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Simple Summary: The development of malignant pleural mesothelioma, a rare and often aggressive
cancer associated with asbestos exposure, can take decades to develop. The existing methods
for diagnosis are insufficient, hence, better detection methods are required. Given that pleural
effusions are close to the tumor and reasonably accessible, it is believed that pleural effusion contains
biomarkers that can provide insight into the disease. As part of our explorative analysis of pleural
effusion, we applied a novel mass spectrometry-based method, and as a result, we have identified
several proteins with diagnostic potential as markers for malignant pleural mesothelioma. The
research into the potential use of pleural effusion biomarkers as a viable future diagnostic tool for
malignant pleural mesothelioma will be advanced with the addition of the knowledge gained from
our study.

Abstract: Malignant pleural mesothelioma (MPM) is an asbestos-associated, highly aggressive cancer
characterized by late-stage diagnosis and poor prognosis. Gold standards for diagnosis are pleural
biopsy and cytology of pleural effusion (PE), both of which are limited by low sensitivity and
markedly inter-observer variations. Therefore, the assessment of PE biomarkers is considered a
viable and objective diagnostic tool for MPM diagnosis. We applied a novel affinity-enrichment
mass spectrometry-based proteomics method for explorative analysis of pleural effusions from a
prospective cohort of 84 patients referred for thoracoscopy due to clinical suspicion of MPM. Protein
biomarkers with a high capability to discriminate MPM from non-MPM patients were identified,
and a Random Forest algorithm was applied for building classification models. Immunohistology of
pleural biopsies confirmed MPM in 40 patients and ruled out MPM in 44 patients. Proteomic analysis
of pleural effusions identified panels of proteins with excellent diagnostic properties (90–100%
sensitivities, 89–98% specificities, and AUC 0.97–0.99) depending on the specific protein combination.
Diagnostic proteins associated with cancer growth included galactin-3 binding protein, testican-
2, haptoglobin, Beta ig-h3, and protein AMBP. Moreover, we also confirmed previously reported
diagnostic accuracies of the MPM markers fibulin-3 and mesothelin measured by two complementary
mass spectrometry-based methods. In conclusion, a novel affinity-enrichment mass spectrometry-
based proteomics identified panels of proteins in pleural effusion with extraordinary diagnostic
accuracies, which are described here for the first time as biomarkers for MPM.

Keywords: proteomics; malignant mesothelioma; fibulin-3; mesothelin; pleural effusion biomarkers

1. Introduction

Malignant mesothelioma (MPM) is a rare and aggressive type of cancer arising from
mesothelial cells of the pleural, pericardial, and peritoneal cavities. Asbestos inhalation is
the predominant cause of MPM, with approximately 80% of patients having been exposed
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to asbestos, either directly through occupation or through a family member [1]. Asbestos
has been used as a heat insulator and fireproofing material in construction, and as such,
there still exists housing today with asbestos as an insulating material. Inhaled fibers pro-
mote carcinogenesis via the induction of inflammatory reactions and subsequent immune
responses [2]. Current treatment options include chemotherapy, surgery, and radiotherapy,
or a combination of the three [3]. The prognosis is poor, with a 5-year survival rate below
15%, and median survival is approximately 12 months from diagnosis [4]. It has been
proposed that early diagnosis would improve the treatment options and outcome of MPM.
However, because of the notorious difficulty in diagnosing these tumors, research in this
field remains focused on the identification of biomarkers in pleural effusions and other
biological fluids that could serve as a diagnostic tool for identifying mesothelioma. Pleural
effusion is thought to be apreferable source for initial biomarker discovery because it is a
body fluid that is tumor-proximal with a relatively straightforward extraction opportunity
using pleuracentesis. Potential biomarkers are currently investigated for their use to predict,
diagnose and monitor but none has yet proved useful. Several proteins have been proposed
as molecular biomarkers for MPM; among those who have been investigated most exten-
sively are mesothelin and fibulin-3. Mesothelin is a glycoprotein that is expressed on the
surface of both benign and malignant mesothelial cells but is overexpressed in MPM and
other cancers and can shed from the surface and circulate. Soluble mesothelin have been
measured in both pleural effusion and serum, but the low sensitivity has so far prevented
its widespread use as screening tool [5,6]. The secreted glycoprotein fibulin-3 has been
shown to play a role in the regulation of cell proliferation and migration. Furthermore,
levels of fibulin-3 have been found to be elevated in both plasma and pleural effusions in
MPM patients compared to non-MPM patients [7]. Meta-analysis has shown fibulin-3 to
have moderate diagnostic efficacy [8].

It is well-accepted that disease progression affects the expression of specific proteins
in diseased tissue, e.g., in various cancers, thus leading to disease-specific protein profiles
detectable in tissues and body fluids. Mass spectrometry-based proteomics offers mea-
surement of a global protein profile, which through comparisons of protein expression
between benign and malignant samples, can be used as a tool for biomarker discovery in
clinical research. This technology has previously proven to be excellent at the identification
of promising protein biomarkers in pleura from MPM patients [9]. In this study, we hy-
pothesized that pleural effusions from patients diagnosed with mesothelioma contain yet
unreported protein biomarkers that can be identified using a novel affinity-enrichment mass
spectrometry-based proteomics method and machine learning algorithms. In this study,
we aimed to use this analytical strategy to identify novel protein biomarkers for MPM.

2. Materials and Methods
2.1. Patients and Patient Samples

Following informed consent, pleural effusions were collected for later proteomic anal-
ysis in patients referred for thoracoscopy due to a clinical suspicion of MPM. All patients
that were scheduled for a thoracoscopic biopsy to rule out malignant mesothelioma have
a history of asbestos exposure during the past decades. Approximately 20 mL of the
pleural effusion was collected in the period from September 2012 to November 2016 dur-
ing thoracoscopy from each patient and immediately centrifuged (2000× g/10 min/room
temperature) before storage of the supernatant at −80 ◦C until use. Pleural biopsies was sub-
jected to routine immuno-histological staining for the following markers; calretinin, CDX2,
CEA-M, CK7, D2-40, EMA, GATA-3, HBME-1, PAX8, PSA, TTF-1, WT1, and vimentin.
Immuno-histological staining of biopsies in conjunction with microscopic observations was
used to diagnose malignant mesothelioma.

2.2. Sample Processing

For the analysis of high abundant pleural proteins, pleural effusion samples (10 µL)
were diluted with 90 µL PBS to which 50 mM dithiothreitol (DTT) (30 min at 50 ◦C)
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was added. Next, 150 mM iodoacetamide (IAA) (30 min at RT) was added, followed by
enzymatic digestion of proteins with 2 µg of trypsin overnight at 37 ◦C.

For the analysis of low abundant proteins, their enrichment was carried out by adding
20 µL ABA-affinity beads slurry to 1 mL of diluted pleural effusion (100 µL pleural effusion,
900 µL PBS) and incubated for two hours at RT virtually as previously described [10]. Beads
with bound proteins were washed six times with 400 µL PBS and then re-dissolved in 20 µL,
0.2 M TEAB. Affinity-enriched proteins were on-bead reduced, alkylated, and digested as
described above by using 0.25 µg trypsin instead of 2.0 µg.

2.3. Isobaric Labelling of Tryptic Peptides

Digested peptides were chemically labeled with 11-plex tandem mass tags (TMT;
Thermo Fisher Scientific, Rockford, IL, USA) according to vendor instructions. Briefly, five
µg of tryptic digest from each sample was randomly labeled with either of the TMT tags
127N, 127C, 128N, 128C, 129N, 129C, 130N, 130C, 131N, and 131C and mixed in equal
ratios with a peptide pool of all samples tagged with mass tag 126. Ion signals from this
mass tag was used for data normalization across TMT datasets and for the calculation of
relative protein abundances.

2.4. Proteome Analysis
2.4.1. Off-Line Fractionation

The resulting TMT sets were fractionated into 6 fractions by high-pH fractionation
virtually, as previously described [11]. Briefly, samples were loaded onto an ACQUITY
UPLC® M-Class CSHTM C18 column (130 Å, 1.7 µm bead size, 300 µm id × 100 mm length)
using a 25 min linear gradient from 10% solvent B (20 mM ammonium formate in 80%
acetonitrile (ACN), pH 9.3) to 55% solvent B at 6 µL/min flowrate on a Dionex Ultimate
3000 RSLnano system inline coupled to a Dionex 3000 Ultimate UV detector (210 nm) and a
Dionex Ultimate 3000 autosampler configured as a fraction collector (Thermo Scientific,
Bremen, Germany).

2.4.2. Orbitrap Mass Spectrometry

Nano-LC-MS/MS analysis of higher abundant pleural proteins was performed on
an Orbitrap Exploris 480 mass spectrometer (Thermo Fisher Scientific) equipped with
an EASYspray source coupled to a Dionex UltiMate 3000 nano-HPLC. Peptide samples
(5 µL) were loaded onto an Acclaim PepMap 100 C18 precolumn with a flow of 15 µL per
minute for 20 min. Trapped peptides were separated on an EASY spray column at 45 ºC
using a linear gradient from 95–76% A (0.1% formic acid) to 25–27.5% B (0.1% formic acid
in 100% acetonitrile) over an effective gradient of 104 min at a flowrate of 300 nl per minute.
MS1 spectra were acquired at a resolution of 120 K at 200 m/z with a normalized AGC
of 100% and peptides were dynamically excluded for 30 s. MS2 spectra were acquired at
45 K resolution at 200 m/z with a normalized AGC target of 100% and normalized collision
energy (NCE) set to 36% with a cycle time of 2 s and 1.2 m/z isolation window.

Nano-LC-MS/MS analysis of lower abundant pleural proteins isolated by affinity-
enrichment was analyzed on an Orbitrap Eclipse Tribrid mass spectrometer (Thermo Fisher
Scientific, San Jose, CA, USA) coupled to a Dionex UltiMate 3000 nano-HPLC. Purified
peptides (5 µL) were loaded onto an in-house packed C18 pre-column (2 cm length, OD
360 µm, 75 µm ID packed with ReproSil-Pur C18, 3 µm resin (Dr. Maisch HPLC GmbH,
Ammerbuch-Entringen. Germany)) with a flow of 3.5 µL/min for 9 min. Peptides were
separated on a column (25 cm, 75 µm ID, in-house packed with ReproSil-Pur C18, 1.9 µm
resin (Dr. Maisch GmbH)) using a linear gradient from 95%A to 28%B over 49 min at a flow
rate of 250 nL per minute, followed by 8 min at 90%B and 5 min at 98%A at a flow rate of
300 nL per minute. MS1 spectra were acquired at a resolution of 120 K at 200 m/z with a
normalized AGC of 100% and peptides were dynamically excluded for 30 s. MS2 spectra
were acquired at 50 K resolution at 200 m/z with a normalized AGC target of 250% and
NCE set to 40% with a cycle time of 3 s and 0.7 m/z isolation window.
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2.4.3. Targeted Analysis of Mesothelin and Fibulin-3 by Multiple-Reaction-Monitoring
Mass Spectrometry

Pleural effusion samples for targeted analysis were essentially prepared as previously
described [12], but with sample handling in 96-well plates and the use of a premix of
trifluoroethanol/DTT. Pre-specified endogenous peptides belonging to mesothelin (IQS-
FLGGAPTEDLK) and fibulin-3 (DIDECDIVPDACK and NPCQDPYILTPENR) were indi-
vidually adjusted to a 1:1 ratio with the corresponding spiked-in heavy isotope-labeled
standard peptides (SpikeTides_L, JPT Peptide technologies, Berlin, Germany). Peptide
samples (0.5 µg) were loaded onto Evotips according to the manufacturer instructions and
analyzed using an Evosep One HPLC (8 cm analytical column, 60 samples/day LC method)
coupled to a TSQ Altis triple quadrupole mass spectrometer, equipped with an EASY-spray
ion source (Evosep Biosystems, Odense, Denmark, and ThermoFisher Scientific GmbH,
Bremen, Germany).

2.4.4. Raw Data Processing

All raw data files were processed using the Proteome Discoverer software (v. 2.4.0.305)
and searched with the MSPepSearch and the Sequest HT search algorithm. The search
parameters for the MSPepSearch were kept at default except for the precursor tolerance
and the fragment tolerance were both set to 15 ppm. The TMT specific spectral library
was prepared by Shen et al. [13] and imported into Proteome Discoverer. Sequest HT
search parameters were set to default except for MS accuracy of 8 ppm, MSMS accuracy of
0.05 Da for HCD data, with two missed cleavages allowed. Fixed modifications were set to
carbamidomethylation at cysteine residues, TMT 6-plex N-terminal, and TMT 6-plex on
lysine residues. Variable modifications were set to methionine oxidation, deamidation of
asparagine and glutamine and N-terminal acetylation. Raw data files were searched against
the Swiss-Prot database restricted to the human proteome (downloaded on 12 December
2019, containing 20,303 entries). Proteins identified with at least one unique peptide and
with a high confidence (FDR < 1%) were permitted in the final dataset. MRM MS raw
files were processed in Skyline (version 21.1.0.278) [14]. Each raw peptide L/H ratio was
normalized based on the average of all L/H ratios of that peptide across samples. Protein
levels were then normalized to the mean of the reference group.

2.5. Statistical Analysis

Imputation of missing values was performed by applying an imputation method based
on k-Nearest Neighbors algorithms as previously described [15,16]. Feature selection was
performed to identify proteins with the capability to differentiate between disease states and
to remove noisy features prior to classifier training. Feature selection was performed using
the Boruta feature selection algorithm [DOI: 10.18637/jss.v036.i11]. An additional filter was
employed as the Boruta selected proteins was required to also be significantly upregulated
(p < 0.05, unadjusted) in MPM samples when compared to controls as determined by
Student’s t-test. Recursive feature elimination was performed to further refine the proteins
used for training the classifiers. The final list of proteins for each dataset was then used
to train classifiers. Subtype-specific proteins used for classifier training for discriminating
between biphasic and epithelioid subtypes were identified by Student’s t-test. Development
of a classification model for the detection of mesothelioma in pleura was performed in R
(v. 4.02) and facilitated by the Random Forest algorithm (RandomForest and caret packages),
which is a decision tree-based machine-learning algorithm, using leave-one-out cross-
validation for an accurate estimate of performance. Computation of sensitivity, specificity,
positive prediction value (PPV), negative prediction value (NPV), as well as diagnostic
accuracy, was achieved using the confusionMatrix function in the caret R package. ROC
curves and AUC were computed using the MLeval package.
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3. Results

A total of 84 pleural effusion samples were available for analysis with mass spec-
trometry. Immunohistology of pleural biopsies confirmed MPM in 40 patients (Table 1)
and ruled out MPM in 44 patients who served as controls. The samples were prepared
for proteome analysis using two complementary sample preparation methods; a standard
sample preparation method that enables the analysis of the most abundant proteins in PE,
and a complementary affinity-enrichment-based method that targets low abundant proteins
in plasma and other body fluids with protein compositions comparable with plasma [10,17].
The two sample sets were analyzed by mass spectrometry-based proteomics resulting
in two datasets with primarily high or low-abundant PE proteins. Each of the datasets
were subsequently analyzed with statistical analysis to identify biomarkers and panels
of biomarkers for MPM. Finally, two PE proteins previously regarded as potential MPM
biomarkers were analyzed by two complementary mass spectrometry methods to validate
our proteomics methods.

Table 1. Patient characteristics.

Variables MPM
(n = 40)

Benign
(n = 44)

Age (mean ± SD) 71.54 ± 8.61 68.88 ± 8.82

Gender
Male (%) 35 (87.5) 36 (81.8)
Female (%) 5 (12.5) 8 (18.2)

MM Histology (%)
Biphasic 10 (25) -
Epithelioid 26 (65) -
Unknown 4 (10) -

Benign Histology (%)
Fibrosis 8 (18)
Inflammation 11 (25)
Nonspecific reactive change 19 (43)
Others * 6 (14)

* Others include hyperplasia, sclerosis, degenerative changes, and focal atypia.

3.1. Identification of Biomarkers for Malignant Mesothelioma

We analyzed a total of 84 pleural effusion samples from 40 MPM patients and 44 pa-
tients with benign effusions by mass spectrometry-based proteomics. Statistical analysis of
both datasets identified a total of 16 protein biomarker candidates for MPM (Table 2). Ide-
ally, for measuring purposes, diagnostic and prognostic biomarkers should be upregulated
when reflecting a disease state. Therefore, only proteins that were significantly upregulated
in MPM samples were considered in the present study.

Next, we analyzed the proteins shown in Table 2 using a Random Forest supervised
machine learning algorithm to identify proteins or combinations hereof with capabilities of
discriminating MPM patients from non-MPM individuals. The groups of proteins identified
from the affinity-based enrichment experiment and from the standard experiment were
analyzed both separately and in combination. For the standard proteomics experiment,
a single 3-protein Random Forest classifier was identified, whereas the affinity-based
proteomics experiment identified a 4-protein classifier (Table 3). Each of the two classifiers
demonstrated a high degree of sensitivity (0.90–0.97) and specificity (0.89–0.93), with
the classifiers trained on the proteins identified from the standard experiment slightly
outperforming the classifier trained on the proteins obtained from the affinity-enriched
dataset (accuracy: 0.95 vs. 0.89). The diagnostic power of the identified biomarker panels
was further evaluated by receiver-operating characteristic (ROC) analysis for MPM versus
non-MPM (Table 3). The area under curve (AUC) values confirmed that both classifiers
could discriminate MPM patients from non-MPM patients with the classifiers trained on
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enriched data achieving an AUC of 0.97. When combining the list of proteins identified
from the standard experiment and the affinity-enrichment experiment, a 5-protein classifier
could be constructed that demonstrated extreme performance with a sensitivity of 1.00,
specificity of 0.98, and an AUC of 0.99 (Figure 1).

Table 2. Proteins with the capability to discriminate MPM pleural effusions from controls identified
by the Boruta feature selection algorithm as described in Section 2.5. Galactin-3-binding protein was
identified in both datasets whereas periostin, haptoglobin, vitamin D-binding protein, and fibulin-3,
were identified in the dataset comprising of high-abundant proteins. The remaining proteins were
only identified in the dataset with the low-abundant proteins.

SwissProt ID Protein Name Gene Name Fold-Change p-Value Importance Score

Q08380 Galectin-3-binding protein LGALS3BP 1.51 #/1.69 * 1.44 × 10−5 #/8.22 × 10−12 * 10.31 #/29.27 *
Q15063 Periostin POSTN 1.31 0.018 8.09
P00738 Haptoglobin HP 1.22 0.0011 6.90
P02774 Vitamin D-binding protein GC 1.08 0.0036 6.54
Q12805 Fibulin-3 EFEMP1 1.12 0.004 6.46
Q92563 Testican-2 SPOCK2 2.78 1.33 × 10−11 23.67
Q15582 Beta ig-h3 TGFBI 1.56 6.44 × 10−7 15.16
P02760 Protein AMBP AMBP 1.35 5.28 × 10−10 12.79

Q6KC79 Nipped-B-like protein NIPBL 1.64 0.00037 7.26
P21741 Midkine MDK 1.63 0.0013 7.21

Q96GQ7 DEAD box protein 27 DDX27 1.40 0.01 6.94
Q6ZRQ5 Protein MMS22-like MMS22L 1.80 0.0015 6.94
Q99715 Collagen alpha-1(XII) chain COL12A1 1.42 0.00290 6.31

Q8WWA0 Intelectin-1 ITLN1 2.26 0.0049 5.70
O00468-6 Agrin AGRN 1.56 0.00051 5.21

Determined in the * lower abundant dataset and the # higher abundant dataset.

Table 3. Diagnostic accuracy of biomarker panels of proteins identified by Random Forest supervised
machine learning algorithm. Classifiers were trained using the proteins identified in Table 2. Proteins
from the two datasets were analyzed separately and in combination. The proteins analyzed were:
Q08380: galectin-3-binding protein; P00738: haptoglobin; Q15063: periostin. Q92563: testican-2;
Q6KC79: nipped-B-like protein; Q15582: Beta ig-h3; P02760: protein AMBP.

Variables Sensitivity Specificity PPV NPV Accuracy AUC (95% CI)

Higher abundant proteins
Protein accession (gene name)
Q08380 (LGALS3BP), P00738 (HP),
Q15063 (POSTN)

0.97 0.93 0.93 0.97 0.95 0.99
(0.98–1.00)

Lower abundant proteins
Q92563 (SPOCK2), Q6KC79 (NIPBL),
Q15582 (TGFBI),
P02760 (AMBP)

0.90 0.89 0.88 0.91 0.89 0.97
(0.94–1.00)

Combined
Q92563 (SPOCK2),
P00738 (HP),
Q15582 (TGFBI),
P02760 (AMBP),
Q08380 (LGALS3BP)

1.00 0.98 0.98 1.00 0.99 0.99
(0.99–1.00)
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Figure 1. ROC analysis of the combined 5-protein classifier with individual curves for each constituent
protein. Q08390: galectin-3-binding protein; Q92563: testican-2; P02760: protein AMBP; Q15582: Beta
ig-h3; P00738: haptoglobin.

3.2. Analysis of the Previously Identified MPM Protein Biomarkers Fibulin-3 and Mesothelin

Other proteins present in our datasets include fibulin-3 and mesothelin. Although both
proteins were in numerous previous studies identified as biomarkers for MPM [7,8,18,19],
none of them were identified as potential MPM biomarkers in the present study. In fact,
ROC analysis for both proteins showed similar poor performance with an AUC of 0.49
(95% CI: 0.38–0.64) for mesothelin and 0.60 (95% CI: 0.48–0.72), respectively, for fibulin-3
when measured with discovery-based MS. To further validate these findings we used a
confirmative targeted MS assay and obtained comparable results, adding further validity
to our study data (Figure 2).

3.3. Identification of Subtype-Specific Proteins for Differentiating MPM Subtypes

We then sought to examine whether the performance of the classifiers were associ-
ated with a particular subtype. It was determined using the Student’s t-test that there
were no significant differences in protein expression between the biphasic and epithelioid
subtype for the proteins included in the classifiers trained in either the standard dataset
(p-value: 0.696–0.527) or the affinity-enriched dataset (p-value: 0.978–0.107). This indicates
that the performance of the classifiers were not dependent on any particular subtype, but
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rather, the presence of mesothelioma itself. To further explore the relevance of subtypes we
identified the five most significantly regulated proteins between biphasic and epithelioid
subtypes using Student’s t-test in both datasets (Table 4). These proteins were then used to
train two Random Forest classification models to distinguish between the biphasic and ep-
ithelioid subtypes. The two classifiers demonstrated a high degree of sensitivity (0.83–0.90)
but lower specificity (0.50–0.60), with the classifier trained on the proteins identified from
the affinity-enriched dataset, being slightly more accurate than the classifier trained on
proteins from the standard experiment (accuracy: 0.78 vs. 0.80). The AUC values retrieved
from the ROC analysis indicate that both classifiers could discriminate between patients
with different subtypes with the classifier trained on proteins from the standard proteins
(AUC (95% CI) = 0.86 (0.74–0.97) slightly outperforming the classifier trained on proteins
from the enriched dataset (AUC (95% CI) = 0.82 (0.65–0.99) (Figure 3).

Figure 2. ROC analysis of Random Forest classifiers trained on either (a) mesothelin or (b) fibulin-3,
measured with either discovery-based MS (red) or a confirmative targeted MS assay (blue).

Table 4. Five most significantly regulated proteins between biphasic and epithelioid MPM subtypes
in the two datasets.

SwissProt ID Protein Name Gene Fold-Change
(Biphasic/Epithelioid) p-Value

Higher abundant proteins

Q9HC84 Mucin-5B MUC5B 1.49 0.00068
P23381 Tryptophan-tRNA ligase WARS1 1.42 0.0023
Q15582 Beta ig-h3 TGFBI 1.31 0.0025
P04217 Alpha-1B-glycoprotein A1BG 1.10 0.0043
Q9Y240 C-type lectin domain F11A CLEC11A 1.62 0.0054

Lower abundant proteins

Q4ZHG4 Fibronectin type III protein 1 FNDC1 2.23 2.47 × 10−5

P13611 Versican core protein VCAN 2.12 0.00064
P12107 Collagen alpha-1(XI) chain COL11A1 1.83 0.00075
P35442 Thrombospondin-2 THBS2 1.67 0.0017
Q16363 Laminin subunit alpha-4 LAMA4 1.62 0.0018
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Figure 3. ROC analysis of Random Forest classifiers trained on either the (a) higher abundant or
(b) lower abundant proteins from Table 4, for classification of MPM subtypes. The epithelioid subtype
was selected as positive for the calculation of sensitivity and specificity.

4. Discussion

Our experimental proteomics approach relied on the relative quantification using iso-
baric tags (11-plex tandem mass tags) high-pH fractionation and nano-LC-MSMS analysis
followed by bioinformatics and biostatistical analysis. The pleural effusions were prepared
using two different methods prior to the proteomic analysis: in one method, samples were
prepared for proteomic analysis directly without any pretreatment, which allows measure-
ment of primarily the most abundant proteins present, and in the other we used a novel
protein enrichment method [10,17] that enables the detection of proteins, which are present
in very low concentrations in the pleural effusion. Using this experimental approach, we
measured not only the previously identified and relative abundant protein biomarkers
for MPM, fibulin-3, and mesothelin, but also several proteins that have not previously
been identified as protein biomarkers for MPM with high diagnostic accuracy when used
in combination (Table 3). These included a multimarker panel consisting of galectin-3-
binding protein, periostin, and haptoglobin identified among the high abundant proteins
(AUC = 0.99), and one multimarker panel identified using our novel affinity enrichment-
based proteomics method consisting of testican-2 and nipped-B-like protein combined and
with Beta ig-h3 and protein AMBP (Table 3), demonstrating an AUC of 0.97 and sensitivity
and specificity of 0.90 and 0.89. When combining three of the proteins from the latter panel
with galectin-3-binding protein and haptoglobin identified with the standard proteomics
experiment a 5-protein multimarker panel exhibiting an extreme diagnostic accuracy was
obtained (AUC = 0.99; sensitivity = 1.00, specificity = 0.98). All the identified multimarker
panels for MPM demonstrated high diagnostic performance. This is not surprising as
several of the identified proteins previously are associated with various cancers, including
MPM (Table 5). For example, the increased expression of nipped-B-like protein is signifi-
cantly linked with poor prognosis, tumor differentiation, and lymph node metastasis in
non-small cell lung cancer [20], Beta ig-h3 plays a role in mesothelioma tumorigenesis
and progression [21], periostin, haptoglobin, protein AMBP fragments are upregulated in
various cancers including MPM [22–24], whereas galectin-3 binding protein are associated
to prognosis and progression of various cancers [25].
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Table 5. Proteins included in the classifiers for either MPM or subtype classification. Proteins are
annotated with the associated gene ontology biological process and whether they have previously
been shown to be related to either mesothelioma or other cancer forms.

SwissProt ID Protein ID Gene Cancer-Related Biological Process

Q08380 Galectin-3-binding protein LGALS3BP Yes [25] cell adhesion
Q15063 Periostin POSTN Yes [22] cell adhesion
P00738 Haptoglobin HP Yes [23] acute-phase response
Q92563 Testican-2 SPOCK2 No extracellular matrix organization
Q15582 Beta ig-h3 TGFBI Yes [21] angiogenesis
P02760 Protein AMBP AMBP Yes [24] cell adhesion

Q6KC79 Nipped-B-like protein NIPBL Yes [20] cellular response to DNA
damage

Q9HC84 Mucin-5B MUC5B No
P23381 Tryptophan–tRNA ligase WARS1 No angiogenesis
P04217 Alpha-1B-glycoprotein A1BG No
Q9Y240 C-type lectin domain F11A CLEC11A Yes [26] ossification

Q4ZHG4 Fibronectin type III protein 1 FNDC1 Yes [27]
P13611 Versican core protein VCAN Yes [28] cell adhesion
P12107 Collagen alpha-1(XI) chain COL11A1 Yes [29] cartilage condensation
P35442 Thrombospondin-2 THBS2 Yes [30] cell adhesion
Q16363 Laminin subunit alpha-4 LAMA4 No cell adhesion

Present in our dataset were also the proteins fibulin-3 and mesothelin—both originally
proposed as biomarkers for MPM [7]. Fibulin-3, a secreted glycoprotein that promotes
tumor growth and invasion [18]—was first proposed as a possible MPM pleural biomarker
by Pass et al. [7] with excellent capability to discriminate MM patients from non-MM
patients (AUC = 0.99; sensitivity = 0.97, specificity = 0.95). This could not, however, be
confirmed in a subsequent study by Kirschner et al. [19], who found—in line with our
results—that fibulin-3 levels in pleural effusions were not significantly different between
MM patients and controls, but demonstrated that fibulin-3 levels in pleural effusion fluid
were independently associated with prognosis (hazard ratio of 9.92 (95% CI: 2.14–45.93)),
also in line with the results obtained by Battolla et al. [31]. Mesothelin—a 40 kDA cell
surface glycoprotein expressed by mesothelial cells—another putative pleural effusion
biomarker for mesothelioma—displayed a similar diagnostic effectiveness in our study with
an AUC of 0.49 (95% CI: 0.38–0.64), which was lower than the previously reported AUCs
ranging from 0.70 to 0.93 [32]. Other newly discovered pleural MPM biomarkers include
cytokeratine-19 fragment (CYFRA-21-1) and carcinoembryonic antigen (CEA) [32]. CYFRA-
21-1 is the soluble fragment of keratin 19 and is released into circulation after caspase-3
cleavage or carcinogenesis-related apoptosis and has demonstrated AUC values from 0.65
to 0.76 [33,34]. Carcinoembryonic antigen (a glycoprotein involved in cell adhesion) is
found in low levels in healthy individuals and in high levels in different cancers and also
in MPM, but only in some studies, indicating that this protein is not specific to MPM
(AUCs ranging from 0.2 to 0.94) [33,35], thus making this less useful as a differential
diagnostic marker for MPM. Improved performances were observed when combining
pleural biomarkers. For example, the combination of C–C motif chemokine ligand 2,
galectine-3, and secretory leukocyte protease inhibitor with soluble mesothelin-related
peptides really improved MPM diagnosis (AUC 0.968) [36]. Moreover, when combining
mesothelin with the cytokeratin 21-1/carcinoembryonic antigen-ratio, a sensitivity of 93.4%
and specificity of 64.9% was obtained [37]. Furthermore, when combining carbohydrate
antigen 15-3 (CA 15-3) with CYFRA 21-1, a sensitivity of 100% and a specificity of 83% were
obtained [36].

Our study has limitations: we did not take into account the impact of the different
MPM subtypes on the feature selection of biomarkers. It is likely that some of the candidate
proteins would have a greater ability to classify patients with a particular subtype. Inves-
tigation into this potential discrepancy would have been possible if additional samples
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from each subtype were available. On the other hand, the analysis of the well-known
MPM biomarkers fibulin-3 and mesothelin by a complementary and more sensitive mass
spectrometry method confirmed previously reported data that, in all, adds validity to our
results. Additional patient data beyond MPM histology, age, and sex was not available for
this study preventing the division of patients by asbestos exposure and tumor staging.

5. Conclusions

In this study, we identified novel biomarkers for MPM in pleural effusions using
mass spectrometry-based proteomics. We demonstrated that the application of our mass
spectrometry-based approach, together with machine learning, can assist with the identifi-
cation of potentially clinically useful biomarkers for the detection of MPM. Future studies
should validate these findings in a separate cohort of patients and investigate the possible
impact of MPM subtypes on biomarker selection, as well as the implementation of machine
learning in the mass spectrometry-based diagnosis of MPM.
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