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Simple Summary: For patients with colorectal liver metastases (CLM), it is doubtful which treatment
could be better between neoadjuvant chemotherapy followed by liver resection (NEOS) and upfront
surgery (UPS). Our aim was to select the candidates who may benefit more from one or another
treatment developing a machine-learning model. To do so, 448 patients were analyzed, and baseline
differences were levelled out thanks to an inverse probability weighting analysis. Survival rates and
risk factors were estimated for the two generated pseudo-populations. The best potential treatment
(BPT) for each patient was determined thanks to a mortality risk model built by Random-Forest.
BPT-upfront and BPT-neoadjuvant candidates were automatically selected with the development of
a classification –and –regression tree (CART). At CART, planning R1vasc surgery, primitive tumor
localization, number of metastases, sex, and pre-operative CEA were the factors addressing the
candidates to BPT. Thanks to the decision tree algorithm, patients may be automatically assigned to
the BPT based on their tailored risk of mortality.

Abstract: Addressing patients to neoadjuvant systemic chemotherapy followed by surgery rather
than surgical resection upfront is controversial in the case of resectable colorectal –liver metastases
(CLM). The aim of this study was to develop a machine-learning model to identify the best potential
candidates for upfront surgery (UPS) versus neoadjuvant perioperative chemotherapy followed by
surgery (NEOS). Patients at first liver resection for CLM were consecutively enrolled and collected
into two groups, regardless of whether they had UPS or NEOS. An inverse –probability weighting
(IPW) was performed to weight baseline differences; survival analyses; and risk predictions were
estimated. A mortality risk model was built by Random-Forest (RF) to assess the best –potential
treatment (BPT) for each patient. The characteristics of BPT-upfront and BPT-neoadjuvant candidates
were automatically identified after developing a classification –and –regression tree (CART). A total
of 448 patients were enrolled between 2008 and 2020: 95 UPS and 353 NEOS. After IPW, two balanced
pseudo-populations were obtained: UPS = 432 and NEOS = 440. Neoadjuvant therapy did not
significantly affect the risk of mortality (HR 1.44, 95% CI: 0.95–2.17, p = 0.07). A mortality prediction
model was fitted by RF. The BPT was NEOS for 364 patients and UPS for 84. At CART, planning
R1vasc surgery was the main factor determining the best candidates for NEOS and UPS, followed
by primitive tumor localization, number of metastases, sex, and pre-operative CEA. Based on these
results, a decision three was developed. The proposed treatment algorithm allows for better allocation
according to the patient’s tailored risk of mortality.
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1. Introduction

Surgical resection represents the only curative treatment for colorectal liver metas-
tases (CLMs), with overall survival (OS) rates at 5 and 10 years of about 50% and 35%,
respectively [1]. The latest ESMO (European Society of Medical Oncology) consensus
guidelines [2] allow upfront surgery for patients with “technically easy” and “excellent
oncologic prognosis” CLMs. It has been reported that only a minority of CLMs are upfront
resectable for technical reasons [3,4]. In such a scenario, conversion chemotherapy pro-
tocols were considered a fundamental tool in the therapeutic pathway of the disease [5].
However, the concept of technical feasibility has drastically changed in the last ten years
with the introduction of new concepts of parenchyma-sparing surgery, making resection
suitable even in cases of complex liver involvement [6]. Under this surgical policy, a fine
intraoperative ultrasound guide combined with the recent evidence regarding the optimal
outcome in cases of tumor vessel detachment (R1 vascular resection) opened the door to
new surgical solutions, safely expanding the resectability [7]. In cases of feasible surgery,
perioperative neoadjuvant chemotherapy has been recommended as the “most reasonable”
approach when the oncologic prognosis is not sharply clear, or the risk of recurrence after
surgery is increased [2]. However, no significant differences at 3- and 5-year OS have been
demonstrated [8] in such cases, chemotherapy-induced liver toxicity and chemotherapy
failure with tumor progression may exclude patients from surgery [9,10]. Anyway, no
practical criteria have been established regarding which patients may benefit more from
neoadjuvant protocols, and whether to deem an upfront resectable patient to a preoperative
protocol is still a point of debate. The aim of this study was to report a single-center
experience for better clarification of what could be the best potential treatment for such
complex cases through the production of a best treatment allocation model based on a
machine-learning approach.

2. Materials and Methods
2.1. Study Overview, Patient Selection, and Study Design

The present is a retrospective study based on a prospectively collected institutional
dataset from Humanitas Research Hospital IRCCS (Rozzano, Milan, Italy). Results are re-
ported according to the principles of Strengthening the Reporting of Observational Studies
in Epidemiology (STROBE) [11]. All consecutive adult patients (age ≥18 years) treated for
liver metastases derived from primary colorectal cancer (CLM) from 2008 to 2020 were con-
sidered for enrolment. At our centre, all cases are routinely discussed in a multidisciplinary
setting, including liver surgeons, oncologists, dedicated radiologists, hepatologists, and
radiotherapists [12]. The indications among UPS and NEOS were considered specifically
for every single patient, as were the sum of the patients’ underlying condition, oncologic
and medical history, and local protocols. Inclusion criteria of this study were: (1) first
radiological diagnosis of CLM treated for the first time with liver resection, (2) a feasi-
ble liver resection under a parenchyma sparing approach; and exclusion criteria were:
(1) missing data on the follow-up variables, (2) a progression-disease after neoadjuvant
chemotherapy discovered at the radiological imaging (either CT or MRI scans) according to
the RECIST [13] criteria, and (3) classic major hepatectomies as in case of right or extended
right hepatectomy, left or extended left hepatectomy or trisectionectomy.

First, our study compared the overall survival among patients submitted to neoadju-
vant chemotherapy followed by liver resection versus upfront liver resection after weighing
the oncologic risk among groups. Second, a machine-learning approach was employed
to develop a mortality prediction model to define the best potential treatment for each
patient according to his/her oncologic and clinical characteristics, and then a decision
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tree was developed to select the most effective variables and to highlight who could ben-
efit the most from one treatment rather than the other in the era of parenchyma-sparing
vessel-guided surgery.

2.2. Definitions and Follow-Up Protocol

In our centre, hepatic resection is performed according to parenchyma-sparing vessel-
guided surgery [14] relying on R1vascular [7], intraoperative ultrasound-guided naviga-
tion [15], and communicating veins [16]. Liver resection was scheduled four to six weeks
after the end of chemotherapy (six weeks in patients receiving anti-VEGF targeted thera-
pies). Biochemical values were obtained within two weeks of the assigned treatment. The
number and size of nodules were assessed preoperatively by magnetic resonance imaging
(MRI), preferentially with a hepatospecific contrast agent, and examined by an expert and
dedicated radiologist; multiphase contrast computed tomography (CT) was performed
as an alternative when MRI could not be performed. Postoperative complications were
recorded using the Clavien–Dindo classification [17]. Patients treated with chemotherapy
were submitted to the standard protocol as follows: oxaliplatin, irinotecan, and irinotecan
plus oxaliplatin-based chemotherapy. Targeted chemotherapy was added according to RAS
mutation status and evaluated on the basis of a case-by-case multidisciplinary discussion.
All patients received at least two cycles of chemotherapy and were evaluated with an MRI
or CT scan every 4–6 cycles.

The tumor response to neoadjuvant chemotherapy was evaluated according to the
RECIST criteria [18].

All patients were followed up using local protocols, which included measurement of
serum tumor markers (Ca19.9 and CEA), abdominal ultrasound, CT or MRI, and outpatient
visits. OS was defined as the time from the date of the assigned treatment to any cause of
death. Patient surveillance was closed at the end of February 2021.

2.3. Statistical Analysis

Normal distribution was tested by the Kolmogorov–Smirnov test. Data were pre-
sented as frequency and percentage in the case of categorical variables or by median and
interquartile range in the case of continuous variables. Mann–Whitney and Fisher’s tests
were used to compare baseline patient characteristics between the two treatment groups,
respectively. The issue of unmeasured values in some covariates (due reasonably to a
“missing at random” (MAR) mechanism [19]) was handled by using the multiple impu-
tation method, and final estimates of the coefficients and standard errors were obtained
by pooling model results on ten imputed datasets [20]. After the evaluation of baseline
characteristics, all the preoperatively significant (p < 0.05) variables were then tested for
balance and employed as weights in the inverse probability weighting (IPW) analysis.
This was conducted to balance the oncologic risk between the two populations. Moreover,
IPW was preferred to avoid the best patients’ selection as in the case of propensity score
matching. The model was fitted to each of the 10 datasets to estimate the probability of
receiving upfront surgery, conditional on possible confounders. For each patient, a weight
was calculated as the inverse of the probability of the treatment actually being received.
Final weights were obtained by averaging over the imputed datasets. After obtaining
two weighted pseudo-populations, survival analyses were made by the Kaplan–Meyer
method, and comparisons among the two groups were made by a robust test. To better
stress the impact of the treatment on survival even after the IPW, a double robust test by
Cox regression analysis has been made.

Thus, a mortality prediction model was built using a survival Random-Forest (RF)
approach. RF was preferred to increase the accuracy of the predictions [21]. To create the
model, training (70% of cases) and test (30%) samples were generated randomly. The model
was tuned via 10-fold cross-validation without replacement. The log-rank was used as the
splitting rule, 100 trees were growing, and the survival time to fit the model was fixed at
60 months. The number of variables to possibly split at each node (“mtry”) was the square
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root of the total number of variables included in the model. The predictive performance was
then evaluated using Harrell’s C-index. For each patient, the model coefficients were used
to simulate the potential overall survival under each treatment (neoadjuvant or upfront).
Subsequently, the best potential treatment (BPT) within patients was determined as the
one leading to the highest predicted OS. Once the BPT for each patient was established, a
classification and regression tree for machine-learning (CART) model was developed to
select the most important variables determining the allocation of each patient to his/her
BPT and to develop a decision tree. The algorithm of the decision tree model works by
recursive portioning, which means the data were repeatedly partitioned into multiple
subspaces to lead the final sub-space outcome as homogenous as possible [22]. With
this approach, the algorithm produced a set of rules to predict the overall mortality by
repeatedly splitting the predictor variables. The first employed variable was the one with
the highest association with the outcome. Stopping criteria to end the splitting were: (1) all
leaf nodes are pure with a single class; (2) a pre-specified minimum number of training
observations that cannot be assigned to each leaf node with any splitting methods; and
(3) the number of observations in the leaf node reaches the pre-specified minimum one [23].
Once the tree has grown, pruning is performed to minimize overfitting by using the lowest
complexity parameter (cp), assessed by the one-minus standard error rule (reflecting the
trade-off between the complexity of the model and how it fits the data). Cp was established
at 0.0108. To assess the predictive performance of the final model, the concordance index
(c-index) was calculated with the bootstrapping resample method. At the end of the
procedure, a tree was graphically represented: the first split was, as mentioned, the variable
with the highest association with overall mortality, while going down through the tree,
the variables were reported by the model in order of importance. Thus, in the final leaf,
the graph reported the assigned treatment according to the algorithm, together with the
probability to be submitted to the neoadjuvant regimen and the probability to be assigned
to upfront surgery.

All tests were two-tailed, and the accepted level of significance was 5%. Analyses
were made with R open software (4.0.6, libraries: WeightThem, cobalt, RFSRC, mice,
rpart, rpart.plot).

3. Results
3.1. Observed Results before Weighting

Between 2008 and 2020, 509 patients were consequently treated in our center with a
first diagnosis of CLM. One-stage liver resection was considered feasible in all cases, and
consequently, no conversion chemotherapy was administered. Thirty-two (6.1%) were
excluded because they were lost at follow-up. Moreover, 29 (5.7%) patients were excluded
because, after neoadjuvant preoperative chemotherapy, a progression of disease (PD) was
found, and they were excluded from the surgical program. Finally, 448 patients were
enrolled: 95 (21.2%) in the UPS group and 353 (78.8%) in the NEOS one. There were several
significant differences between the two groups: median age (p < 0.001), N status of the
primitive tumor (p = 0.001), rate of metachronous tumors that was higher in the UPS group
(p < 0.001), median number of lesions (p < 0.001), rate of concomitant extrahepatic spread of
the disease, vascular contact (p < 0.001), and rate of planned R1vasc (p = 0.001). These and
other baseline characteristics, including data regarding chemotherapy, were summarized
in Table 1.

The median follow-up was 43 months (IQR 22–66). In terms of survival, the median
OS was 60 months (95% CI: 51-NA) and 41 months (95% CI: 34–46) for UPS and NEOS,
respectively (p = 0.0036). The observed survival curve is represented in Figure 1A.
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Table 1. Baseline characteristics of the cohort of patients analyzed.

UPS NEOS p

N 95 353

Male (%) 59 (62.1) 210 (59.5) 0.731
Age, years (median [IQR]) 68.00 [59.00, 74.50] 61.00 [53.00, 68.00] <0.001
N colon cancer (%) 0.001
N0 39 (41.1) 82 (23.2)
N1 32 (33.7) 163 (46.2)
N2 16 (16.8) 94 (26.6)
NA 8 (8.4) 14 (4.0)
T colon cancer (%) 0.67
T1 5 (5.3) 14 (4.0)
T2 17 (17.9) 64 (18.1)
T3 53 (55.8) 211 (59.8)
T4 13 (13.7) 50 (14.2)
NA 7 (7.4) 14 (4.0)
Primary localization (%) 0.263

Caecum 2 (2.1) 20 (5.7)
Right Colon 23 (24.2) 63 (17.8)
Trasversum 6 (6.3) 10 (2.8)
Left Colon 41 (43.2) 165 (46.7)

Rectum 22 (23.2) 91 (25.8)
NA 1 (1.1) 4 (1.1)
RAS MUT (%) 33 (34.7) 178 (50.4) <0.001
NA 16 (16.8) 10 (2.8)
Metachronous disease (%) 67 (70.5) 69 (19.5) <0.001
N◦ metastases (median [IQR]) 2.00 [1.00, 5.00] 6.00 [4.00, 13.00] <0.001
Size max (median [IQR]) 3.70 [2.25, 5.15] 3.10 [2.00, 5.00] 0.211
CEA preop (median [IQR]) 8.00 [2.50, 35.00] 6.30 [3.00, 27.40] 0.723
Synchronous extrahepatic (%) 6 (6.3) 74 (21.0) 0.002
Number of NEOADJ cycles
(median [IQR]) - 7.00 [5.00, 11.00] <0.001

CHT regimen -
Irinotecan - 94 (26.6)

Oxaliplatin - 224 (63.5)
5FU/Capecitabin - 11 (1.2)

Irinotecan-Oxaliplatin - 24 (6.8)
Target therapies -

Anti-EGFR - 100 (28.3)
Anti-VEGF - 113 (32.0)

RECIST (%) <0.001
Complete Response (CR) - 7 (2.0)

Partial Response (PR) - 283 (80.2)
Stable disease (SD) - 59 (16.7)

OSH (%) 17 (17.9) 154 (43.6) <0.001
N resection areas (median [IQR]) 2.00 [1.00, 3.00] 3.00 [2.00, 5.00] <0.001
Vascular detachment (%) 31 (32.6) 189 (53.5) <0.001
H-zone (%) 26 (27.4) 150 (42.5) 0.01
P-zone (%) 8 (8.4) 80 (22.7) 0.003
Blood transfusion (%) 11 (11.6) 49 (13.9) 0.678
Length of stay (median [IQR]) 9.00 [8.00, 11.00] 9.00 [8.00, 13.00] 0.396
R1vasc (%) 29 (30.5) 178 (50.4) 0.001
Steatosis (%) 19 (20.0) 96 (27.2) 0.196
Liver adjuvant CHT (%) 34 (35.8) 198 (56.1) 0.001

(NA: not available; RAS MUT: mutated RAS gene; CEA: carcinoembryogenic antigen; NEOADJ: neoadjuvant
therapy; CHT: chemotherapy; 5FU: 5 fluoro-uracil; EGFR: epidermal growth factor receptor; VEGF: vascular
endothelial growth factor; RECIST: Response Evaluation Criteria in Solid Tumors; OSH: One Stage Hepatectomy;
R1vasc: R1 vascular resection).
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Figure 1. Overall survival is depicted among the two groups (A) before and (B) after the Inverse
Probability Weighting. (UPS Upfront Surgery; NEOS neoadjuvant plus surgery).

3.2. Comparison after Inverse Probability Weighting

All the preoperative and oncologic variables that were significantly different be-
tween the two groups were employed to make an IPW obtain two well-weighted pseudo-
populations. After that, the UPS group was composed of 432.17 pseudo-patients and the
NEOS of 439.85. The balance after weighting among variables is depicted in Figure 2
(boxplot of the weights) and Appendix A, Table A1 (mean differences among variables
before and after the weighting).

Figure 2. Boxplot with the distribution of the weights among the groups after the weighting.

After the weighting, NEOS showed a significant increase in the risk of mortality
(HR 1.82, 95% CI: 1.05–3.14, p = 0.031) at the univariate level (Figure 1B). However, after
a double robust test with a multivariate Cox regression, the presence of concomitant
extrahepatic spread (HR 1.90, 95% CI: 1.18–2.90, p = 0.007), blood transfusion during the
recovery (HR 1.80, 95% CI: 1.10–2.90, p = 0.019), and being N2 at the primitive staging
(HR 3.70, 95% CI: 1.80–7.70, p < 0.001) were independently associated with the risk of
mortality (Appendix A, Table A2).
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3.3. Modelling the Risk of Overall Mortality by Random-Forest and Assessing the Best Potential
Treatment Per Each Patient

The mortality risk model developed by Random-Forest (100 trees trained) showed a
Harrel’s C-Index of 0.66, and the out-of-bag error was 0.34. The variables’ importance and
the relative error rates were depicted in Figure 3.

Figure 3. Error rates per each forest and the variables’ importance and the relative coefficient,
obtained after the Random-Forest analysis.

Once the mortality prediction model was developed, it was applied to every single
patient, employing their own clinical and oncologic characteristics, but the treatment was
externally fixed to simulate the risk of mortality in case all the cohorts were treated with
NEOS. Then, the same process was made to simulate the predicted risk in case all patients
were treated by UPS. After this process, every single patient had a mortality risk prediction,
according to the model, under both treatments: the one providing the longer OS was
considered for that patient as the BPT.

By this application of the model, 364 patients were assigned to the BPT-NEOS group
and 84 to the BPT-UPS group. Male patients were significantly more frequent in the BPT-
UPS group (79.8% vs. 55.5%, p < 0.001). The vascular detachment was needed more in the
BPT-NEOS group (56.3% vs. 17.9% in the BPT-UPS group, p < 0.001). Consequently, R1vasc
was planned and achieved more frequently in the BPT-NEOS group (54.4% vs. 10.7%,
p < 0.001). BPT-NEOS group had a higher preoperative median CEA (7.05, IQR 3.00–31.50
versus 4.25 IQR 2.68–10.40 in the BPT-UPS, p = 0.034), and the median number of metas-
tases was 5 (IQR 2–11) and 6 (4–14) for the BPT-NEOS and BPT-UPS groups, respectively
(p = 0.013). Median tumor size was higher in the BPT-NEOS group (3.50 cm, IQR 2.00–5.00)
than in the BPT-UPS groups (2.50 cm, IQR 1.80–4.58, p = 0.023). The baseline of the BPT
cohort was summarized in Table 2. Comparing the data observed for real and adopting the
treatment indication suggested by our model, 85 (23.4%) BPT-NEOS patients were treated
by UPS, while 279 (76.6%) were treated with NEOS; conversely, BPT-UPS patients were
treated with UPS in 10 (21.9%) cases, while 74 (88.1%) received NEOS.

Table 2. Baseline characteristics of the best potential treatment cohorts estimated after the creation of
the model for mortality risk by Random-Forest.

BPT-NEOADJ BPT-UPFRONT p

N 364 84

Male (%) 202 (55.5) 67 (79.8) <0.001
Age, years (median [IQR]) 62.00 [54.00, 70.00] 61.00 [56.75, 69.00] 0.703
Tumor localization (%) <0.001
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Table 2. Cont.

BPT-NEOADJ BPT-UPFRONT p

Caecum 19 (5.2) 3 (3.6)
Right Colon 86 (23.6) 2 (2.4)
Trasversum 13 (3.6) 3 (3.6)
Left Colon 164 (45.1) 44 (52.4)

Rectum 82 (22.5) 32 (38.1)
pN (%) 0.074

0 98 (26.9) 33 (39.3)
1 170 (46.7) 31 (36.9)
2 96 (26.4) 20 (23.8)

pT (%) 0.156
1 16 (4.4) 4 (4.8)
2 62 (17.0) 23 (27.4)
3 231 (63.5) 48 (57.1)
4 55 (15.1) 9 (10.7)

RAS MUT (%) 186 (51.1) 37 (44.0) 0.296
Metachronous presentation (%) 114 (31.3) 22 (26.2) 0.43
Number of metastases (median [IQR]) 5.00 [2.00, 11.00] 6.00 [4.00, 14.00] 0.013
Size, cm (median [IQR]) 3.50 [2.00, 5.00] 2.50 [1.80, 4.58] 0.023
CEA (median [IQR]) 7.05 [3.00, 31.50] 4.25 [2.68, 10.40] 0.034
Concomitant extrahepatic spread (%) 58 (15.9) 22 (26.2) 0.04
Observed-NEOS (%) 279 (76.6) 74 (88.1) 0.03
Number of CHT cycles (median [IQR]) 6.00 [4.00, 10.00] 7.00 [4.00, 10.00] 0.029
Vascular detachment (%) 205 (56.3) 15 (17.9) <0.001
H—Zone (%) 164 (45.1) 12 (14.3) <0.001
P—Zone (%) 83 (22.8) 5 (6.0) 0.001
R1vasc (%) 198 (54.4) 9 (10.7) <0.001

(RAS MUT: Mutated RAS gene, CEA: carcinoembryogenic antigen, CHT: chemotherapy, R1vasc: R1 vascular
resection).

3.4. Classification and Regression Tree (CART)

To better select patients who should be candidates for BPT-NEOS or BPT-UPS accord-
ing to our model and to create homogeneous groups, a CART tree was developed. The
method selected to prune the algorithm considered the following variables, in order of im-
portance in determining the allocation: planned R1vasc, number of intrahepatic metastases,
colon tumor localization, CEA, and sex. The decision tree is depicted in Figure 4, reporting
the estimated probability to be assigned to both treatments per leaf. After applying the
CART model to the test population, the accuracy rate was 88.6%.

Figure 4. The decision tree obtained by CART is here depicted. The first number in the last leaf
represents the probability to be submitted to a neoadjuvant regimen, while the second number is
the probability to be assigned to upfront surgery. (Colon RX: right colon tumor, Colon LX: left
colon tumor).
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4. Discussion

Our model suggests that while neoadjuvant perioperative chemotherapy plus surgery
is a well-established treatment that is correctly allocated in most cases (77%), upfront
surgery is delivered appropriately in less than 22% of cases. A big room for growth is
evident in our data to better understand who the best candidates for both treatments
would be.

Considering the observed data, patients who were submitted to upfront surgery
showed a more favorable disease: they were oligometastatic, often with a synchronous
presentation, and had a lower tumor burden. This is not surprising, reflecting a common
practice in which neoadjuvant treatments are reserved for the most advanced cases [2].
As already stated, the ESMO guidelines indicate UPS for those with a technically feasible
disease and an excellent oncologic prognosis. However, our series demonstrated that under
a parenchyma-sparing policy, surgical feasibility was strongly boosted [24], technically
enabling a direct liver resection in almost all cases. From this point of view, no need for
conversion chemotherapy was observed, thus satisfying one of the two criteria of the ESMO
guidelines for receiving UPS. On the other hand, this new approach relies on a new concept
in surgical oncology: the R1 vascular. Indeed, a CLM in contact without invasion with the
main intrahepatic vessel can be detached with a free recurrence rate and overall survival as
per R0 resections [7]. Interestingly, after weighing the oncologic and clinical risk factors, the
present data showed no clear advantage in terms of risk of mortality by submitting patients
to preoperative chemo rather than UPS, as demonstrated in other series [8] and in the EPOC
trial [25]. These results may be due to an inappropriate allocation to UPS rather than NEOS,
reflecting the real-life difficulties of making the best-tailored choice in each case. This
consideration drove us to create a machine-learning algorithm to better help in allocating
patients to the most favorable oncologic strategy according to their characteristics.

By creating a random-forest model with good accuracy in predicting the risk of mor-
tality, we simulated the potential survival under an upfront rather than a neoadjuvant
perioperative approach, taking into consideration all the patient-specific tumor characteris-
tics. Thus, our model enables us to estimate the risk of mortality under both treatments,
permitting us to understand, in terms of potential treatment, which could be the most
favorable tailored approach in the specific oncologic setting. By creating an automatic
decision tree, we identified the most relevant variables that influence the choice to allocate
a patient to a neoadjuvant regimen rather than an upfront resection. Interestingly, the need
for an R1vasc resection has been identified as the most important factor in the decision
process. In this setting, perioperative chemotherapy administration seems to be the best
choice in any case.

When liver metastases are not in contact with a vascular structure and the number
of metastases is more than 4, the best potential treatment is conditioned by the patient
and tumor characteristics. A neoadjuvant regimen is the best potential choice in the case
of a patient with an unfavorable presentation, as for females or males with primary right
colon or transversum cancer [26,27], or in cases of high CEA. Upfront surgery, indeed, can
be considered in the case of male patients with a tumor in the left colon and a low CEA.
Of note, when the tumor burden is very high (here estimated by the model as a number
of nodules ≥ 13), the advantage of perioperative neoadjuvant chemotherapy is lost, and
upfront surgery becomes the best potential treatment.

This latter implication should be deeply evaluated. The biology selection operated
by the perioperative chemotherapy seems less important in the case of a high number of
liver nodules; in fact, chemotherapy increases the risk of wasting time permitting in some
cases the disease to progress and pushing out the patient to his or her chance to be cured
radically [25,28,29]. In these extreme cases, considering the opportunity of postponing
chemotherapy after surgery (adjuvant regimen) should not be considered heretical.

The factors we identified to make the most appropriate allocation are already well-
known in their prognostication roles. Primary colon cancer localization is a well-established
prognostic factor [26,27]. It has been shown that right-sided colon tumors commonly
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present with poor prognostic factors such as RAS and BRAF mutations other than mi-
crosatellite instability (MSI) [30]. Moreover, they are linked to gender, being more frequent
in women, with morbidity and mortality increase in female patients over 65 years old,
probably due to loss of estrogen protection that could increase microsatellite instability [31].

The tumor burden, represented by the number of nodules, is still the most important
factor that is evaluated: it not only modifies the curative strategy by permitting or not
a resection approach, but it has also demonstrated directly related to the aggressiveness
and the risk of relapse after a curative approach [3]. In this sense, in the latter years,
biological serum markers, such as the CEA, were demonstrated to be a surrogate parameter
to estimate the biological malignancy, increasing the ability to stratify patients’ prognosis
and probability of recurrence [32].

The present study has several limitations. First, our model permits us to identify the
best treatment in terms of oncological risk. However, even if an upfront surgery may be
the best choice, its feasibility is highly dependent on various other factors that are not
depicted by our model (e.g., hospital facilities, the surgeon’s experience and skills, the
adoption of a full US-guided PSR policy, etc.). Moreover, when compared to others [33],
the present study seems to lack in analyzing some baseline patients’ characteristics as
the genetic mutation profile. This is because of several reasons: on one side, the referral
nature of our center led patients arriving at our evaluation as a second or third opinion
after initial disease management performed elsewhere. This results in a difficult retrieval
of information processes about their mutational status. On the other hand, data were not
available in most of the cases due to the time period of this study, which included some
years in which the genetic profile was not routinely analyzed in all cases. Furthermore,
it is important to state that, at present, artificial intelligence models are not thought to
substitute human decisions but to augment our ability to make good predictions. In this
sense, our model should be interpreted as a simulator that may help multidisciplinary
meetings determine the best potential oncological approach, allowing them to make their
own decisions according to their potentialities. A model, in fact, is thought of as a support
and not as a replacement for the physicians’ professionalism and experience. Another
significant limitation is the retrospective and monocentric nature of this study. Our daily
practice is well known to be oriented to boost the limits of parenchyma-sparing surgery,
but this policy is still underemployed worldwide. In our cohort, all patients were treated by
surgery, before or after chemotherapy; the fact that some well-recognized prognostic factors,
such as the extrahepatic spread, did not result as an effect modifier in our model could
be explained by the fact that in this cohort the eventual spread has always been resected
effectively. Moreover, from a statistical point of view, our model should be externally
validated to confirm its ability to make accurate mortality predictions and good patient
allocations. This risk was mitigated by a bootstrap resampling internal validation; however,
the external one remains mandatory.

5. Conclusions

In conclusion, based on an automated machine-learning analysis of our data, the
radical liver clean-up in case of CLM by UPS should be considered more frequently than
the present, particularly in the more advanced disease. Further studies are needed to
confirm or disprove this insight.
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Appendix A

Table A1. Mean difference among variables selected for IPW before and after the weighting.

Mean Diff. Un Mean Diff. Adj

AGE −0.5868 0.3673
N0 −0.2064 −0.0844
N1 0.113 0.0607
N2 0.0934 0.0237
Metachronous disease −0.5098 −0.0148
N. Nodules 0.7578 0.2194
Synch. Extrahepatic spread 0.1465 0.1223
Vascular Detachment 0.2091 0.0522
R1vasc 0.199 0.055

(Diff. Un: difference unadjusted; Diff. Adj.: difference adjusted.).

Table A2. Double robust test with Cox regression in the weighted population to estimate the risk
of mortality.

HR 95% CI Lower 95% CI Upper p

Age (per year of increase) 1.0149463 0.996 1.034 0.122
Received treatment

Upfront surgery 1
Neoadjuvant plus surgery 1.4605124 0.950 2.245 0.084

Nodal status
N0 1
N1 1.9483497 0.984 3.858 0.056
N2 3.7071947 1.795 7.655 0.000

N metastases (per n of increase) 0.9969352 0.976 1.018 0.773
R1vasc (versus not) 1.1814066 0.745 1.874 0.479
Blood Transfusion (versus not) 1.803472 1.103 2.948 0.019
Extrahepatic spread (versus not) 1.8582734 1.183 2.918 0.007
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