages make MALDI-MSI promising for identifying
biomarker signatures and exploring tumor complexity in a clinically relevant format. In
the presented study, we were able to demonstrate that the MALDI-MSI analysis results in
biologically relevant m/z values to discriminate AC and PDAC by using univariate statisti-
cal analysis in combination with complementary nanoLC-MS/MS. The statistical analysis
(receiver-operating-characteristic; ROC) results in 131 discriminative m/z values between
pancreatic ductal adenocarcinoma and ampullary adenocarcinoma. Using complementary
nanoLC-MS/MS, MALDI-MSI-derived m/z values could be assigned to three discriminative
proteins: PLEC, Collagen CO6A3, and AHNK. However, direct identification of proteins,
from which the m/z values (peptides, acquired by MALDI-MSI) stem, remain limited to
only a few abundant proteins.

Recent studies have shown that high-resolution MSI data combined with micropro-
teomics (high-resolution mass spectrometry) can be a valuable tool for protein assignment
with high mass-accuracy and spatial specificity [44–46]. As a result, this strategy is a
promising candidate for exploring potentially disease-causing protein changes in small
patient collectives, but inadequate for large-scale studies because the processing time for
both microdissection and mass spectrometry is longer, and the cost is higher.
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Moreover, due to tissue heterogeneity, single-protein-marker classification usually
does not result in sufficient accuracy for clinical routine. Several previous studies described
the fact that MALDI-MSI-derived m/z value (signatures) in combination with supervised
machine learning models enable a robust cancer-tissue classification [28,47–49]. In previous
studies, we used MALDI-MSI to distinguish among four different epithelial ovarian-cancer
histotypes [50] to predict a proteomic signature in early-stage ovarian cancer disease, which
is a prognostic marker for recurrence [51], and to classify molecular subtypes of high-grade
serous ovarian cancer [28]

In the present study, we apply this technique in combination with neural-network strate-
gies to expose spatially resolved proteomic-signatures for pancreatic-ductal-adenocarcinoma
classification. As data size and the high dimensionality of MALDI-MSI analyses still pose
complex computational and memory requirements that hinder highly accurate identification
of relevant molecular patterns, we explore the feasibility of MALDI-MSI in combination
with neuronal-network-evaluation strategies [52]. We demonstrate that machine learning
tools, in particular neural networks, given high-dimensional MALDI-MSI data are able to
identify ductal carcinoma, giving high-dimensional MALDI-MSI data with an accuracy of up
to 86%. MALDI-MSI combined with machine learning enables an accurate and quick PDAC
prediction of large data sets, with a minimum of data preprocessing.

Fast and robust prediction is needed to enable the integration of MALDI-MSI in the
clinical workflow. However, most studies apply a two-step pipeline for data processing [53],
consisting of feature selection and subsequent classification steps. Firstly, features are
selected either by hand, using the well-known practice of peak selection [54], or using
a dimension-reduction algorithm such as principal-component analysis or non-negative
matrix factorization [27], before applying an—often linear—classifier or a thresholding
approach. This data-processing pipeline is time consuming, and selecting peaks (features) to
increase classification performance can result in potentially valuable data being discarded,
thus resulting in negative robustness. Therefore, in this work, we make use of the non-
processed spectra, and do not apply any type of explicit feature selection. Non-linear
spectral diversity has the potential to determine biologically relevant clusters for tissue
assessment and clinical phenotypes prediction.

Neural networks can use non-linear mapping to reveal correlations in the spectral data
which are not accessible with the established linear methods. In addition, these methods
enable the combination of the feature-selection and classification stage in an end-to-end
fashion [49]. Our model architectures are well suited to deal with sequential data such as
MALDI-MSI data.

Consequently, we directly apply neural networks to the raw spectrum-data, and utilize
the inherent-feature-extraction capabilities, similar to in the work of Behrmann et al. in [49].
In our previous work, we demonstrated that a convolutional network with skip-connections
can differentiate four different subtypes of ovarian cancer when applied to MALDI-MSI
data [50]. Our implementation is based on the original ResNet architecture [55], which
famously increased the performance on the famous ImageNet classification challenge [56]
by a large margin. We also considered the Transformer architecture, which has gained
increasing popularity in fields such as language translation or caption generation, and is
one of the most effective tools for processing sequential data: MALDI-MSI-derived spectra
can be seen as sequential data, as each mass peak is linked to a specific detection-time. As
we are interested in classification rather than sequence-to-sequence transformation, we
only employ the encoder part of the original Transformer’s encoder-decoder design, with
an added classification layer.

The capability of the proposed methods to extract robust features from the given
spectral data is limited by the extent of noise. These features are crucial for the subsequent
classification steps. The MALDI-MSI acquisition technique, due to its high resolution,
results in noisy data. This sensitivity to noise hinders the learning process. The problem of
acquisition-related noise is described in [29], and can be compensated for, but the problem
of noise due to structurally non-informative spectral data points remains. In our work, we
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implemented a filter to manage these data points. The proposed filter aims to reject noisy
spectra before the classification step. Applying the filter to each spectrum results in a total
of 2183 rejected spectra, due to their low informativeness, and improves classification by
3% across the models.

In total, our proposed method allows us to correctly classify ductal carcinoma with an
accuracy of 86% and a sensitivity of 82%. The entire spectral data (full m/z range) can be used
without time-consuming feature (m/z) selection. In upcoming studies, larger cohorts will be
tested by a trained network to verify these findings. This will allow us to elevate our method
from a classification algorithm to a more broadly applicable tool for diagnostic research.

5. Conclusions

Accurate and reliable diagnoses of pancreatic ductal adenocarcinoma (PDAC) are
currently not adequately available. This pilot study demonstrates that (1) MALDI-MSI,
combined with nanoLC-MS/MS, is a feasible pathway for identifying discriminative
m/z values from corresponding proteins in pancreatic ductal adenocarcinoma versus
ampullary carcinoma, which might have an important role in tumor progression, and
(2) MALDI-MSI with neural-network strategies provides an accurate classification of PDAC
without time-consuming feature-extraction methods such as peak picking. Moreover,
we address the caveat of noisy data which is inherent to MALDI-imaging, utilizing only
properties of the spectrum signal itself, without the need for user interaction. This study
provides a proof-of-concept for the usefulness of the technology in assisting pancreatic-
ductal-adenocarcinoma classification in a fast and cost-effective manner.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/cancers15030686/s1, Supplementary Figure S1: TMA dataset
and split. Supplementary Figure S2: Example for spectra with low and high topology. Supplementary
Table S1: Aligned m/z values from cell-rich tumor region in tumor microarray cores from AC and
PDAC. Supplementary Table S2: Identified m/z values by using nanoLC-MS/MS.
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