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Simple Summary: Differential diagnosis among primary and secondary central nervous system
tumors, the assessment of tumoral therapy response, the correlation between imaging and prognosis,
and biomolecular findings remain the main diagnostic challenges in the neuro-oncology imaging
field. In the literature, novel, sophisticated MRI sequences and applications of artificial intelligence
are frequently researched with this goal in mind; anyway, some of these tools are still not applicable
in clinical practice. On the contrary, Diffusion Weighted Imaging (DWI) is a sequence commonly
used in everyday clinical practice that can give information in terms of tumor grading, differential
diagnosis, molecular profile, and response to therapy.

Abstract: DWI is an imaging technique commonly used for the assessment of acute ischemia, in-
flammatory disorders, and CNS neoplasia. It has several benefits since it is a quick, easily replicable
sequence that is widely used on many standard scanners. In addition to its normal clinical purpose,
DWI offers crucial functional and physiological information regarding brain neoplasia and the sur-
rounding milieu. A narrative review of the literature was conducted based on the PubMed database
with the purpose of investigating the potential role of DWI in the neuro-oncology field. A total of
179 articles were included in the study.
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1. Introduction

Diffusion-weighted imaging (DWI) is a magnetic resonance imaging (MRI) sequence
commonly used in neuroradiology for the assessment of acute ischemia, inflammatory
diseases, and central nervous system (CNS) neoplasia [1–3].

It has several advantages, as it is a fast, easily reproducible, and extensively studied se-
quence in neuro-oncology, and it is widely available on many standard scanners, including
those in non-academic centers [4,5].

In addition to being a simple instrument for everyday use, DWI can also offer func-
tional and ultrastructural data, particularly when discussing tumor cellularity and the
microenvironment through the measurement of water mobility. In fact, it yields an imaging
biomarker for pathological tissue changes like cellularity increase or anomalies in the
extracellular space by the assessment of water mobility [6–8].

Moreover, advanced diffusion-related sequences such as Diffusion Tensor Imaging
(DTI) and Diffusion Kurtosis Imaging (DKI) are even playing a more important role than
DWI in the neuro-oncology field.

Finally, multi-shell diffusion MRI allows for characterizing the water diffusion signal
behavior by analyzing the data using multi-compartment diffusion models such as the
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Neurite Orientation Dispersion and Density Imaging (NODDI) model. Thus, it can provide
a more specific characterization of brain tissue microstructures than conventional single-
shell diffusion tensor imaging.

2. Gliomas and Cellularity

Brain tumors may show various degrees of diffusion changes related to tumor cel-
lularity and the nucleus-cytoplasmic ratio [9]. Water diffusion restriction secondary to
tumor high-cellularity results in low Apparent Diffusion Coefficient (ADC) values, which
are useful for differentiating tumor type and grade [6,10,11]. The minimal ADC value
has been proposed as one of the various parameters to use as a predictive tool in pa-
tients with malignant supratentorial astrocytomas [12–18]. For instance, Moon et al. [12],
Yamasaki et al. [13], and Murakami et al. [14] showed an inverse correlation between the
mean ADC value and tumor grade in astrocytic tumors. Generally, higher-grade tumors
typically have lower ADC values (Figure 1A–H). Due to their variable cellularity and grade,
astrocytomas exhibit heterogeneous diffusion signals, with most cellular areas generally
exhibiting restricted diffusion [9]. For instance, the degree of ADC hypointensity will
often be higher in lymphoma than in glioma or metastases, reflecting the high cellular
density in this neoplasm. The drop in ADC values for non-necrotic high-grade gliomas and
metastases will be higher than for low-grade malignancies. High-grade tumor-associated
edema reduces ADC sensitivity by raising the average ADC intensity [6,7]. ADC values
alone or in combination with other MRI parameters, such as relative cerebral blood volume
(rCBV), derived by dynamic susceptibility contrast-enhanced MR-perfusion (DSC), can
accurately grade gliomas [19]. Indeed, Wang et al. recently reported a high accuracy of
DWI/ADC to distinguish low-grade gliomas (grades I and II) from high-grade ones (grades
III and IV) with an area under the curve (AUC) of 0.91; therefore, with this value being
very high it reflects an excellent diagnostic performance of DWI in this field [9,20].
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Figure 1. Double site of glioma infiltration in the right Rolandic frontal region: (A,B) Both lesions 
present similar hyperintensity on FLAIR images. The most cranial lesion (arrow) showed slight 
post-contrastographic enhancement (D) and restricted water diffusion on DWI (F), characterized by 
slightly low values on ADC map (H); this condition could be linked to an anaplastic aspect of the 
tumor, with restricted diffusion explained by an increase in tumor cellularity. The most caudal le-
sion did not show contrast enhancement, with a marked hypointense signal on post-contrasto-
graphic T1-weighted image (C); the same lesion presented no restricted diffusion with increased 
ADC values (E–G). FLAIR = fluid-attenuated inversion recovery; DWI = diffusion-weighted imag-
ing; ADC: apparent diffusion coefficient. 
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When considering the glial line neoplasm, the 2016 World Health Organization 

(WHO) classification system has defined various groups of diffuse low-grade gliomas 
(LGGs) considering the isocitrate dehydrogenase (IDH) mutation and 1p/19q codeletion 
status [27,28]. The WHO classification of 2021 increased the importance of the molecular 
profile of brain tumors by categorizing adult-type diffuse glioma into three groups: IDH 
mutant with 1p/19q codeletion (Oligodendroglioma/IDH-mut codeleted LGGs), IDH mu-
tant without codeletion (Astrocytoma/IDH-mut non-codeleted), and IDH wild type (Gli-
oblastoma) [29]. The IDH gene plays a crucial role in metabolism, cellularity, and angio-
genesis [30]. Recent research has shown that IDH mutant gliomas exhibit significantly 
greater survival and chemosensitivity than IDH wild-type glioblastomas [31,32]. When 
the IDH gene family is mutated, an oncometabolite called 2-hydroxyglutarate is pro-
duced, which inhibits tumor cell proliferation more than the wild type [33,34]. When com-
pared to astrocytomas, oligodendrogliomas have a superior clinical outcome and treat-
ment response [29,31,35–37]. As IDH mutant inhibitors become commercially available 
and might even be employed as neoadjuvant therapy, imaging biomarkers of IDH muta-
tion would be a useful adjunct tool for clinical decision-making [38]. As a result, numerous 
research studies [33,39–65] investigated the imaging properties and/or high diagnostic 
performance of various MRI sequences for the prediction of IDH mutations in gliomas. 
According to several studies [41,48,56,60,62], IDH mutant glioma consistently displays 
higher mean ADC values on DWI than IDH wild-type glioblastoma [34]. It is still unclear 
how IDH-mutant and IDH wild-type gliomas differ from one another in terms of the ADC 
values; however, it could possibly be primarily related to tumor cellularity but also to the 
presence of cystic components, areas of necrosis, and interstitial water content [17,18,66]. 
While most IDH wild-type gliomas commonly present high-grade features such as 

Figure 1. Double site of glioma infiltration in the right Rolandic frontal region: (A,B) Both lesions
present similar hyperintensity on FLAIR images. The most cranial lesion (arrow) showed slight post-
contrastographic enhancement (D) and restricted water diffusion on DWI (F), characterized by slightly
low values on ADC map (H); this condition could be linked to an anaplastic aspect of the tumor, with
restricted diffusion explained by an increase in tumor cellularity. The most caudal lesion did not show
contrast enhancement, with a marked hypointense signal on post-contrastographic T1-weighted
image (C); the same lesion presented no restricted diffusion with increased ADC values (E–G).
FLAIR = fluid-attenuated inversion recovery; DWI = diffusion-weighted imaging; ADC: apparent
diffusion coefficient.
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In addition to standard DWI acquisition, more advanced models of quantitative DWI,
such as DTI and DKI, have been created. These advanced sequences try to go beyond the
theory that water diffusion occurs without boundaries via a uniform Gaussian distribution;
indeed, it also depends on the configuration of intracellular organelles, cell membranes,
and water compartments in cerebral tissues [6,21,22]. For instance, thanks to DKI, it is
possible to quantify the deviation from a Gaussian distribution to produce a more accurate
model [6,23,24]. The same result was reached by Abdalla et al. in a more recent expanded
and updated meta-analysis, which found that DKI offers good diagnostic accuracy in
differentiating high-grade from low-grade gliomas [6,25].

Finally, intravoxel incoherent motion (IVIM) and neurite orientation and dispersion
imaging (NODDI), which make use of multiband imaging, are two promising advanced
DTI approaches [6,26]. NODDI, in particular, measures the microstructure of dendrites and
axons, revealing neuronal alterations, whereas IVIM may estimate tissue diffusivity and
microcapillary perfusion [6].

3. Gliomas and Molecular Biology

When considering the glial line neoplasm, the 2016 World Health Organization (WHO)
classification system has defined various groups of diffuse low-grade gliomas (LGGs) con-
sidering the isocitrate dehydrogenase (IDH) mutation and 1p/19q codeletion status [27,28].
The WHO classification of 2021 increased the importance of the molecular profile of brain
tumors by categorizing adult-type diffuse glioma into three groups: IDH mutant with
1p/19q codeletion (Oligodendroglioma/IDH-mut codeleted LGGs), IDH mutant without
codeletion (Astrocytoma/IDH-mut non-codeleted), and IDH wild type (Glioblastoma) [29].
The IDH gene plays a crucial role in metabolism, cellularity, and angiogenesis [30]. Recent
research has shown that IDH mutant gliomas exhibit significantly greater survival and
chemosensitivity than IDH wild-type glioblastomas [31,32]. When the IDH gene family
is mutated, an oncometabolite called 2-hydroxyglutarate is produced, which inhibits tu-
mor cell proliferation more than the wild type [33,34]. When compared to astrocytomas,
oligodendrogliomas have a superior clinical outcome and treatment response [29,31,35–37].
As IDH mutant inhibitors become commercially available and might even be employed
as neoadjuvant therapy, imaging biomarkers of IDH mutation would be a useful adjunct
tool for clinical decision-making [38]. As a result, numerous research studies [33,39–65]
investigated the imaging properties and/or high diagnostic performance of various MRI
sequences for the prediction of IDH mutations in gliomas. According to several stud-
ies [41,48,56,60,62], IDH mutant glioma consistently displays higher mean ADC values on
DWI than IDH wild-type glioblastoma [34]. It is still unclear how IDH-mutant and IDH
wild-type gliomas differ from one another in terms of the ADC values; however, it could
possibly be primarily related to tumor cellularity but also to the presence of cystic compo-
nents, areas of necrosis, and interstitial water content [17,18,66]. While most IDH wild-type
gliomas commonly present high-grade features such as necrosis and lower ADC mean
values in solid sections, perhaps indicating more cellularity, most IDH-mutant gliomas
show higher ADC mean values and MR imaging features consistent with a lower-grade
nature [37] (Figure 2A–H). When considering oligodendrogliomas and the relationship be-
tween the 1p/19q codeletion status and ADC levels, the literature has shown contradictory
findings [56,67–69]. According to Jenkinson et al., IDH-mut non-codeleted LGGs had much
higher ADC values than IDH-mut-codeleted LGGs. Compared to IDH-mut non-codelated
LGGs, the IDH-mut codeleted group may have fewer edematous areas and more cellu-
lated areas, which could account for the lower ADC values [29,68]. Other diffusion-based
sequences, such as DTI, DKI, and NODDI, have been successfully tested in predicting
IDH status in gliomas, both with and without the use of artificial intelligence [70,71], with
similar results between DTI and more advanced multi-shell methods [71,72]. Interest-
ingly, mean diffusivity (MD) measures were increased in tumors not usually associated
with high cellularity, probably reflecting changes in the extracellular volume that play
a role in the diffusion signal [71]. Epidermal Growth Factor (EGFR) amplification is a
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molecular biomarker that could allow glioblastoma IDH wild-type designation even in
tumors that appear histologically lower grade [29]. Hence, its prediction through MRI
could be of therapeutic and prognostic use. A recent pilot study found that EGFR-amplified
tumors showed lower mean ADC values compared to EGFR-non-amplified tumors [73].
Future research could focus on other important molecular information in gliomas, such
as CDKN2A/B deletion or combined whole chromosome 7 gain and whole chromosome
10 loss (+7/−10) mutations.
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4. Lymphomas 
One of the uses of DWI on CNS neoplasia imaging is the differential diagnosis be-

tween glioblastoma and primary CNS lymphoma (PCNSL), two entities that may appear 
similar on conventional imaging when considering a patient presenting with an 

Figure 2. (A–D) IDH-1 mutated glioma in the right Sylvian region. The lesion is characterized by a het-
erogenous signal on FLAIR (A), with a small area of nodular enhancement on post-contrastographic
T1 weighted images (arrow) (B); The site of pathological enhancement was in close proximity to an
area of cystic-necrotic degeneration (dotted arrow) (C,D) and showed restricted diffusion on DWI
confirmed by the ADC map (arrow); these findings were consistent with an anaplastic behavior of
the tumor. (E–H) Right temporal lobe glioblastoma. The lesion was predominantly cystic and had
a vivid peripherical post-contrastographic enhancement (F) with a solid component on the lateral
side of the tumor; this region presented restricted diffusion on DWI confirmed by the ADC map
(circle) (G,H), related to an increase in tumor cellularity. FLAIR = fluid-attenuated inversion recovery;
DWI = diffusion-weighted imaging; ADC = apparent diffusion coefficient.

4. Lymphomas

One of the uses of DWI on CNS neoplasia imaging is the differential diagnosis be-
tween glioblastoma and primary CNS lymphoma (PCNSL), two entities that may appear
similar on conventional imaging when considering a patient presenting with an enhancing
brain mass but with a completely different pathogenesis, origin, and treatment [74,75].
PCNSLs are highly cellular tumors with relatively little extracellular space, which limits
the diffusivity of free water. As a result, compared to HGGs and metastases, PCNSLs have
been found to have much lower ADC values (Figure 3A–H). Similar to ADC, PCNSLs have
been found to have lower FA values than high-grade gliomas [4,76–85].
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the same fractional anisotropy [115–117]. As measured by lower ADC values, medullo-
blastomas frequently have lower rates of microscopic water diffusion than other common 
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presence of cells with a high nuclear-to-cytoplasmic ratio and a high degree of cellularity 
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Figure 3. Two different cases of primitive cerebral lymphoma: the upper row showed a lymphoma
in the pericallosal region (A–D) with a marked uniform enhancement on post-contrastographic
T1 weighted image (B) and significant edema in the adjacent brain (A). The lower row showed a
periventricular multicentric lymphoma (E–H) with multiple nodules of marked enhancement on
post-contrast T1 weighted images (arrows) (E,F). Both cases presented restricted water diffusion with
hyperintensity on DWI (arrow in C) and hypointense areas on ADC (arrows respectively in (D,G,H)),
related to increasing tumor cellularity, as occurs typically in lymphomas. DWI = diffusion-weighted
imaging; ADC = apparent diffusion coefficient.

5. Medulloblastomas

Medulloblastomas are highly cellular tumors; consequently, they present a substantial
reduction in water molecule movement, resulting in a high diffusivity restriction on DWI
and ADC images [86–103]. This finding helps in the differential diagnosis of other tumors
typically located in the posterior fossa, such as ependymomas and pilocytic astrocytomas.
Indeed, even if there is still overlap between these tumors [94,96,97,103–106], a high diffu-
sion restriction is more suggestive of medulloblastomas than ependymomas or pilocytic
astrocytomas [86,103,107] (Figure 4A–C). An ADC cut-off between 700 and 900 mm2/s
has been proposed by the literature to distinguish medulloblastomas from pilocytic as-
trocytomas [106,108,109], whereas using a minimum ADC cut-off value of 660 mm2/s
seems to allow for a good distinction with ependymomas [110]. Moreover, according to
the literature, the ratio of ADC within the tumor compared to the grey matter ranges
between 0.70 and 0.88 for the solid component [97,108,111] and 0.97 and 1.28 for the entire
tumor [108,112–114]. Medulloblastomas, ependymomas, and pilocytic astrocytomas share
the same fractional anisotropy [115–117]. As measured by lower ADC values, medulloblas-
tomas frequently have lower rates of microscopic water diffusion than other common
posterior fossa tumors in children [96]. This trait is most likely brought on by the frequent
presence of cells with a high nuclear-to-cytoplasmic ratio and a high degree of cellularity
in medulloblastomas, which results in additional membrane barriers impeding micro-
scopic water diffusion [118]. Another much rarer tumor of the posterior fossa, typically
affecting children, is the atypical teratoid/rhabdoid tumor (ATRT), which histologically
resembles medulloblastoma [119] and exhibits similar DWI characteristics to medulloblas-
toma [86,111]. Finally, the distinction between medulloblastomas and glioblastomas cannot
be made with DWI [86].
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Figure 4. Medulloblastoma in a 30-year-old: (A,C) lesion of the posterior fossa with growth in the
median line, close to the IV ventricle, characterized by inhomogeneous enhancement (arrow in (A)),
mass effect, and (B) low ADC values (arrow). Using ADC values and a specific cut-off, it could be
possible to distinguish medulloblastoma from ependymoma or pilocytic glioma. ADC = apparent
diffusion coefficient.

According to Ahmed et al.’s study, the ADC ratio (ADC of the tumor divided by the
ADC of the corresponding contralateral normal white matter) was unable to distinguish
between medulloblastoma and ATRT. This could be explained by the fact that medulloblas-
toma and ATRT both have high grades in accordance with the WHO grading system, which
indicates high tumoral cellularity and leads to a low ADC ratio [120].

6. Meningiomas and Vestibular Schwannomas

More than 30% of all brain tumors are meningiomas, which are the most frequent
benign intracranial tumors [1]. Meningiomas are classified with three malignancy grades
(WHO grades 1–3) in the 2016 World Health Organization (WHO) classification of central
nervous system tumors [2] and are considered a single tumor type with 15 subtypes in the
2021 WHO classification. The more aggressive meningiomas are clinically characterized
by more morbidity and mortality and have a higher chance of recurrence [3,4]. Tumor
grading has a significant role in meningioma therapy planning. Adjuvant radiation is
advised for high-grade meningiomas, while surgical excision is seen to be appropriate for
low-grade meningiomas [5,6]. Therefore, accurate preoperative tumor grade prediction for
meningiomas is essential in clinical practice.

Numerous studies have described the correlation between ADC values and the grading
of meningiomas, with debated results. The ability of DWI to classify cellular malignancies
has allowed it to characterize various meningioma subtypes. Except for heavily calcified
or psammomatous meningiomas, atypical or malignant meningiomas have lower ADC
and higher FA values than normal brain parenchyma [121–123] (Figure 5A,B). According
to the WHO 2016 classification, meningiomas are graded based on the mitotic number and
the invasive characteristics. The Ki-67 index is a crucial indicator of cellular proliferation,
and research has shown a relationship between the Ki-67 index and the grading of menin-
giomas [124]. In addition, meningiomas with a higher Ki-67 index have a worse prognosis
and a higher probability of tumor recurrence [125]. Numerous cancers’ microstructural
cellularity was demonstrated to be reflected by ADC values [126]. In fact, some authors
claimed that ADC values could distinguish between low-grade and high-grade menin-
giomas by correlating inversely with the Ki-67 proliferation index [127]. This paper showed
that mean ADC levels in high-grade meningiomas are substantially lower than in low-
grade meningiomas. As a result, ADC may be a practical and non-invasive method for
identifying low-grade and high-grade aggressive meningioma as well as for planning
meningioma treatments, such as the degree of tumor resection, the application of adjuvant
radiation, and the intervals for MRI follow-up [127]. The validation of an ADC threshold,
however, was not observed in an older meta-analysis of 17 trials that were conducted to
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differentiate between benign and high-grade meningiomas [128]. Diffusion MRI was also
used to predict meningioma consistency, with debated results. Although Hoover et al. and
Watanabe et al. did not find any association with tumor consistency [129,130], Yogi et al.
discovered that hard meningiomas had considerably lower minimum ADC values than soft
tumors [131]. Although they lacked histological confirmation, the authors concluded that
tougher lesions are characterized by significant cellularity and fibrous material. Regarding
the use of DTI, Kashimura et al. demonstrated that the FA values for hard meningiomas
were significantly higher than those for soft meningiomas [132,133].

Cancers 2023, 15, x FOR PEER REVIEW 8 of 20 
 

 

 
Figure 5. Aggressive meningioma: (A) atypical or malignant meningiomas (arrow) could have (B) 
lower ADC values than normal brain parenchyma (arrow). ADC = apparent diffusion coefficient. 

7. Metastasis 
Brain metastases are the most frequent central nervous system malignancies, often 

related to lung or breast cancer and less frequently related to cutaneous or intestinal tu-
mors. Hematogenous spread is the most frequent way for cancer cells to move to the cen-
tral nervous system. The spread of metastatic disease within the CNS follows different 
steps: first of all, there is the detachment of neoplastic cells from the primary tumor mass, 
then these cells enter the bloodstream with hematogenous disease dissemination to the 
metastatic site, and finally, there is the extravasation through the vascular wall and peri-
vascular or brain parenchymal proliferation [139,140]. The ADC features of metastatic 
brain lesions and the distinction from primary tumors have only been the subject of a 
small number of studies, which may aid in distinguishing the origin of different brain 
metastases [141]. Restricted diffusion on DWI can be frequently found in intracerebral 
metastases, especially when the tumor is lung or breast cancer. The restriction of diffusion 
within a single brain metastasis may have been caused by an increase in the protein con-
centration in the form of highly viscous mucin [142] (Figure 6A,B). The pathology of me-
tastases can be predicted by DWI signal intensity. On DWI sequences, adenocarcinomas 
(from the lung, ovary, and uterus) tend to be hypointense. Instead, hyperintense signals 
were seen in small- and large-cell neuroendocrine carcinomas [143]. Restricted diffusion 
was also observed in metastatic lesions of breast, colon, lung, and testis carcinomas, ac-
cording to Duygulu et al. [142]. Studies have shown that small cell carcinomas (SCLC) 
tend to have low ADC values when compared to other tumors [144,145]. Other authors 
confirmed these results. Meyer et al. looked at 948 lesions from 159 patients, with malig-
nant melanomas and lung and breast carcinomas being the most common types; due to 
lower values, ADC assessment allowed the differentiation of SCLC metastases from other 
tumors [146]. In another study, Zakaria et al. reported a negative correlation between cel-
lularity and ADC values, with melanoma and SCLC having lower ADC values than me-
tastases from other carcinomas (breast, ovarian, and colorectal malignancies) [147]. The 
genetic assessment of metastatic lesions may have an impact on the signal strength of lung 
cancer brain metastasis on DWI. Indeed, some authors find a significant correlation be-
tween ADC min and ADC ratio values and the presence or absence of EGFR mutations 
and their locations. In particular, low ADC values for lung adenocarcinoma-derived brain 
metastasis are linked to a high likelihood of an EGFR mutation, notably in exons 19 and 

Figure 5. Aggressive meningioma: (A) atypical or malignant meningiomas (arrow) could have
(B) lower ADC values than normal brain parenchyma (arrow). ADC = apparent diffusion coefficient.

Vestibular schwannomas (VSs) are the most common tumors in the cerebellopontine
angle [134]. The therapeutic options for VSs include observation, surgery, and radiation
therapy [135], depending on different variables such as the size at initial diagnosis, the
tumor growth rate on serial imaging, and patient symptoms. Radiation therapy is usually
the better choice for small to medium-sized VSs, with a lower rate of facial nerve palsy and
hearing loss in comparison with surgery [136].

Another important clinical-radiological issue is the early assessment of tumor response
to therapy. Morphologic and volumetric changes represent useful information in response
to treatment. Anyway, it seems that in the acute phase after radiotherapy (from week 2
to week 8), there is an acute response characterized by cell swelling and disruption of
the cytoarchitecture due to radiation that leads to an increase in terms of tumor volume,
making the volumetric measures useless in the early post-radiotherapy assessment [137].
On the other hand, it seems that DWI and DTI could provide functional information about
the response after radiotherapy in VSs, making them useful tools [137].

Indeed, a cut-off of 800 × 10−6 mm2/s for minimum ADC values in VSs has been
proposed to predict tumor response to radiotherapy with 90% accuracy, 77.8% sensitiv-
ity, and 100% specificity. All VSs from non-responders had ADC values greater than
800 × 10−6 mm2/s. No statistically significant correlation with tumor response is evident
when comparing ADC values before and after radiotherapy, perhaps due to tissue damage
and vasogenic edema development [138]. Other authors reported that DTI could detect
functional changes in response to stereotactic radiosurgery that preceded morphological
modifications. Starting from week 12 after treatment, significant changes in VSs were
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evident; a FA reduction and an ADC increase correspond, respectively, to disruption of the
cytoarchitecture and necrosis [137].

7. Metastasis

Brain metastases are the most frequent central nervous system malignancies, often
related to lung or breast cancer and less frequently related to cutaneous or intestinal tumors.
Hematogenous spread is the most frequent way for cancer cells to move to the central ner-
vous system. The spread of metastatic disease within the CNS follows different steps: first
of all, there is the detachment of neoplastic cells from the primary tumor mass, then these
cells enter the bloodstream with hematogenous disease dissemination to the metastatic site,
and finally, there is the extravasation through the vascular wall and perivascular or brain
parenchymal proliferation [139,140]. The ADC features of metastatic brain lesions and the
distinction from primary tumors have only been the subject of a small number of studies,
which may aid in distinguishing the origin of different brain metastases [141]. Restricted
diffusion on DWI can be frequently found in intracerebral metastases, especially when the
tumor is lung or breast cancer. The restriction of diffusion within a single brain metastasis
may have been caused by an increase in the protein concentration in the form of highly
viscous mucin [142] (Figure 6A,B). The pathology of metastases can be predicted by DWI
signal intensity. On DWI sequences, adenocarcinomas (from the lung, ovary, and uterus)
tend to be hypointense. Instead, hyperintense signals were seen in small- and large-cell
neuroendocrine carcinomas [143]. Restricted diffusion was also observed in metastatic
lesions of breast, colon, lung, and testis carcinomas, according to Duygulu et al. [142].
Studies have shown that small cell carcinomas (SCLC) tend to have low ADC values when
compared to other tumors [144,145]. Other authors confirmed these results. Meyer et al.
looked at 948 lesions from 159 patients, with malignant melanomas and lung and breast
carcinomas being the most common types; due to lower values, ADC assessment allowed
the differentiation of SCLC metastases from other tumors [146]. In another study, Zakaria
et al. reported a negative correlation between cellularity and ADC values, with melanoma
and SCLC having lower ADC values than metastases from other carcinomas (breast, ovar-
ian, and colorectal malignancies) [147]. The genetic assessment of metastatic lesions may
have an impact on the signal strength of lung cancer brain metastasis on DWI. Indeed,
some authors find a significant correlation between ADC min and ADC ratio values and
the presence or absence of EGFR mutations and their locations. In particular, low ADC
values for lung adenocarcinoma-derived brain metastasis are linked to a high likelihood of
an EGFR mutation, notably in exons 19 and 21 [148]. Multifocal, Dural-based enhancing
lesions are the most frequent sign of metastatic disease to the dura.

Pachymeningeal carcinomatosis in tumors outside the CNS is uncommon; however, it
most frequently manifests as hematogenous dissemination [149]. Pachymeningeal carci-
nomatosis is frequently caused by secondary leukemia, lymphoma, and metastatic breast,
lung, and prostate cancers and shows restricted diffusion [139]. (Figure 7A–D).
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8. Gliomas vs. Metastasis

Diffusion imaging has also been used to discriminate glioblastoma from solitary
brain metastases. Unfortunately, whereas tumoral ADC aids in tumor-type differentia-
tion in some cases, it does not seem to be able to distinguish glioblastomas from metas-
tases [13,150–152]. DWI can also be used to assess the ability of water molecules to move
freely within non-enhancing peritumoral signal abnormalities (NEPSA) of CNS lesions.
Neoplastic cells intermingled with areas of vasogenic edema within infiltrative NEPSA will
create biological barriers that prevent the free passage of water molecules, resulting in lower
ADC values than pure vasogenic edema [17]. Supporting this hypothesis, peritumoral ADC
is lower in anaplastic astrocytoma and glioblastoma compared to metastases [151–154]. The
non-infiltrative NEPSA vasogenic edema exhibits greater ADC values than the infiltrating
NEPSA because there are no neoplastic cells to restrict the water molecules’ movement [17].
Beyond the region of T2 signal abnormalities, analysis of ADC in the normal-appearing
white matter has also been conducted. Patients with glioblastoma and metastases had dis-
tinct minimum ADC levels in their normal-appearing white matter; however, this method,
in clinical use, was constrained by its underwhelming sensitivity and specificity (both
around 70%) [151,155]. In the post-surgical setting, restricted diffusion aids in the detection
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of cytotoxic edema [6]. Low ADC levels, which are also indicative of hypoxia (as observed
in ischemic stroke or after surgery), suggest that variations in tumor hypoxia may affect
tumor ADC values [156]. In the subacute setting, the associated parenchyma may enhance
and be mistaken for tumor growth. Considering this, a baseline MRI is advised within
48 h of surgery [157]. Given the weaker ADC signal of the tumor, DWI can also be helpful
for assessing treatment efficacy and distinguishing chemo-radiation-induced alterations
from tumoral cells [6,158]. However, it is unknown what effect scarring and gliosis from
chemotherapy or radiation have on ADC [129,156].

9. Post-Treatment Evaluation

Diffusion restriction inside a treated astrocytoma is likely associated with the re-
currence and progression of the disease. Similarly, decreasing tumor burden correlates
with increased diffusion during serial follow-up. ADC levels can also distinguish be-
tween post-radiation alterations (1.29–2.06, mean 1.570.35) and tumor growth (0.75–1.30,
mean 1.140.18) [9,159]. A recent meta-analysis showed that DWI combined with MRI spec-
troscopy has very high sensitivity and specificity in differentiating recurrent glioma from
radiation injury [160]. The current standard of care for patients with glioblastomas includes
radiation (RT) and concurrent and adjuvant temozolomide (TMZ). The methylation state
of the O-6-methylguanine-DNA methyltransferase (MGMT) gene promoter is a highly
accurate predictor of the effectiveness of alchilant chemotherapy. As a molecular marker,
MGMT is primarily used to assess how chemotherapy affects malignant gliomas and to
identify new potential targets for tumor therapy [14,18,150,161]. Patients who showed
methylation of the MGMT promoter had greater ADCmin values than those who did not,
according to some authors, who also observed that the ADC ratio was much higher in
the methylated group [15]. These authors assert that methylated MGMT tumors differ
from unmethylated tumors in that they may be more varied or less cellular, less aggressive,
and more amenable to therapy [15]. In previous research, DWI-ADC histogram values
have been correlated with progression-free survival in glioblastoma patients. Specifically,
broad and large histogram values predicted poor progression-free survival after surgery
and radiochemotherapy [162]. MRI hyperintensity on T2 and fluid-attenuated inversion
recovery (FLAIR) surrounding the enhancing portion of the tumor are common findings
in higher-grade gliomas, which contain a combination of vasogenic edema and tumoral
cells and are usually referred to as “non-contrast enhancing tumors” (NET) [163,164]. The
analysis of this portion is essential in the evaluation of brain tumors as it may give valu-
able information on prognosis and tumor recurrence. Rathore et al. observed that on
preoperative MRI, areas with increased rCBV and reduced ADC values were predictive of
glioblastoma recurrence [165]. Moreover, a recent study found that ADC radiomic features
on NET correlated with survival after >80% surgery and chemo/radiotherapy in younger
patients (younger than 65 years old) [166].

10. Pituitary Adenoma

A pituitary adenoma is a common intracranial tumor that is preferably removed
through transsphenoidal nasal surgery [167]. However, some characteristics hinder the
possibility of this approach. Fibrous tumors, for instance, are difficult to remove by curet-
tage and suction via this approach, usually requiring a second transcranial surgery [168].
Hence, assessing tumor consistency in the preoperative stage could be very important.
Several studies investigated the correlation between DWI values and tumor consistency,
with conflicting results [169–171]. Recent research evaluated macroadenomas’ collagen
content (which is high in a harder tumor), finding that lower ADC values were associated
with higher collagen content [172,173]. Another study successfully differentiated between
functional and non-functional macroadenomas by analyzing ADC histogram features [174].
In addition, ADC histogram values (skewness and kurtosis) have been proven useful in
predicting macroadenoma proliferative potential and recurrence after surgery [175].
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11. Skull Lesions

Skull lesions are often incidental findings and are associated with nonspecific symp-
toms [176]. If CT is a helpful tool for detecting bony lysis, sclerosis, and calcification
within the lesion or its margins, MRI is superior to CT in the demonstration of soft tissue
components and extraosseous involvement [177].

CT and MRI studies for the morphological evaluation of lesions do not always offer
adequate answers to allow a correct diagnostic-therapeutic procedure to identify which
lesions need treatment and which need follow-up [178]. Undefined margins, sclerotic
margins, or cortical flaws may not always be able to discriminate between benign and
cancerous tissue that involves the skull [177].

Among MR techniques, diffusion plays an important role in defining cellularity and
allows us to distinguish tissues that are much more aggressive compared to benign ones.
ADC values have been found to be much greater in benign skull tumors than in malignant
lesions, suggesting that this parameter may help to focus the differential diagnosis for
ambiguous diseases involving the skull [177].

Some authors reported that a threshold ADC value of 0.966 ×10−3 mm2/s is useful
to differentiate benign lesions from malignant lesions of the skull, with a good diagnostic
value (AUC of 0.76) [179]. Nevertheless, some benign lesions with low ADC resulted
in false positives, such as eosinophilic granulomas, epidermoid cysts, and the sclerotic
variant of fibrous dysplasia. Other authors observed that the combination of conventional
CT and MRI images with DWI could be applied to discriminate the skull base lesions
where biopsies could be hazardous. The combination of CT, MRI, and DWI provided the
best sensitivity for identifying benign from malignant skull lesions, whereas DWI alone
provided the best specificity [177].

12. Conclusions

In conclusion, diffusion techniques, both conventional and advanced, have been
proven useful in different applications in neuro-oncology imaging, ranging from differential
diagnosis, histopathological composition, molecular profiling, prognosis, post-treatment
response, and tumor recurrence. Being very common and easy to use in clinical practice,
this sequence may be further implemented to help clinicians find new aspects of brain
tumors and new therapeutic options.
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