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Simple Summary: Photodynamic therapy (PDT), a non-invasive cancer treatment strategy, has
presented a broad scope in future clinical applications. This review mainly summarizes the advances
of novel photosensitizers (PSs) characterized with high conversion efficiency and additional refreshing
features. Besides, we also demonstrate the development of PDT-based combination therapies with
chemotherapy, radiotherapy, immune therapy, and gene therapy and their outstanding neoplastic
ablation efficiency.

Abstract: Although we have made great strides in treating deadly diseases over the years, cancer
therapy still remains a daunting challenge. Among numerous anticancer methods, photodynamic
therapy (PDT), a non-invasive therapeutic approach, has attracted much attention. PDT exhibits out-
standing performance in cancer therapy, but some unavoidable disadvantages, including limited light
penetration depth, poor tumor selectivity, as well as oxygen dependence, largely limit its therapeutic
efficiency for solid tumors treatment. Thus, numerous strategies have gone into overcoming these
obstacles, such as exploring new photosensitizers with higher photodynamic conversion efficiency,
alleviating tumor hypoxia to fuel the generation of reactive oxygen species (ROS), designing tumor-
targeted PS, and applying PDT-based combination strategies. In this review, we briefly summarized
the PDT related tumor therapeutic approaches, which are mainly characterized by advanced PSs,
these PSs have excellent conversion efficiency and additional refreshing features. We also briefly
summarize PDT-based combination therapies with excellent therapeutic effects.

Keywords: PDT; photosensitizer; PDT-based combination therapy

1. Introduction

Since the late 1970s, photodynamic therapy (PDT) has gradually become an attractive
technology for tumor treatment. It is approved for malignancy therapy by many countries
such as the United States, Britain, France, Germany, and Japan [1]. Hermann von Tappeiner
coined the term “photodynamic” in 1904 to distinguish photooxidation from the sensitiza-
tion process in photography [2]. In 1903, the cancer cell killing derived from light irradiation
with tumors coated with eosin was first reported. And then, numerous hematoporphyrin
derivatives were subsequently applied for photodynamic therapy (PDT) [3,4]. In 1998, the
US FDA approved photofrin for the treatment of early bronchial cancer and obstructive
bronchial lung cancer [5,6]. Although this early laser-based anticancer photodynamic ther-
apy demonstrates significant advantages, the first-generation photosensitizers, including
hematoporphyrin deriva–tive (HPD), dihaematoporphyrin ether (DHE), Por–fimer sodium
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(Photofrin II), are inevitably encumbered by several drawbacks such as low photoconver-
sion efficiency, non-targeted distribution, short wavelength light excitation (≤630 nm),
and long metabolic clearance half-life (almost 4–6 weeks), all of which heavily hamper its
clinical application. The first-generation PS (porfimer sodium), was the only PS approved
and available for ablative procedure for superficial esophageal squamous cell carcinoma
(ESCC) in Japan. However, due to the cost and side effects of PDT and development of
endoscopic submucosal dissection (ESD), PDT lost its valuable role in clinical practice
worldwide [7]. Hence, a large number of researchers are wild about working on boosting
PS performances, they believe that improving the target specificity and enhancing the
effective light penetration are crucial factors for the development of laser-based anticancer
photodynamic therapy [8,9]. Thus, the second generation alternatives, including 5-ALA,
meso-tetrahydroxyphenyl chlorin (m-TH–PC), methylene blue were found, and demon-
strate approvable metabolic clearance efficiency, longer excitation wavelength (>630 nm),
and tumor-targeted effect, greatly enhancing the clinical application prospect of PDT. The
second-generation PS talaporfin sodium and diode laser was used as salvage therapy
after chemoradiotherapy (CRT) or radiotherapy, showing good complete response (CR)
rate without any phototoxicity, only with short sun shade period [7,10]. Furthermore, to
meet better therapeutic performances, researchers are trying to combine PDT with other
therapeutic strategies, including chemotherapy, radiotherapy, photothermal therapy, gene
therapy, and immunotherapy [11–15].

During PDT, cytotoxic reactive oxygen species (ROS) are produced by PS excitation
under specific wavelength light with oxygen (O2) supply to kill tumor cells. Among the
critical parameters, the PSs and O2 concentrations are considered to be two critical factors
for improving PDT performance. Furthermore, Different localization of photosensitizers
in cells results in different PS efficiency. Studies have shown that high doses of PSs and
high intensity laser can seriously cause cell damage and cell necrosis. For example, PSs
related to plasma membrane can lead to oxidation reactions of proteins and phospholipids,
which leads to rapid loss of membrane integrity and lysis [16,17]. In addition, low doses
of PSs localized to the endoplasmic reticulum, lysosome and mitochondria can lead to
apoptosis by directly damaging apoptotic proteins Bcl2 and Bcl-Xl [18]. It is now possible to
optimize the performance of PSs by introducing heteroatoms, electron/energy effect-based,
and aggregation-induced emission (AIE)-based strategies. Besides, numerous studies
demonstrate that both tumor microenvironment (TME)-based exogenous oxygen supple-
mentation and endogenous oxygen consumption regulations can significantly alleviate
tumor hypoxia and remarkably enhance PDT efficiency. Tumor blood vessels are affected
by oxidative stress under the action of PDT, leading to vasoconstriction, endothelial cell
damage, thrombi formation, and eventually to intratumor blood flow stagnation, TME
severe hypoxia and tumor necrosis [19]. In addition, methods for activating PSs have
evolved from commonly photoactivation to different energy stimulations. For example,
sonodynamic therapy, performing under ultrasonic activation with prominent penetration
capacity, exhibits potent ablative effect on solid tumors. What’s more, studies have also
found that PDT also plays a significant influence on intracellular proteins, DNA, and
subcellular organelles, which facilitates the combination of PDT with other therapeutic
strategies to inhibit tumor development synergistically. In this review, we briefly presented
the PDT mechanisms and summarized the recent advances in PSs, O2 supply strategies,
and PDT-based combined therapies in cancer treatment.

1.1. Mechanism of PDT

PS, O2, and excitation light sources are essential factors for PDT. There are three
established scenarios for the energy level transition from S1 excited state to S0 singlet ground
state: intersystem crossing to the lowest triplet state; giving off heat and fluorescence and
thus going back to a rovibrationally excited S0 state; the triplet excited state can interact
with some endogenous substances to form free radicals (such as hydrogen peroxide and
superoxide anion) [20,21]. The excited states activate ROS formation in the following
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two ways: (Type I) the PS participates in electron transfer processes produce radicals and
radical ions. PSs react directly with organic molecules by transferring hydrogen or electrons
to form radicals. Besides, ROS such as superoxide anion (O2

−), hydroxyl radical (OH.),
and hydrogen peroxide (H2O2) can be created when free radicals combine with oxygen.
(Type II) PS transfers energy from the triplet state to ground state molecular oxygen (3O2),
creating highly reactive singlet state oxygen (1O2) [22–25] (Figure 1). Non-proportional
reactions, such as the Haber–Weiss reaction, and Fenton reaction, can be fully utilized by
the type I PDT process to offset the O2 consumption. Thus, the therapeutic efficacy for
hypoxic malignancies is considerably enhanced [26–28]. By exposing the tumor tissue
to long-wavelength light, Type II PDT is performed by excitation from the low-energy
ground state (S0) to the high-energy excited state (S1) (650–900 nm, a wavelength range with
excellent tissue penetration). ROS produced in PDT is involved in the oxidative damage to
proteins, DNA, subcellular organelles, and blood vessels [29–32], which can also induce
immunogenic cell death (ICD) and systemic immune response. In addition, PDT can also
promote the secretion of a series of cytokines to improve antigen presentation, recruitment
and infiltration of neutrophils and macrophages [33].
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Different PSs are associated with various photodynamic therapeutic effects by diver-
siform mechanisms. AIE-active PSs could destroy lysosomes or mitochondria to induce
apoptosis, necrosis, autophagy, or paralysis of target cells. Yin Li et al. found that cellular
iron death could be caused by the oxidation of polyunsaturated fatty acids (PUFA) in lipid
droplets (LD), which disrupt the balance between oxidative stress and antioxidants through
excessive GSH consumption. Besides, the reduced glutathione peroxidase 4 (GPx4) ex-
pressions could also increase the accumulation of lipid peroxide (LPO), eventually leading
to cellular iron death [34]. To obtain commendable and reliable PDT therapeutic effects,
researchers are still working on developing and optimizing various PSs.

1.2. New Photosensitizers for PDT

Upon the activation of PS, abundant ROS is produced to destroy organelles, lipids, pro-
teins, and nucleic acids, eventually inducing cell apoptosis, necrosis, or autophagy [35]. The
characteristics, localization and excitation circumstances of PS, and the type of cells, have a
significant effect on the therapeutic efficiency of PDT. The lowest triplet state of PS plays
a vital role in PS excitation, but it remains a challenge to design efficient triple-excited PS
with predetermined inter-systemic crossover properties, especially in the absence of heavy
atoms [36]. Therefore, various approaches have been attempted to optimize PSs, such as
the introduction of heteroatoms, strategies based on electron/energy effects, and AIE-based
PSs. Among them, Rongcheng Han et al. introduced gold atoms into nanomaterials and
prepared Gold Nanocluster (AuNCs) coated with dihydrolipoic acid (AuNC@DHLA). The
AuNC@DHLA possesses 2~106 GM, exhibits outstanding photodynamic characteristics
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and excellent two-photon (TP) optical properties. Additionally, compared to most conven-
tional PS using the monoclinic oxygen (type II) mechanism, the type I process is used in the
photochemical mechanism of AuNC@DHLA, which makes AuNC@DHLA become a more
advantageous PS and improves its efficiency in vivo two-photon photodynamic therapy
(TP-PDT) (Figure 2a) [37].

PSs activation can be achieved not only by light source but also by ultrasound. Song
Wu et al. combined meso-tetra(4-carboxyphenyl) porphyrin (TCPP)-conjugated peroxidase
(CAT) with fluorinated CS (FCS) to form TCPP-CAT/FCS nanoparticles (NPs) (Figure 2b),
which synchronously achieves noninvasive excitation of PS in orthotropic bladder and
tumor hypoxia amelioration triggered by the O2 production of tumoral endogenous H2O2
catalase, significantly enhancing the efficiency of sonodynamic therapy [38].

PSs characterized by aggregation-induced emission (AIE) exhibit remarkably en-
hanced fluorescence and photosensitivity. Wang Y et al. synthesized a PS (TPATrzPy-3+)
with AIE performance and employed it to prepare an image-guided PDT agent. The PS
is synthesized from two photochemically inert precursors, TPA-alkyne-2+ and MePy-N
3, in a Cu I-catalyzed click reaction generated by GSH-reduced MOF-199. After loading
MOF-199 with TPA-alkyne-2+ and MePy-N 3, the precursor-loaded MOF-199 (PMOF)
is coated with F-127 to obtain F-127-coated PMOF (PMOF NPs) (Figure 2c) [39]. Both
in vitro and in vivo studies show that PMOF NPs could be effectively enriched into
tumors after intravenous administration. Two precursors, TPA-alkyne-2+ and MePy-
N 3, are then released from GSH-folded MOF-199 and effectively destroy tumor cells.
Wu C et al. constructed AIE conjugated polymer with high Quantum yield (QY) in the
NIR-II region using a dual fluorescence enhancement strategy. They employed phenoth-
iazine and its derivatives (naphthothiadiazole or benzodithiadiazole) as the donor unit and
synthesized a series of D-A conjugated polymers P1a~P1c, P2a~P2c, P3a~P3. Among them,
because SP3 hybridizes sulfur and nitrogen atoms, the phenothiazine ring not only has
excellent electron donating ability, but also presents a dihedral angle of 153◦ [40]. Tang et al.
proposed a molecular design strategy to improve the brightness of conjugated polymers,
namely, molecular structure planarization and torsional regulation. Four D-A conjugated
polymers, PNIR-1, PNIR-2, PNIR-3, and PNIR-4, were synthesized, in which trianiline
and tetraphenylethylene are used as electron donor units, and molecular rotors, while
benzodithiadiazole is applied for electron acceptor units. Alkyl thiophene not only act
as electron donor units and conjugated π-bridges, but also regulate the structure of poly-
mer repeat units by providing the steric differences generated by different alkyl positions.
Through the backbone structure regulation strategy to improve the brightness of polymer
fluorophores, it provides a guiding idea for the development of high-brightness fluorescent
dyes [41].

Kang-Nan Wang et al. prepared MeTPAE based on the triphenylamine structural back-
bone. MeTPAE performs its PDT effect by interacting with histone deacetylases (HDACs)
and precisely disrupting telomeres and nucleic acids (Figure 2d), inducing cell cycle ar-
rest and showing excellent PDT anti-tumor activity [42]. Hai-yang Liu et al. synthesized
mono-hydroxy corroles 1–3, and their gallium (III) complexes Ga1–3 (Figure 2e), the single
hydroxyl group on corroles can increase its amphipathic properties and facilitate cellular
uptake capacity, thereby increasing its PDT activity. Meanwhile, Ga (III) corrole is the
most commonly used metallocorrole for PDT that exhibits a more intense fluorescence and
higher quantum yield than its freebase corrole. Corrole 3 and Ga3 are easily ingested by
cells and localized in mitochondria and lysosomes, destroying mitochondrial membrane
potential by increasing intracellular ROS levels, and inducing breast cancer cell death [43].

The above advanced PS provides a variety of strategies to overcome the predicament
of the current PDT paradigm, which opens up promising paths for PDT in cancer therapy.
Besides, there are also numerous attempts for combining PDT strategies with traditional
therapeutic approaches that also exhibit excellent anticancer performances.
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Copyright (2020) American Chemical Society. (b) Synthesis of CAT-TCPP/FCS NPs. Reproduced
with permission from Ref. [38], Copyright (2020) American Chemical Society. (c) Synthesis by using
two photochemically inert precursors and the reduction of mof produced by GSH with copper(I)
ions, TPATrzPy-3+ serves as an effective photosensitizer. Reproduced with permission from Ref. [39],
Copyright (2021) John Wiley and Sons. (d) After MeTPAE enters the nucleus, it not only interacts
with histone deacetylases (HDACs) to inhibit cell proliferation, but also precisely damages telomeres
and nucleic acids through PDT. Reproduced with permission from Ref. [42], Copyright (2022) John
Wiley and Sons. (e). The synthesis of freebase corroles 1–3 were synthesized though the one-pot
procedures. The synthesis of Ga (III) corrole was accomplished by the reaction of freebase corrole
with gallium (III) chloride in the presence of pyridine and N2 at 113 ◦C. Reproduced with permission
from Ref. [43], Copyright (2020) Elsevier.

1.3. PDT Combined with Chemotherapy

Poor treatment outcomes of chemotherapy are caused by drug resistance, off-target ef-
fects, low bioavailability, being powerless for tumor heterogeneity, and severe systemic side
effects [44,45] (Figure 3). Besides, cancer cells may take advantage of aneuploidy-induced
genomic instability to change gene copy situations under selective stress conditions [46], re-
sulting in malignant tumor progression [47,48]. It is well known that combination therapies
using two or more treatment strategies could lessen toxicity and boost the therapeutic effi-
ciency of a single therapeutic approach. Numerous non-invasive phototherapy (PDT and
PTT) and chemotherapy are used in combination via drug delivery systems (DDSs) to obtain
“increasing effect and decreasing toxicity” effects [49–53]. Precisely designed nanosystems
show great therapeutic potential in the preclinical phase, it can not only increase drug
bioavailability and biosafety but also allow a controlled drug release in TME [19]. Xuemei
Yao et al. prepared a tumor extracellular and intercellular pH-stimulating DDS based on
the dual pH response characteristic of mesoporous silica nanoparticles (MSN). They grafted
histidine to the surface of MSN to form acid-sensitive polyethylene glycol tetraphenyl
porphyrin zinc (Zn-PO-ca-PEG). The conjugated acid-sensitive cis-anhydride (CA) between
Zn-POR and PEG separates at extracellular pH (~6.8), leaving the Zn-POR with a positive
amino charge on its surface, remarkably promoting cellular internalization. In addition, in
the intracellular acidic microenvironment (~5.3), the metal-supramolecular coordination
disintegrates after Gatekeeper elimination, releasing the carried drug and Zn-Por [46]. Yang
Zhao et al. reported that adoptive macrophage transfer led to a dramatically enhanced
photodynamic therapy (PDT) effect of 2-(1-hexyloxyethyl)-2-devinyl pyropheophor-bide-
alpha (HPPH)-coated polyethylene glycosylated nanographene oxide [GO(HPPH)-PEG]
by increasing its tumor accumulation. Their self-degrading system (DOX) significantly
improves pharmaceutics absorption, endosome escape capacity, and nuclear distribution
and also shows the advantage of deeper tumor penetration and reduced off-target toxic-
ity [54]. Zhou et al. prepared a photoactivated Pt (IV) prodrug polymeric PtAIECP. The
chemotherapy drug doxorubicin (DOX) is wrapped in the PtAIECP to form the composited
nanomaterial (PtAIECP@DOX), which have self-detection drug release performance and
PDT-based synergistic therapy system. The effects of PtAIECP@DOX on prodrug activation,
drug release, and synergistic therapy are verified in vitro and in vivo experiments [55].

Besides, chemotherapeutics combined with PDT could reduce the toxic side effects
of chemotherapy alone. To cooperatively deliver chemotherapeutics and photosensitizers,
Menglin Wang et al. loaded Ce6 by π-π stacking interaction with DOX and is connected
to a personality polymeric carrier via ROS-sensitive terminal thione bonds (PEG-PBC-
TKDOX). In this system, the ROS produced by PDT causes the nanocarrier to degrade and
promotes drug release. Thus, non-targeted chemotherapeutics have minimal toxicity for
their fixed release only where the excitation light is focused. This strategy is well suited to
induce additional tumor growth inhibition with increased efficiency and lower toxicity [56].
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It is also a suitable starting point for research into the use of PDT in conjunction with
chemotherapy to lessen the side effects that seriously affect the prognosis of tumor patients.
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1.4. PDT Combined with Radiation Therapy

Radiation therapy is a local treatment method for tumors. About 70% of cancer pa-
tients will undergo radiation therapy as part of their cancer treatment and commonly
obtain approbatory therapeutic effects [57–59]. The effectiveness of radiotherapy depends
on radiosensitivity, lesion location, and neoplasms types and so on. Among these, the
proliferative cycle and pathological grading of tumors are closely associated with radiosen-
sitivity. Additionally, the radiosensitivity of tumor tissues is also significantly influenced
by O2 levels [60–62].

Similar to the combination of chemotherapy with PDT, remarkable synergistic thera-
peutic effects of PDT-based radiotherapy are widely confirmed. Liu Zhiyang et al. synthe-
sized four polymers based on a triphenylamine-azafluorenone core that exhibit different
photophysical properties and excellent biological applications. Cationization is an effective
strategy to improve ROS generation and PDT efficiency of PSs. Cationized mitochondria-
targeted PS shows a higher PDT efficiency than the non-ionized alternatives. Due to the
AIE and ISC effects, the fluorescence intensity and ROS generation of AIE PSs increase
simultaneously from the molecularly dispersed state to the aggregated state, which makes
image-guided PDT possible without a complicated chemical process. In addition, several
AIE PSs can also be employed as radiotherapy sensitizers. Compared to monotherapy,
the combination of PDT plus radiation therapy dramatically boosts the efficacy of tumor
ablation. This work provides a valuable exploration for improving PDT efficiency through
the molecular design of PSs [63].
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1.5. PDT Combined with Immunotherapy

PDT could efficiently trigger the release of tumor-associated antigens (TAAs) and
danger-associated molecular patterns (DAMPs) from cancer cells, which would contribute
to eliciting potent immune responses [33,64–68]. Yaxin Zhou et al. fabricated a PDT
nanoplatform (CAM NP) loading AXT to enhance blood flow and alleviate the hypoxic
microenvironment of tumor tissues, thus eventually enhancing the PDT therapeutic effects.
The normalization of blood vessels also significantly facilitates immune cell infiltration,
DC maturation, and T-cell activity. What’s more, the CAM NPs could increase the levels
of tumor necrosis factor-α (TNF-a), interferon-γ (IFN-γ), and interleukins (IL-2 and IL-6),
which further promote the tumor-infiltrating of T cells inducing prominently enhanced
immune response. Their studies can boost levels of critical immune cytokines, promote
DC maturation, activate immune effector cells, lead to remold tumor immunosuppressive
microenvironment to produce a strong systemic immunological response [69].

Tang et al. reported a multifunctional nanorobot (NK@AIEdots) platform based
on NK cell simulation, these robots can cross the blood-brain barrier to realize transcra-
nial imaging and brain tumor treatment. In this study, the NK cell membrane is used
to wrap AIE-conjugated polymer PBPTV to prepare NK@AIEdots, which can form a
“green channel” to help NK@AIEdots cross the blood-brain barrier [70]. Considering
the immune infiltration inhibition of lymphocytes (TILs) in the tumor microenvironment,
Qinjun Chen et al. prepared a tumor-targeted PDT nanoplatform (Apt/PDGs@pMOF),
these nanoparticles can promote cytotoxic T cell infiltration and simultaneously reconsti-
tute the immunosuppressive microenvironment. In this research, Apt/PDGsˆs@pMOF
demonstrates active tumor-target, PDT-triggered induction of PDG expression, ICD effect,
DC maturation, and additional CTL penetration promoted by the Porphyrinic metal–
organic framework (pMOF)-based PDT. Besides, the intratumoral MDSCs are selectively
eliminated by penetrating PDG, thereby remolding the immunosuppressive tumor mi-
croenvironment (TME). Thus, in a bilateral 4T1 model, Apt/PDGsˆs@pMOF+L shows
potent antitumor responses, dramatically inhibiting tumor growth [71]. Fang Sun et al.
reported a prodrug, bromodomain-containing protein 4 inhibitor (BRD4i) JQ1, that coun-
teracts C-myc and PD-L1 expression of tumor cell post PDT stimulation (Figure 4) [72].
Hongwei Cheng et al. synthesized glucose-PEO-b-PLLA-TEMPO to synergistically achieve
antitumor immune activation. This nanoplatform simultaneously delivers the clinical
therapeutic drug CUDC101 and the photosensitizer IR780, promoting M1 phenotypic po-
larization of TAM, IR780-mediated PDT, and CUDC101-triggered CD47 suppression [73].
Overall, PDT combined with immunotherapy may not only improve the activity of immune
cells but also reduce the immune escape of tumor cells.

1.6. PDT Combined with Gene Therapy

Gene therapy has gained tremendous popularity in recent years, and many gene
editing tools, such as Meganucleases (MNs), Zinc Finger Nucleases (ZFNs), CRISPR-Cas,
and so on, have been applied to cancer therapy. It demonstrates better safety and tolerable
adverse reactions than common chemotherapy and radiotherapy [74]. Although gene
therapy has been well developed over the past three decades, most of its drugs are still
in trials and rarely approved for clinical application. The biggest reason may be the
ungovernable delivery efficiency and individual variation.

PDT has also been employed for collaborative treatment with gene therapy [75,76].
Lei Chen et al. designed a spherical nucleic acid (PSNA) for carrier-free and NIR light-
controlled auto-delivery of siRNA and antisense oligonucleotides (ASO). A peptide nucleic
acid-based ASO (pASO) and a NIR photosensitizer are found in the hydrophobic nucleus
of PSNA, which also contains a hydrophilic siRNA shell (PS). On-demand disassembly
of PSNA in tumor cells is made possible by the inclusion of a single heavy-state oxygen
(1O2) cleavable linker between siRNA and pASO. The results demonstrate that the NIR PS
produces 1O2 under near-infrared irradiation, which enables the disassembly and lysosomal
escape of siRNA and ASO, and inhibits the hypoxia-inducible factor-1 (HIF-1) and B-cell
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lymphoma 2 (Bcl-2) expressions, eventually inhibiting tumor growth [77]. The DNA
nanoscale sponges were successfully designed by Min Pan et al., which could effectively
load and delivers PSs into tumor tissues, and significantly alleviate hypoxia-associated
drug resistance [78].
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The combination of PDT and gene therapy may have a better tumor-targeting effect,
but the poor tissue penetration depth of light is still not completely solved. Aiming at this
problem, Huaixin Zhao et al. reported the PDT nanoplatform containing persistent light-
emitting nanoparticles (PLNPs) that activates glutathione at the tumor site without external
laser excitation. PLNPs are employed as self-light sources and coated with MnO2 to prevent
energy degradation. In response to the overexpressed glutathione in cancer cells, the MnO2
shell decomposes to provide Mn2+ and PDT essential O2. At the same time, PLNPs are
released as a self-light source to activate PS and produce cytotoxic 1O2, which achieves
tumor-specific PDT in McF-7 xenograft mice without external light exposure. In particular,
the PDT properties of the nanocomposite can be initiated in GSH-overexpressed tumor
cells and accomplished by self-oxygenation and self-irradiation, resulting in significant
tumor inhibition [79].

Cu (I) 1, 2, 4-triazolate nanoscale coordination polymer (CP) multifunctional nanosheet
is synthesized by a bottom-up technique. DNAzyme nanocarriers for gene therapy
and endogenous photosensitizers for hypoxia-resistant TYPE I PDT can be carried by
these CP nanosheets (PDT). Efficient loading and enzyme protection of DNA enzymes
are fully achieved by [Cu (TZ)] nanosheets. As nanosheets react to GSH, the obtained
DNAzyme/[Cu (TZ)] can preferentially activate DNAzyme in tumor cells, leading to tar-
geted gene therapy of cancer cells [80]. Jinxing Huang et al. also used a gene-silencing
approach to fuel cancer treatment. They proposed a nanotail therapy strategy to co-deliver
the EGFR-TKI gefitinib (Gef) and YAP-siRNA for targeted drug/gene/PDT using large-
scale dendritic polymeric nanoparticles. The resultant NPs could successfully escape
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from endosomes and lysosomes, ensuring the integration of Gef and YAP-siRNA into
GEF-resistant non-small cell carcinoma (NSCLC) cells. The mechanism investigations
demonstrate that nanoparticle can release Pyropheophorbide-a (Ppa) photosensitizer to
produce PDT effect, suppress the activation of the YAP-AXL signaling pathway by releasing
YAP-siRNA, and limit the EGFR transcription through Gef, significantly enhancing the
PDT therapeutic efficiency [81]. Additionally, this nanomedicine combination can increase
PDT sensitivity, and inhibit glycolysis by downregulating HIF-1α, which also lights up a
new possibility for PDT-based gene therapy for tumor treatment.

Yu Liu combined mitochondria-targeted heptathiocyanine dye IR-68 with mitochon-
drial complex I and II inhibitor lonidamine (LND), and further assembled the mixture
with albumin to form IR-LND@Alb NPs. This nano drug can target the mitochondria
of tumor cells and activate the AMPK pathway by inhibiting mitochondrial oxidative
phosphorylation (OXPHOS), thus down-regulating PDL1 expression to achieve the potent
synergistic antitumor effect. Furthermore, IR-LND can down-regulate endogenous oxy-
gen consumption to alleviate tumor hypoxia, thus providing enough O2 to enhance the
therapeutic effect of PDT [82]. (Figure 5).
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Figure 5. Combination therapy of gene therapy and PDT based on IR-LND@Alb: Nanoparticles reach
mitochondria through the targeting of IR-68. LND inhibits mitochondrial oxidative phosphorylation
(OXPHOS) and increases the ADP/ATP ratio. On the one hand, it can activate AMPKa channel
and reduce the expression of PDL1 to prevent immune escape of tumors. On the other hand, it can
alleviate the hypoxia in the tumor and generate ROS, thereby improving the photothermal efficacy
of PDT and promoting the apoptosis of tumor cells. Reproduced with permission from Ref. [82],
Copyright (2022) John Wiley and Sons.

2. Discussion

The development and optimization of PS still require significant effort. To be further
applied in the clinic, there are still many difficulties needed to be overcome. Currently,
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a variety of new PSs and PDT-based innovative therapies are emerging, which dramat-
icly improves the effectiveness and safety of PDT for tumor treatment. These innova-
tive explorations mainly focus on the following three improvement strategies. Firstly,
optimize PSs tolerant to hypoxia conditions and make it produces ROS efficiently in
tumor anoxic environment. In addition, design tumor-targeted nanocarriers, and PSs
activated by tumor microenvironment to improve the target capacity of PDT. Finally, in-
crease the penetration depth of the excitation light for PS, such as chemiluminescence and
bioluminescence strategies.

Different treatment approaches have their unique advantages and limitations. For
example, the appropriate chemotherapy-phototherapy partition ratio in a combined chem-
otherapy-phototherapy system is critical for optimal cancer treatment outcomes. For the
antibody-drug system, it is essential to enhance the targeting ability of therapeutic agents
to improve the efficiency of combination therapy. For radiotherapy-phototherapy, the
preparation of monodisperse nanomaterials with uniform size and high photon yield,
combine nanomaterials with clinical radiation as sensitizers, and be effective at well-
tolerated low radiation doses are still significant challenges. Some scholars even believe
that PDT can be regarded as an intraoperative adjuvant therapy during the resection of
some solid tumors (such as HCC). The fluorescence stimulated by PS will provide a visual
aid to the surgeon. The optimal irradiation equipment and the most appropriate power
and wavelength will be used to illuminate the cavity to kill the undetected residual tumors
at the end of the surgery [83]. However, before considering the combination of PDT and
surgery, we need to standardize PDT protocols in the clinic, including optimal PS and
photo dose, optimal drug-optical interval, etc. It is also need to work on the development
of irradiation devices specifically for open surgery and endoscopic resection.

With the synergistic action of immune drugs, PDT can remarkably enhance the ablation
of local primary tumors and even efficiently inhibit tumor metastasis. The PDT dose, the
intensity of the inflammatory response, and the release of the target cell antigen may all be
related to the activation process or associated with the stimulation of immune cells. PDT can
also be administrated with gene therapy to fuel the PDT therapeutic efficiency by precisely
regulating target cell homeostasis at DNA, RNA, and (or) protein levels. Although PDT has
shown great potential in cancer therapy, several issues that should not be ignored to achieve
the goal of nanomaterial-based PDT for cancer treatment. Firstly, promoting biocompatible
carrier materials to reduce side effects is the most critical factor for the PDT agent system.
Besides, the unique Spatio-temporal form of monotherapy should be considered when
combined with PDT collaborative therapy. Secondly, the main potential risks of the clinical
application of nanoparticle-based PDT are systemic stability, the complexity of clearance,
and long-term effects on the human body. In addition, the relationship between the immune
system and PDT-based combination therapy remains fuzziness. More systematic safety
studies must be conducted before these explorations applied in the clinic.

3. Conclusions

As a non-invasive therapy method, PDT has obtained significant progress in recent
years. From early skin infection, and epidermal tumors, and now to solid tumor treatment,
PDT especially shows excellent potential for cancer treatment. Photosensitizers play a
crucial role in PDT, and numerous new multifunctional photosensitizers have emerged,
that greatly promoting the application prospect of PDT. Besides, based on the noninva-
sive operation and unique therapeutic mechanism, PDT can be perfectly combined with
chemotherapy, radiotherapy, immune therapy, and gene therapy. It is believed that with the
continuous optimization of photosensitizers, and PDT-based combined treatment systems,
PDT has a broader clinical application prospect in cancer treatment.
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