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Simple Summary: The objective response rate of lenvatinib combined with transarterial chemoem-
bolization for unresectable hepatocellular carcinoma is unsatisfactory. We aimed to develop predictive
models using demographic characteristics, pre-treatment serum biomarkers and tumor characteristics
of unresectable hepatocellular carcinoma patients by five machine learning algorithms to predict
the response under combined treatments. We identified the 10 most important predictors, including
K, low-density lipoprotein, D-dimer, red blood cell, alanine aminotransferase, albumin, monocyte,
tumor size, triglyceride, and age. In addition, we applied the Shapley Additive exPlanation to explain
the best-performing random forest predictive model to provide a reasonable explanation of the
efficacy prediction at an individualized level. The combination of machine learning and Shapley
Additive exPlanation can provide valuable suggestions for clinical decision making.

Abstract: Background: Lenvatinib and transarterial chemoembolization (TACE) are first-line treat-
ments for unresectable hepatocellular carcinoma (HCC), but the objective response rate (ORR) is not
satisfactory. We aimed to predict the response to lenvatinib combined with TACE before treatment
for unresectable HCC using machine learning (ML) algorithms based on clinical data. Methods:
Patients with unresectable HCC receiving the combination therapy of lenvatinib combined with
TACE from two medical centers were retrospectively collected from January 2020 to December 2021.
The response to the combination therapy was evaluated over the following 4–12 weeks. Five types
of ML algorithms were applied to develop the predictive models, including classification and re-
gression tree (CART), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), random
forest (RF), and support vector machine (SVM). The performance of the models was assessed by the
receiver operating characteristic (ROC) curve and area under the receiver operating characteristic
curve (AUC). The Shapley Additive exPlanation (SHAP) method was applied to explain the model.
Results: A total of 125 unresectable HCC patients were included in the analysis after the inclusion
and exclusion criteria, among which 42 (33.6%) patients showed progression disease (PD), 49 (39.2%)
showed stable disease (SD), and 34 (27.2%) achieved partial response (PR). The nonresponse group
(PD + SD) included 91 patients, while the response group (PR) included 34 patients. The top 40 most
important features from all 64 clinical features were selected using the recursive feature elimination
(RFE) algorithm to develop the predictive models. The predictive power was satisfactory, with AUCs
of 0.74 to 0.91. The SVM model and RF model showed the highest accuracy (86.5%), and the RF model
showed the largest AUC (0.91, 95% confidence interval (CI): 0.61–0.95). The SHAP summary plot and
decision plot illustrated the impact of the top 40 features on the efficacy of the combination therapy,
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and the SHAP force plot successfully predicted the efficacy at the individualized level. Conclusions:
A new predictive model based on clinical data was developed using ML algorithms, which showed
favorable performance in predicting the response to lenvatinib combined with TACE for unresectable
HCC. Combining ML with SHAP could provide an explicit explanation of the efficacy prediction.

Keywords: machine learning; lenvatinib; transarterial chemoembolization; hepatocellular carcinoma;
Shapley Additive exPlanation; treatment response

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most fatal malignancies and the pre-
dominant type of primary liver cancer (PLC), accounting for approximately 90% of PLC
cases [1,2]. Currently, the incidence and disease burden of HCC are increasing annually,
with roughly 850,000 new cases and 810,000 deaths occurring per year [3]. HCC patients
have no significant symptoms at the early stage and are generally diagnosed at an ad-
vanced stage, leading to a loss of curative surgical treatment [4]. Patients with unresectable
HCC have poor prognosis with limited effective treatment options [5]. Due to the limited
treatment options for unresectable HCC patients, systemic therapies such as molecular
target agents have become the primary treatment choices [5,6].

As a small molecule, multitarget, multireceptor tyrosine kinase inhibitor (TKI), lenva-
tinib has become a first-line therapy for HCC [7,8]. The previous randomized phase 3 trial
by Masatoshi et al. confirmed that lenvatinib showed a higher objective response rate
(ORR) and longer median overall survival (OS) and median progression-free survival (PFS)
compared with sorafenib [9]. Similarly, transarterial chemoembolization (TACE) is another
first-line treatment for intermediate stage and advanced HCC as well [10]. TACE could
trigger tumor ischemic necrosis by infusing cytotoxic chemotherapeutic agents and deliver-
ing embolic components to the tumor artery [11]. However, TACE could potentially expose
the tumor to a hypoxic state and induce the upregulation of vascular endothelial growth
factor (VEGF) and fibroblast growth factor (FGF), resulting in tumor revascularization [10].
Lenvatinib appears to be capable of inhibiting the revascularization caused by TACE, which
targets VEGFR1-3 and FGFR1-4 [12,13]. Lenvatinib combined with TACE has shown a
superior efficacy to sorafenib combined with TACE treatment, with a similar treatment
safety [14]. However, the heterogeneity and chemoresistance of HCC prevent patients from
significantly responding to lenvatinib combined with TACE, leading to an unsatisfactory
ORR. Therefore, it is particularly critical to define the accurate predictive factors for the
response to lenvatinib combined with TACE prior to treatment.

As an integral part of artificial intelligence (AI), machine learning (ML) can identify
trends and patterns by inputting and processing data, setting up different algorithms, and
applying computer analysis [15]. ML provides significant advantages over traditional
statistical methods for the analysis and evaluation of medical data and big data [16]. ML
applications can encompass multiple fields in medical research, including distinguish-
ing benign and malignant tumors, identifying potential biomarkers, screening patients,
and disease prediction and diagnosis [17]. In particular, the prediction and diagnosis of
diseases can be improved significantly by establishing and developing models with ML al-
gorithms [18]. Since human diseases are commonly accompanied by complicated dynamic
changes during progression that are virtually impossible to identify artificially, ML methods
have been widely used in the diagnosis, treatment, and prognosis of various diseases [19].

There have been rare studies focusing on predicting the response of patients with
unresectable HCC to lenvatinib combined with TACE using ML algorithms. Therefore, this
study aimed to predict the efficacy of combination therapy for patients with unresectable
HCC using ML algorithms based on clinical data.
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2. Materials and Methods
2.1. Study Population

This study was conducted based on a real-world cohort of consecutive patients treated
with lenvatinib combined with TACE from two medical centers (the First Affiliated Hospi-
tal of Wenzhou Medical University and the First Affiliated Hospital of Zhejiang Chinese
Medical University). A total of 453 patients with unresectable HCC were retrospectively
registered from January 2020 to December 2021. HCC was diagnosed radiologically or his-
tologically following the Asian Pacific Association for the Study of the Liver (APSAL) [20].
The inclusion criteria were as follows: (1) HCC diagnosed by radiology or histology;
(2) receiving lenvatinib combined with TACE treatment; (3) age > 18 years; (4) Eastern
Cooperative Oncology Group performance status (ECOG-PS) grade 0–1; (5) Child–Pugh
score ≤ 7. The exclusion criteria were as follows: (1) with other malignancies; (2) receiving
other antitumor treatments; (3) unable to estimate lenvatinib combined with TACE treat-
ment efficacy; (4) lost to follow-up; (5) incomplete clinical data. To avoid the bias between
the data from the two medical centers, we performed a principal component analysis
(PCA) on all 64 standardized clinical features to explore the bias. The study was conducted
according to the ethical principles of the Declaration of Helsinki and was approved by the
Ethics Committee of the local institutional review boards (KY2022-R095). Written informed
consent was obtained from each patient at the first time of admission to hospital.

2.2. Treatment Protocol and Response Evaluation

Lenvatinib was orally administered within 7 days before or after the TACE therapy [21].
According to the guidelines, the dose of lenvatinib was 12 mg/d for patients weighing
≥60 kg or 8 mg/d for patients weighing <60 kg [8]. Lenvatinib combined with TACE
therapy was discontinued when unacceptable adverse events or significant disease progres-
sion were observed, or the patient withdrew consent. The tumor response was assessed
by experienced hepatobiliary surgeons C. G. (15 years of clinical experience) and Y. Z. P.
(35 years of clinical experience) with radiological methods with reference to the modified
RECIST (mRECIST) criteria within 4–12 weeks after combination therapy [22]. The tumor
response included the following 4 categories: (1) complete response (CR)—disappearance
of intratumoral arterial enhancement in typical target lesions and disappearance of atypical
intrahepatic and extrahepatic target; (2) partial response (PR)—the sum of the diameters of
the target lesions (including viable tumor diameters for typical intrahepatic target lesions
and short axis diameters for nodal lesions) was reduced by at least 30%, referenced to the
sum of the longest diameters at baseline; (3) progressive disease (PD)—the sum of the
diameters of the target lesions (including viable tumor diameters for typical intrahepatic
target lesions and short axis diameters for nodal lesions) was increased by at least 20%
AND at least 5 mm, referenced to the nadir sum of the diameters at baseline; (4) stable
disease (SD)—neither sufficient reduction to achieve PR nor sufficient increase to advance
to PD. The objective response rate (ORR) and disease control rate (DCR) were significant
indicators showing the antitumor effect of the combination therapy. ORR was defined
as the proportion of patients showing CR and PR. DCR was defined as the proportion of
patients showing CR, PR, and SD.

2.3. Data Acquisition, Preprocessing, and Feature Extraction

We combined the patients showing PD and SD into a nonresponse group (n = 91),
and the patients achieving PR were listed as a response group (n = 34). We collected
64 clinical features in total, including demographic characteristics (age, gender, body mass
index (BMI), smoking history, drinking history, hepatitis B virus (HBV) infection, hepatitis
C virus (HCV), hypertensive history, diabetes history, heart disease history, nonalcohol
fatty liver disease (NAFLD) history, and cirrhosis history), pretreatment serum biomarkers,
and tumor characteristics from patients with unresectable HCC. We standardized the
continuous variables to eliminate the influence of the distance between the sample data.
The standardized data were calculated by subtracting the mean from the original data and
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dividing by the standard deviation. A random forest (RF) model was developed based on
all 64 clinical features and selected top 40 features during the iterative process by recursive
feature elimination (RFE). RFE is a wrapped feature selection algorithm, essentially a greedy
algorithm intended to select the feature subset with the best performance. In the end, we
developed the predictive model with the selected 40 features.

2.4. Machine Learning Approach

We aimed to predict whether patients with unresectable HCC would have a response
to lenvatinib combined with TACE using ML algorithms. The predicted outcomes were
binary classes: nonresponse and response. The clinical data were randomly split, with
70% as the training set and 30% as the testing set. The training set was used for data
fitting, hyperparameter determination, and prediction models development, while the
testing set was used to evaluate the performance of the prediction models. We applied
the synthetic minority oversampling technique (SMOTE) algorithm for the sampling to
overcome the imbalance of the samples in the training set [23]. We utilized the following five
supervised ML algorithms to develop the predictive models: classification and regression
tree (CART), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), RF, and
support vector machine (SVM). The hyperparameters were selected in each ML model by
three repetitions of 10-fold cross-validation, and a grid search was applied to determine
the hyperparameters yielding the best model performance. We evaluated the predictive
performance of each ML model by plotting and comparing the area under the receiver
operating characteristic curve (AUC) and calculated the accuracy, precision, recall, F1-score,
sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV),
and Matthews correlation coefficient (MCC) from the confusion matrix of the testing set.
In addition, we performed unsupervised clustering of the included 125 patients with
unresectable HCC by the K-means algorithm and visualized the clustering results after the
dimensionality reduction using t-distributed stochastic neighbor embedding (t-SNE). To
make the black-box effects of the ML models explainable, we further used Shapley Additive
exPlanation (SHAP) values based on cooperative game theory to elaborate the global
model structure by multiple local explanations [24]. All ML analyses were performed using
Python (version 3.10.5) in the Microsoft VS Code (version 1.69.0) development environment,
with Scikit-learn (version 1.1.1), xgboost (version 1.6.1), NumPy (version 1.22.4), pandas
(version 1.4.3), matplotlib (version 3.5.2), and shap (version 0.41.0) modules, etc.

2.5. Statistical Analysis

The continuous variables were described as the mean ± standard deviation (SD)
or median (interquartile range, (IQR)) based on the data distribution, and the Student’s
t-test or Mann–Whitney U test were further applied to compare the differences between
the training and testing sets. The categorical variables were described as the frequencies
(percentages) and analyzed using the chi-square test or Fisher exact test. p-Value < 0.05
was considered statistically significant. All statistical analyses were conducted using the R
program (R Foundation for Statistical Computing, version 4.2.1).

3. Results
3.1. Patient Characteristics and Treatment Response

A flow chart of the study was shown in Figure 1.
We retrospectively collected data from 125 patients with unresectable HCC from January 2020

to December 2021. Among the 125 patients treated with lenvatinib combined with TACE, 42
(33.6%) patients showed PD, 49 (39.2%) showed SD, and 34 (27.2%) achieved PR. The ORR and
DCR were 27.2% and 66.4%, respectively. We randomly divided the patients into a training set
(n = 88) and testing set (n = 37) according to a ratio of 7:3 and compared all the features between
the two groups. The demographic characteristics, pretreatment serum biomarkers, and tumor
characteristics are shown in Table 1. The detailed raw data of 125 unresectable HCC patients were
available in the Supplementary File S1.
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Table 1. Demographic characteristics, pretreatment serum biomarkers, and tumor characteristics of
the training set and testing set.

All Patients (n = 125) Training Set (n = 88) Testing Set (n = 37) p-Value

Demographic Characteristics
Age, median (IQR), y 58.0 (47.0, 68.0) 58.0 (46.3, 69.0) 59.0 (47.5, 67.5) 0.963
Gender 0.890

Male, n (%) 109 (87.2) 77 (87.5) 32 (86.5)
Female, n (%) 16 (12.8) 11 (12.5) 5 (13.5)

BMI, mean ± SD, kg/m2 22.0 ± 2.8 22.1 ± 2.6 21.8 ± 3.1 0.577
Smoking History 0.858

Yes, n (%) 42 (33.6) 30 (34.1) 12 (32.4)
No, n (%) 83 (66.4) 58 (65.9) 25 (67.6)

Drinking History 0.689
Yes, n (%) 44 (35.2) 30 (34.1) 14 (37.8)
No, n (%) 81 (64.8) 58 (65.9) 23 (62.2)

HBV Infection History 0.239
Yes, n (%) 78 (62.4) 52 (59.1) 26 (70.1)
No, n (%) 47 (37.6) 36 (40.9) 11 (29.9)

HCV Infection History
Yes, n (%) 0 (0.0) 0 (0.0) 0 (0.0)
No, n (%) 125 (100.0) 88 (100.0) 37 (100.0)

Hypertensive History 0.683
Yes, n (%) 37 (29.6) 27 (30.7) 10 (27.0)
No, n (%) 88 (70.4) 61 (69.3) 27 (73.0)

Diabetes History 0.351
Yes, n (%) 18 (14.4) 11 (12.5) 7 (18.9)
No, n (%) 107 (85.6) 77 (87.5) 30 (81.1)

Heart Disease history 0.613
Yes, n (%) 2 (1.6) 2 (2.3) 0 (0.0)
No, n (%) 123 (98.4) 86 (97.7) 37 (100.0)

NAFLD History
Yes, n (%) 0 (0.0) 0 (0.0) 0 (0.0)
No, n (%) 125 (100.0) 88 (100.0) 37 (100.0)

Cirrhosis, n (%) 0.623
Yes, n (%) 105 (84.0) 73 (83.0) 32 (86.5)
No, n (%) 20 (16.0) 15 (17.0) 5 (13.5)
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Table 1. Cont.

All Patients (n = 125) Training Set (n = 88) Testing Set (n = 37) p-Value

ECOG-PS 0.547
Grade 0, n (%) 66 (52.8) 48 (54.5) 18 (48.6)
Grade 1, n (%) 59 (47.2) 40 (45.5) 19 (51.4)

Pretreatment Serum Biomarkers
RBC, median (IQR), 1012/L 4.1 (3.7, 4.5) 4.2 (3.7, 4.5) 3.9 (3.5, 4.3) 0.048
WBC, median (IQR), 109/L 6.3 (4.9, 8.0) 6.2 (5.1, 8.0) 6.5 (4.6, 7.9) 0.867
Neut, median (IQR), 109/L 4.1 (2.9, 6.0) 4.2 (3.0, 5.9) 3.8 (2.4, 6.1) 0.400
Mono, median (IQR), 109/L 0.6 (0.4, 0.8) 0.6 (0.3, 0.8) 0.6 (0.4, 0.9) 0.273
Lymph, median (IQR), 109/L 1.1 (0.8,1.7) 1.1 (0.8, 1.6) 1.2 (0.8, 1.8) 0.253
Hb, mean ± SD, g/L 123.0 ± 22.7 124.3 ± 22.7 119.9 ± 22.4 0.322
PLT, median (IQR), 109/L 167.0 (112.5, 252.0) 160.0 (109.3, 245.0) 180.0 (127.5, 271.5) 0.184
PLR, median (IQR) 138.3 (101.4, 219.3) 136.2 (96.4, 230.7) 140.4 (108.3, 214.2) 0.735
NLR, median (IQR) 3.7 (1.9, 5.9) 4.3 (2.0, 6.4) 3.0 (1.9, 4.2) 0.136
LMR, median (IQR) 2.0 (1.3, 3.6) 2.0 (1.3, 3.8) 1.8 (1.3, 3.5) 0.756
PT, median (IQR), s 14.5 (13.6, 15.5) 14.4 (13.5, 15.4) 14.7 (14.1, 16.1) 0.101
FIB, median (IQR), g/L 3.8 (2.9, 5.2) 3.8 (2.9, 5.2) 4.1 (3.0, 5.3) 0.766
APTT, median (IQR), s 39.3 (36.3, 44.0) 38.6 (36.2, 41.9) 41.7 (36.9, 48.5) 0.040
TT, median (IQR), s 17.3 (16.2, 18.4) 17.4 (16.2, 18.4) 16.9 (15.8, 18.5) 0.381
INR, median (IQR) 1.1 (1.0, 1.2) 1.1 (1.0, 1.2) 1.1 (1.1, 1.2) 0.101
D-D, median (IQR), mg/L 1.5 (0.7, 3.2) 1.3 (0.6, 3.2) 2.1 (0.8, 4.4) 0.072
AFP, median (IQR), ng/mL 161.4 (5.5, 3326.5) 113.2 (4.3, 2991.3) 277.7 (17.0, 3575.5) 0.318
CEA, median (IQR), µg/L 2.4 (1.6, 3.6) 2.4 (1.4,3.4) 2.6 (2.3, 4.1) 0.056
CA19-9, median (IQR), U/mL 19.9 (10.5, 41.9) 19.9 (9.7, 39.9) 19.9 (13.0, 32.0) 0.083
T-BIL, median (IQR), µmol/L 17.0 (11.5, 25.5) 15.5 (11.0,25.0) 19.0 (13.0, 32.0) 0.191
D-BIL, median (IQR), µmol/L 8.0 (5.5, 13.0) 7.0 (5.0, 12.0) 10.0 (6.0, 16.0) 0.029
I-BIL, median (IQR), µmol/L 8.0 (6.0, 12.0) 8.0 (6.0, 12.0) 8.0 (6.0, 12.5) 0.766
TP, mean ± SD, g/L 69.9 ± 8.4 69.4 ± 8.2 71.1 ± 8.6 0.300
ALB, median (IQR), g/L 34.6 (31.9, 37.6) 34.6 (32.1, 38.9) 34.7 (29.7, 36.3) 0.188
GLOB, median (IQR), g/L 34.1 (29.4, 38.7) 33.4 (29.4, 37.5) 36.8 (29.3, 42.8) 0.045
A/G, mean ± SD 1.0 ± 0.3 1.1 ± 0.3 1.0 ± 0.2 0.011
ALT, median (IQR), U/L 39.0 (25.0, 68.0) 38.5 (24.3, 63.5) 40.0 (27.0, 68.5) 0.918
AST, median (IQR), U/L 57.0 (39.0, 93.0) 56.0 (35.5, 90.5) 59.0 (41.5, 97.5) 0.496
ALP, median (IQR), U/L 182.0 (115.0, 233.5) 165.5 (112.5, 210.0) 210.0 (124.0, 272.0) 0.068
γ-GTP, median (IQR), U/L 182.0 (74.5, 257.5) 163.0 (61.3,247.5) 193.0 (103.5, 315.0) 0.232
BUN, median (IQR), mmol/L 5.1 (3.8, 6.4) 5.2 (3.8, 6.5) 5.0 (3.8, 5.8) 0.465
SCr, median (IQR), µmol/L 68.0 (56.5, 78.0) 67.0 (57.0, 80.3) 69.0 (55.0, 77.5) 0.762
K, mean ± SD, mmol/L 3.9 ± 0.5 3.8 ± 0.5 4.0 ± 0.4 0.154
Na, median (IQR), mmol/L 137.0 (135.0, 139.0) 137.0 (135.0, 139.0) 136.0 (133.5, 138.5) 0.052
Cl, median (IQR), mmol/L 102.0 (99.5, 105.0) 103.0 (100.0, 105.0) 101.0 (99.0, 104.0) 0.066
TC, median (IQR), mmol/L 4.3 (3.4, 5.0) 4.3 (3.5, 5.0) 4.2 (3.3, 5.0) 0.869
TG, median (IQR), mmol/L 1.0 (0.7, 1.2) 1.0 (0.7, 1.2) 0.9 (0.8, 1.4) 0.534
HDL, mean ± SD, mmol/L 0.9 ± 0.3 0.9 ± 0.3 0.8 ± 0.3 0.105
LDL, median (IQR), mmol/L 2.5 (1.9,3.2) 2.5 (1.8, 3.2) 2.4 (1.9, 3.2) 0.920

Tumor Characteristics
ALBI Score, mean ± SD −2.1 ± 0.5 −2.2 ± 0.5 −2.0 ± 0.4 0.053
Child–Pugh Score 0.493

A (5–6 scores), n (%) 80 (64.0) 58 (65.9) 22 (59.5)
B (7 scores), n (%) 45 (36.0) 30 (34.1) 15 (40.5)

T Stage 0.415
T1a, n (%) 4 (3.2) 4 (4.5) 0 (0.0)
T1b, n (%) 10 (8.0) 7 (8.0) 3 (8.1)
T2, n (%) 28 (22.4) 19 (21.6) 9 (24.3)
T3, n (%) 40 (32.0) 31 (35.2) 9 (24.3)
T4, n (%) 43 (34.4) 27 (30.7) 16 (43.3)

N Stage 0.842
N0, n (%) 76 (60.8) 54 (61.4) 22 (59.5)
N1, n (%) 49 (39.2) 34 (38.6) 15 (40.5)
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Table 1. Cont.

All Patients (n = 125) Training Set (n = 88) Testing Set (n = 37) p-Value

M Stage 0.351
M0, n (%) 107 (85.6) 77 (87.5) 30 (81.1)
M1, n (%) 18 (14.4) 11 (12.5) 7 (18.9)

TNM Stage 0.467
IA, n (%) 2 (1.6) 2 (2.3) 0 (0.0)
IB, n (%) 9 (7.2) 7 (8.0) 2 (5.4)
II, n (%) 17 (13.6) 9 (10.2) 8 (21.6)
IIIA, n (%) 21 16.8) 17 (19.3) 4 (10.8)
IIIB, n (%) 13 (10.4) 9 (10.2) 4 (10.8)
IVA, n (%) 45 (36.0) 33 (37.5) 12 (32.4)
IVB, n (%) 18 (14.4) 11 (12.5) 7 (18.9)

BCLC Stage 0.584
A, n (%) 12 (9.6) 10 (11.4) 2 (5.4)
B, n (%) 38 (30.4) 26 (29.5) 12 (32.4)
C, n (%) 75 (60.0) 52 (59.1) 23 (62.2)

Tumor Size, median (IQR), mm 6.9 (3.1, 11.1) 6.7 (2.9, 11.2) 7.0 (3.7, 9.9) 0.920
Tumor Number 0.361

Solitary, n (%) 23 (18.4) 18 (20.5) 5 (13.5)
Multiple, n (%) 102 (81.6) 70 (79.5) 32 (86.5)

Vascular Invasion, n (%) 0.177
Yes, n (%) 43 (34.4) 27 (30.7) 16 (43.2)
No, n (%) 82 (65.6) 61 (69.3) 21 (56.8)

Lymphatic Metastasis, n (%) 0.523
Yes, n (%) 52 (41.6) 35 (39.8) 17 (45.9)
No, n (%) 73 (58.4) 53 (60.2) 20 (54.1)

Distant Metastasis, n (%) 0.351
Yes, n (%) 18 (14.4) 11 (12.5) 7 (18.9)
No, n (%) 107 (85.6) 77 (87.5) 30 (81.1)

BMI, body mass index; HBV, hepatitis B virus; HCV, hepatitis C virus; NAFLD, nonalcohol fatty liver disease;
ECOG-PS, Eastern Cooperative Oncology Group performance status; RBC, red blood cell; WBC, white blood cell;
Neut, neutrophil; Mono, monocyte; Lymph, lymphocyte; Hb, hemoglobin; PLT, platelet; PLR, platelet lymphocyte
ratio; NLR, neutrophil lymphocyte ratio; LMR, lymphocyte monocyte ratio; PT, prothrombin time; FIB, fibrinogen;
APTT, activated partial thromboplastin time; TT, thrombin time; INR, international normalized ratio; D-D,
d-dimer; AFP, alpha fetoprotein; CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9; T-BIL, total
bilirubin; D-BIL, direct bilirubin; I-BIL, indirect bilirubin; TP, total protein; ALB, albumin; GLOB, globulin; A/G,
albumin/globulin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, alkaline phosphatase;
γ-GTP, γ-glutamyl transpeptidase; BUN, blood urea nitrogen; Scr, serum creatinine; TC, total cholesterol; TG,
triglyceride; HDL, high-density lipoprotein; LDL, low-density lipoprotein; ALBI, albumin–bilirubin; TNM, tumor
node metastasis; BCLC, Barcelona Clinic Liver Cancer.

The median age for the training set and testing set was 58.0 (IQR, 46.3–69.0) and 59.0
(IQR, 47.5–67.5) years, respectively. The red blood cell (RBC, p = 0.048), activated partial
thromboplastin time (APTT, p = 0.040), direct bilirubin (D-BIL, p = 0.029), globulin (GLOB,
p = 0.045), albumin/globulin (A/G, p = 0.011) showed statistical significance between the
training and testing sets. Other features did not show statistical significance. Detailed
information for the nonresponse group (PD + SD) and response group (PR) was listed in the
Supplementary File S2 (Table S1). The PCA showed no significant bias between the data
from the two medical centers (R = 0.0060, p = 0.461) in Supplementary File S2 (Figure S1).

3.2. Predictive Performance of the Machine Learning

We developed models based on the extracted 40 features with five types of ML clas-
sification algorithms, aiming to predict the efficacy of lenvatinib combined with TACE
in unresectable HCC. The predictive performance matrix based on the testing set of the
five models are shown in Table 2. The best hyperparameters and confusion matrix for
five machine learning algorithms were listed in the Supplementary File S2 (Table S2) and
Supplementary File S2 (Table S3), respectively.
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Table 2. Predictive performance matrix of five machine learning models.

Classifier Accuracy Precision Recall F1-Score Sensitivity Specificity PPV NPV MCC AUC (95% CI)

CART 78.4% 54.5% 66.7% 60.0% 66.7% 82.1% 54.5% 88.5% 0.46 0.74 (0.57–0.92)
Adaboost 78.4% 54.5% 66.7% 60.0% 66.7% 82.1% 54.5% 88.9% 0.46 0.80 (0.59–0.93)
XGBoost 81.1% 60.0% 66.7% 63.2% 66.7% 85.7% 60.0% 88.9% 0.51 0.80 (0.60–0.94)

SVM 86.5% 75.0% 66.7% 70.6% 66.7% 92.9% 75.0% 89.7% 0.62 0.86 (0.63–0.96)
RF 86.5% 75.0% 66.7% 70.6% 66.7% 92.9% 75.0% 89.7% 0.62 0.91 (0.61–0.95)

CART, classification and regression tree; AdaBoost, adaptive boosting; XGBoost, extreme gradient boosting; SVM,
support vector machine; RF, random forest; PPV, positive predictive value; NPV, negative predictive value; MCC,
Matthews correlation coefficient; AUC, area under curve; CI, confidence interval.

All of the ML models showed a moderate-to-excellent predictive performance (the
AUCs ranged from 0.74 to 0.91). The SVM model and RF model showed the highest predic-
tion accuracy (86.5%). All of the models were excellent in predicting the nonresponders to
combined therapy in this study, as shown by the PPV and NPV. The AdaBoost, XGBoost,
and CART predicted more false-positive patients, resulting in lower accuracy and precision.
The AUCs based on the testing set of the five ML algorithms are shown in Figure 2.
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Figure 2. ROC curves for differentiating nonresponse and response using the machine learning algorithms.
ROC, receiver operating characteristic; CART, classification and regression tree; AdaBoost, adaptive
boosting; XGBoost, extreme gradient boosting; SVM, support vector machine; RF, random forest.

The RF algorithm revealed the largest AUC (0.91), and the AUCs of the SVM, XGBoost,
AdaBoost, and CART were 0.86, 0.80, 0.80, and 0.74, respectively. Then, we ranked the relative
importance of the 40 features (Figure 3A) and identified the 10 most important predictors,
including K, low-density lipoprotein (LDL), D-dimer (D-D), RBC, alanine aminotransferase
(ALT), albumin (ALB), monocyte (Mono), tumor size, triglyceride (TG), and age. The box
plots of the 10 predictor distributions between the nonresponse group and response group are
shown in Figure 3B. The results before and after the unsupervised clustering of 125 patients
with unresectable HCC are shown in the Supplementary File S1 (Figure S2).
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Figure 3. Importance matrix plot of the RF, AdaBoost, and XGBoost models. (A) Relative importance
of the variables for segregation of the nonresponse group and response group calculated in the RF,
AdaBoost, and XGBoost models. The variable importance is represented as a percentage of the highest
value. (B) Box and jitter plots representing the distribution of the top 10 important features for distin-
guishing nonresponse and response. LDL, low-density lipoprotein; D-D, d-dimer; RBC, red blood cell;
ALT, alanine aminotransferase; ALB, albumin; Mono, monocyte; TG, triglyceride; LMR, lymphocyte
monocyte ratio; BMI, body mass index; TC, total cholesterol; APTT, activated partial thromboplastin
time; INR, international normalized ratio; PT, prothrombin time; I-BIL, indirect bilirubin; ALBI, albumin–
bilirubin; T-BIL, total bilirubin; AST, aspartate aminotransferase; CEA, car-cinoembryonic antigen; Hb,
hemoglobin; A/G, albumin/globulin; GLOB, globulin; FIB, fibrinogen; PLT, platelet; γ-GTP, γ-glutamyl
transpeptidase; HDL, high-density lipoprotein; AFP, alpha fetoprotein; TP, total protein; NLR, neutrophil
lymphocyte ratio; Lymph, lymphocyte; BUN, blood urea nitrogen; PLR, platelet lymphocyte ratio;
CA19-9, carbohydrate antigen 19-9; Scr, serum creatinine; Neut, neutrophil; ALP, alkaline phosphatase;
WBC, white blood cell; NR, nonresponse; R, response.

3.3. Explainability of the Machine Learning Models

To comprehensively explain the ML models, we used SHAP values to explain how the
features affect the efficacy of lenvatinib combined with TACE. Since the SHAP algorithm
could be applied to the tree-based algorithm for explanation but not for the SVM algorithm,
we selected the RF model, which showed an excellent performance (AUC = 0.91), to calcu-
late the SHAP values and draw a SHAP summary plot of the top 40 features (Figure 4A).
Each given patient in the training set was represented by a single point for each feature on
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the plot. The x-axis coordinate of each point was determined by the SHAP value, and the
points were stacked along each feature to show the density. The features were ordered by
the mean absolute value of the SHAP values for each feature. The color was used to show
the original value of a feature; red and blue indicated high and low probability values,
respectively. For example, a lower serum K, higher ALT, older age, and larger tumor size
and BMI suggested a higher probability of response to lenvatinib combined with TACE.
The SHAP decision plot provided a detailed view of the inner workings of the RF model
(Figure 4B). The gray, vertical line in the decision plot represents the base value of the
model, while each colored line represented the prediction for each patient in the training
set. Each prediction line showed how the SHAP values were accumulated from the base
values at the bottom of the plot to the top of the plot to obtain the final score. The red
line indicated a higher probability of response to lenvatinib combined with TACE, while
the blue line indicated a lower probability. The SHAP decision plot provided a global
explanation of the internal framework for the RF model. We then randomly selected one
patient who had a response to lenvatinib combined with TACE (Figure 4C) and one patient
who did not have a response (Figure 4D) in the testing set to illustrate the explainability of
the model using a SHAP force plot. The arrows represented the effect of each feature on the
predicted result, with the red arrows indicating an increased probability of response to the
combined treatment and the blue arrows indicating a decreased probability. The predicted
values were 0.88 for the first patient and 0.18 for the second patient after integrating the
effects for each feature, which were in accordance with the true situation.
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Figure 4. SHAP plot of the RF model: (A) SHAP summary plot of the top 40 features of the RF model;
(B) SHAP decision plot of the top 40 features of the RF model; (C) SHAP force plot for the explanation
of the model prediction results with a response sample from the testing set; (D) SHAP force plot for
the explanation of the model prediction results with a nonresponse sample from the testing set. LDL,
low-density lipoprotein; ALT, alanine aminotransferase; RBC, red blood cell; D-D, d-dimer; ALB, albumin;
TC, total cholesterol; TG, triglyceride; Mono, monocyte; LMR, lymphocyte monocyte ratio; BMI, body mass
index; I-BIL, indirect bilirubin; AST, aspartate aminotransferase; APTT, activated partial thromboplastin
time; INR, international normalized ratio; PT, prothrombin time; ALBI, albumin–bilirubin; T-BIL, total
bilirubin; CEA, carcinoembryonic antigen; Hb, hemoglobin; A/G, albumin/globulin; GLOB, globulin;
FIB, fibrinogen; HDL, high-density lipoprotein; γ-GTP, γ-glutamyl transpeptidase; PLT, platelet; TP, total
protein; NLR, neutrophil lymphocyte ratio; AFP, alpha fetoprotein; Lymph, lymphocyte; BUN, blood
urea nitrogen; PLR, platelet lymphocyte ratio; Neut, neutrophil; CA19-9, carbohydrate antigen 19-9; ALP,
alkaline phosphatase; Scr, serum creatinine; WBC, white blood cell; SHAP, Shapley Additive exPlanation.

4. Discussion

HCC remains a serious challenge around the world, with a predicted case number of
over one million by 2025, which is the third leading cause of cancer-related deaths [25]. ML
has been shown to be effective in diagnosing and treating liver diseases for the purpose
of precision therapy [26]. We performed a retrospective study based on the real world
data from two hospitals. Then, we constructed a valuable clinical data-based model
using ML methods to predict the response to lenvatinib combined with TACE for patients
with unresectable HCC, which may provide new insights into risk prediction and clinical
decision making.

Previous studies have shown that lenvatinib combined with TACE can significantly
improve the OS and PFS compared with TACE monotherapy for patients with unresectable
HCC [27,28]. Another study based on propensity score matching (PSM) confirmed the
beneficial effect of alternating lenvatinib and TACE therapy compared with lenvatinib
monotherapy on the prognosis of patients with intermediate stage HCC [29]. Similarly,
a recent phase III randomized clinical trial in China demonstrated a longer OS and PFS
and a higher ORR with lenvatinib combined with TACE therapy compared to lenvatinib
monotherapy [30]. However, the chemotherapy resistance, complicated heterogeneity, and
genetic aberrations of unresectable HCC result in a lower ORR and hinder the formulation
of treatment options [31,32]. Identifying new clinical biomarkers is of great significance for
clinical decision making and individual treatment.

Therefore, we conducted this retrospective study to explore the predictors of the
response to lenvatinib combined with TACE using ML algorithms. We constructed five
types of ML models, and all of the models showed excellent predictive performance, with
AUCs of 0.74 to 0.91. The SVM and RF algorithms achieved the highest accuracy rate of
86.5%. The SVM and RF are both highly complicated models, and we could input data
and obtain predictions but have no idea how they worked internally. Although the SVM
showed the best predictive performance, explaining the model through hyperplanes is
not conducive to clinical practice, because the kernel selected for performing the tuning is
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“rbf”, which is a nonlinear kernel, and the model could not provide the weights assigned to
the features. Tree ensemble algorithms could provide the advantage of being more accurate
and stable predictions compared to a single decision tree and the availability of ranking
the importance of features. AdaBoost, XGBoost, and CART predicted more patients who
did not have a response to lenvatinib combined with TACE as having a response in the
testing set, resulting in an increase in false positives. The optimal performing tree ensemble
algorithm in this study was the RF. However, it would be too complicated to apply the
RF model to clinical practice directly. Since the SHAP algorithm could be applied to the
tree-based algorithm for explanation but not to the SVM algorithm. We further calculated
the SHAP values based on the RF model to present global and local explanations of the
efficacy to understand the internal framework.

The association of serum K, age, BMI, and tumor size with the efficacy of lenvatinib
combined with TACE for unresectable HCC has not been clearly evaluated in previous
studies. In this study, the global explanation of the SHAP model demonstrated the trend
that patients with lower serum K, older age, larger BMI, and larger tumor size were more
likely to be responsive to combination therapy. Previous studies have demonstrated that
ALB was associated with the efficacy and prognosis of lenvatinib treatment, which was
considered a predictive marker [10,33]. Similarly, the platelet–lymphocyte ratio (PLR),
neutrophil-to-lymphocyte ratio (NLR), and alpha fetoprotein (AFP) were also related to the
survival of patients with unresectable HCC treated with lenvatinib, which were considered
early predictors of objective response [34–36]. In our study, we obtained a similar result. In
addition, we used the SHAP model to predict patient efficacy at the individualized level by
force plot to support clinical decision making. A comparison of the output value and base
value can be applied to determine whether patients tend to have a response to lenvatinib
combined with TACE therapy.

To our knowledge, this is the first study to predict the efficacy of lenvatinib combined
with TACE therapy for unresectable HCC using ML algorithms and SHAP methods. How-
ever, this study has some limitations. Firstly, the sample size included in the study was
moderate, which is similar to previous studies [10,14]. However, ML algorithms poten-
tially perform better on larger sample size datasets, as well as specializing in detecting
a realistic relationship between features and outcomes. Secondly, there was a lack of an
independent external validation cohort to test the accuracy and robustness of the models.
Thirdly, some concealed relationships between features were likely to be neglected by the
ML algorithms, and other neglected features that are considered clinically unimportant
may be associated with the efficacy of lenvatinib combined with TACE. In addition, we
need to collect multidimensional features for analysis to improve the predictive perfor-
mance, including lifestyle habits, environmental factors, imaging markers, and pathological
examination-related features.

5. Conclusions

A valuable model was developed using ML algorithms based on clinical features to
predict the response to lenvatinib combined with TACE for patients with unresectable HCC.
Combining ML with SHAP can provide a reasonable explanation of the efficacy prediction
at the individualized level, which is important for clinical decision making.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15030625/s1, File S1: The raw data of 125 patients with
unresectable HCC; File S2: Figure S1: PCA plot of the two medical centers based on 64 standardized
clinical features; Figure S2: The scatter plot before (A) and after (B) Kmeans clustering; Table S1:
Demographic characteristics, pre-treatment serum biomarkers and tumor characteristics of non-
response group and response group; Table S2: The best hyperparameters for five machine learning
algorithms; Table S3: The confusion matrix for five machine learning algorithms.
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