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Simple Summary: Soft tissue sarcoma is a rare entity that accounts for 1% of adult cancers but represents
20% of paediatric solid tumours. Overall prognosis in advanced disease remains poor. MicroRNAs
(miRNAs) are short non-coding RNAs that target mRNAs and control gene expression and may exert
both oncogenic and tumour suppressor functions in cancers. The deregulation of miRNAs in soft tissue
sarcomas may be exploited in the development of miRNA-based strategies for the prognostication of
disease outcomes, identification of treatment resistance and new-generation therapeutics.

Abstract: Soft tissue sarcomas are highly aggressive malignant neoplasms of mesenchymal origin,
accounting for less than 1% of adult cancers, but comprising over 20% of paediatric solid tumours. In
locally advanced, unresectable, or metastatic disease, outcomes from even the first line of systemic
treatment are invariably poor. MicroRNAs (miRNAs), which are short non-coding RNA molecules,
target and modulate multiple dysregulated target genes and/or signalling pathways within cancer
cells. Accordingly, miRNAs demonstrate great promise for their utility in diagnosing, prognosticating
and improving treatment for soft tissue sarcomas. This review aims to provide an updated discussion
on the known roles of specific miRNAs in the pathogenesis of sarcomas, and their potential use in
prognosticating outcomes and prediction of therapeutic resistance.

Keywords: soft tissue sarcomas; microRNA; prognostic biomarkers; predictive biomarkers;
treatment resistance

1. Introduction

Sarcomas are malignant neoplasms of mesenchymal origin with over 70 histologic
subtypes and may be broadly divided into two categories: soft tissue sarcomas (thought to
arise from the muscle, fat, nerve/nerve sheath, blood vessels or other connective tissue)
and bone sarcomas (Figure 1) [1]. They account for 1% of adult cancers, and nearly 21%
of all paediatric solid malignant cancers, with soft tissue sarcomas comprising nearly 90%
of sarcomas [2]. Soft tissue sarcomas may arise anywhere in the body, but most originate
in the extremities, the abdomen, or the head and neck [3,4]. While no formal etiology has
yet been defined, multiple gene rearrangements have been associated with an increased
risk of certain soft tissue sarcoma subtypes, such as in Ewing’s sarcoma (EWSR1–FLI-1
fusion), myxoid liposarcoma (TLS–CHOP fusion), alveolar rhabdomyosarcoma (PAX3–
FHKR fusion) and synovial sarcoma (SSX–SYT fusion) [5].

Traditionally, soft tissue sarcomas are managed by wide excisional surgery for localized
disease. Surgery may also be used as a palliative procedure in metastatic disease [6].
With the exception of gastrointestinal stromal tumours (GIST), adjuvant treatment is not
standard, even in R0 resections. Radiotherapy and chemotherapy are typically reserved for
advanced disease; radiotherapy is usually provided in high-risk tumours that are large,
deep and/or high grade [7], while adjuvant systemic treatment is controversial, but may be
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considered on a case-by-case basis [8]. While a meta-analysis of randomized trials found a
statistically significant—albeit marginal—advantage of adjuvant chemotherapy in terms
of both recurrence-free survival and overall survival [9], a large phase III randomised
controlled trial subsequently demonstrated that adjuvant chemotherapy in resected soft
tissue sarcoma failed to show improved survival [10]. Increasingly, novel targeted therapies
are also used in the management of soft tissue sarcomas following better understanding
of the molecular pathogenesis and genomic profiles of some soft tissue sarcomas, but this
applies only to a minority of subtypes [8]. The median survival in soft tissue sarcoma
patients with metastatic disease is one year [11–13]. Even in patients with localized disease,
up to 50% develop metastases and die despite undergoing definitive therapy [5,14], thus
highlighting the need for earlier diagnosis, appropriate management and novel treatment
approaches in soft tissue sarcomas.
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MicroRNAs (miRNAs) are short non-coding RNAs of 19–25 nucleotides that regulate
post-transcriptional gene expression. Mature miRNAs bind to complementary sites on
target mRNAs, usually at the 3′ UTR, thereby suppressing mRNA translation or causing
degradation of the mRNA transcript [16]. Because of their ability to target multiple different
mRNAs, miRNAs are able to modulate almost any biological pathway. Accordingly, miR-
NAs are important regulators of various cancer-related processes, such as differentiation,
proliferation, metastasis and apoptosis [17], and are therefore attractive targets for miRNA-
based therapies. They have been found to be generally downregulated in tumours [18] but
can exert both oncogenic and tumour suppressor functions in cancers. Although miRNAs
comprise ~0.01% of the total RNA mass in a given sample, advances in strategies to detect
and target miRNAs have greatly improved, thus making miRNAs attractive biomarkers in
the early diagnosis, staging and monitoring of cancer progression [19], as well as targets
for drug development [20].

The role of miRNAs in the diagnosis of soft tissue sarcomas has been proposed and
discussed elsewhere [21,22]; however, the use of miRNA as biomarkers for predicting patient
outcomes and therapeutic resistance in soft tissue sarcomas is less defined. In this review, we
will first summarise the known roles of specific miRNAs in the pathogenesis of sarcomas, then
discuss their potential use in prognosticating outcomes and prediction of therapeutic resistance.

2. MicroRNAs in the Pathogenesis of Soft Tissue Sarcomas

miRNAs mediate soft tissue sarcoma progression by influencing various pathogenic
processes, thereby acting as oncogenes or tumour suppressors. As the clinical behaviours
underlying pathogenesis and management of soft tissue sarcomas differ between subtypes,
the following discussion will review the roles of relevant miRNAs within each soft tissue
sarcoma subtype. Table 1 summarises the key miRNAs known to be involved in the
regulation of various soft tissue sarcoma subtypes.
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Table 1. Differential expression of miRNAs and their roles in cancer development in soft tissue sarcomas.

Soft Tissue Sarcoma Effect on Cancer Development microRNA

GIST
Inhibit

miR-494 [23,24]
miR-218 [25–27]

miR-221/222 [28–30]
miR-17 [30]
miR-20a [30]

miR-4510 [31]
miR-152 [32]

miR-133b [33]
miR-518a-5p [34]

miR-137 [35]

Promote
miR-374b [36]
miR-196a [37]

Liposarcoma Inhibit

miR-143 [38,39]
miR-486 [40]

miR-145 [38,41]
miR-451 [39,41]

miR-193b [42,43]
miR-133a [44]
miR-195 [45]

Promote

miR-155 [39,46–48]
miR-26a-2 [38,49,50]

miR-135b [51]
miR-25-3p [52]
miR-92a-3p [52]

miR-3613-3p [53]

Rhabdomyosarcoma

Inhibit

miR-206 [54–61]
miR-1 [55,56,62,63]
miR-29 [56,64,65]
miR-26a [66,67]

miR-7 [68,69]
miR-324-5p [69]

miR-378 family [70]
miR-133a [62]
miR-133b [63]

miR-450b-5p [71]
miR-203 [72]

miR-411-5p [73]
miR-221/222 [74]

miR-214 [75]
miR-101 [76]
miR-874 [77]

miR-410-3p [78]

Promote
miR-27a [79,80]
miR-486-5p [74]

Malignant peripheral nerve sheath tumour

Inhibit

miR-204 [81]
miR-30d [82]
miR-30a [83]

miR-200b [83]
miR-34a [84]

Promote
miR-21 [85]
miR-801 [86]
miR-214 [86]

Leiomyosarcoma
Inhibit

miR-1246 [87]
miR-191-5p [87]

miR-34a [88]
miR-152 [89]

Promote
miR-181b [90]
miR-320a [91]

Synovial sarcoma

Inhibit
miR-494-3p [92]

miR-126 [93]

Promote

Let-7e [94]
miR-99b [94]

miR-92b-3p [95]
miR-214 [96]
miR-9 [97]

miR-17 [98]

Fibrosarcoma
Inhibit

miR-29 [99]
miR-197 [100]

Promote
miR-520c [101]
miR-373 [101]

Angiosarcoma
Inhibit

miR-497-5p [102]
miR-210 [103]
miR-340 [104]

Promote -
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2.1. Gastrointestinal Stromal Tumour

Gastrointestinal stromal tumour (GIST) is the most common mesenchymal tumour
specific to the gastrointestinal tract and is commonly characterized by activating mutations
in the KIT or PDGFRA receptor tyrosine kinases [105]. KIT is an oncogene which has a
gain-of-function mutation in approximately 70% of GISTs [106,107]. Several miRNAs are
shown to inhibit the progression of GIST via the regulation of KIT (Figure 2).
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Downregulation of miR-494 has been observed in GIST cell lines, and miR-494 overex-
pression in GIST cells triggered apoptosis and inhibited cell growth [23,24]. miR-494 was
found to regulate the expression of KIT and other molecules in its downstream signaling
cascade, including phospho-AKT and phospho-STAT3 [23]. miR-494 was also shown to
target survivin, with downregulation of survivin leading to G2-M phase arrest and apop-
tosis, along with inhibition of cell proliferation and colony formation [24]. Analysis of
survivin/KIT interaction showed that survivin regulated KIT expression at the transcrip-
tion level, thus exerting effects on the PI3K-AKT pathway in GIST as well [24]. Another
miRNA found to be markedly decreased in GIST tissues is miR-218 [25,26], with ectopic
overexpression in GIST cells via chitosan-tocopherol nanoparticle or liposome delivery
demonstrating decreased cell proliferation and increased apoptosis [25,27]. KIT was identi-
fied as a target of miR-218 in both studies [25,27]. The miR-221/222 cluster, dysregulated in
many malignancies [108–110], is also downregulated in GIST [28–30]. KIT-positive GISTs
showed significant repression of miR-221/222 as compared to normal tissues and KIT-
negative GISTs [28]. The role of miR-221/222 in the modulation of KIT and the PI3K/AKT
pathway in GIST was confirmed by Ihle et al. who demonstrated that transient transfection
of miR-221/222 reduced GIST cell viability and induced apoptosis by inhibition of KIT
expression and its downstream signalling cascade [29]. This was corroborated by Gits et al.
who showed the direct regulation of KIT by miR-222 in GIST [30].

Other miRNAs that are downregulated in GIST include miR-17, miR-20a, miR-4510,
miR-133b, miR-152, miR-518-5p and miR-137 [30–34]. These miRNAs play a role in con-
trolling tumour proliferation, migration and invasion, and in inducing apoptosis. miR-17
and miR-20a act by targeting ETV1 [30], a transcription factor that supports tumorigenesis
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and is universally highly expressed in GISTs [111]. miR-4510 demonstrated its tumour
suppressor effects by targeting and inhibiting apolipoprotein C-II (ApoC2) expression, and
also decreased the activity of AKT, ERK1/2, MMP2 and MMP9 [31]. miR-152 was found to
target and suppress the expression of cathepsin L (CTSL) [32], a lysosomal cysteine pro-
tease correlated with metastatic aggressiveness and poor patient prognosis [112]. Epithelial
mesenchymal transition (EMT) was another key process in cancer progression regulated
by miR-137, which was reported to target Twist1 and increase the expression of epithelial
markers E-cadherin and cytokeratin while decreasing the expression of mesenchymal mark-
ers N-cadherin and vimentin in GIST cells. As with the other aforementioned miRNAs,
miR-137 also decreased GIST cell migration, activated G1 cell cycle arrest, and induced cell
apoptosis [35].

On the contrary, oncogenic miRNAs promote the development of GIST. miR-374b was
highly expressed in GIST tissues, and its expression increased the mRNA and protein levels
of various molecules in the PI3K/AKT cell survival pathway in GIST cells [36]. miR-374b
was also found to promote cell viability, migration, invasion and cell cycle progression
in GIST cells, along with inhibition of apoptosis [36]. It was further reported that miR-
196a expression is overexpressed in high-risk GIST samples as compared to the low- or
intermediate-risk GIST tissues, with the upregulation of miR-196a associated with GIST
malignancy [37].

2.2. Liposarcoma

Liposarcoma is one of the most common soft tissue sarcomas, and may be classi-
fied into four subtypes based on its pathological and molecular genetic characteristics:
pleomorphic (PLPS), myxoid/round cell (MLPS/RLPS), dedifferentiated (DDLPS) and
well-differentiated (WDLPS). The round cell component in MLPS/RLPS is thought to be
associated with metastasis and poorer prognosis [113]. The regulation of liposarcoma by
miRNAs occurs through various mechanisms (Figure 3).
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miR-155 is known to act as an oncogene in multiple malignant tumours [114]. It has
been found to be the most over-expressed miRNA identified in DDLPS tumour samples
and cell lines [46] and is also over-expressed in PLPS and MLPS/RLPS [39,47]. miR-155
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was further shown to promote tumour cell growth in DDLPS by targeting casein kinase 1α
(CK1α), thereby enhancing β-catenin signalling and cyclin D1 expression [46]. miR-26a-2
has also been found to be overexpressed in WDLPS, DDLPS and MLPS/RLPS [38,49].
Overexpression of miR-26a-2 in LPS cell lines improved sarcoma cell growth and sur-
vival, including faster cell proliferation and migration, enhanced clonogenicity, suppressed
adipocyte differentiation and/or resistance to apoptosis. Overexpression of RCBTB1, a
direct target of miR-26a-2, made LPS cells more susceptible to apoptosis [49]. HOXA5 has
also been demonstrated to be a target of miR-26a-2, with the downregulation of HOXA5
inhibiting the apoptotic response in LPS cells [50].

Other miRNAs which are overexpressed in LPS and play a role in invasion and metas-
tasis include miR-135b, miR-25-3p and miR-92a-3p [51–53]. miR-135b is highly expressed
in the round cell component of MLPS/RLPS and has been found to promote MLPS/RLPS
cell invasion in vitro and metastasis in vivo by targeting the expression of thrombospondin
2 (THBS2). Decreased THBS2 expression increases the amount of matrix metalloproteinase
2 (MMP2) thereby modulating the extracellular matrix structure, resulting in a morphologi-
cal change of the tumour [51]. A study on the extracellular vesicles secreted by LPS cells
showed that they contained miR-25-3p and miR-92a-3p, though they were downregulated
within the liposarcoma tumour itself. The secretion of miR-25-3p and miR-92a-3p then initi-
ated the release of proinflammatory cytokine IL-6 from tumour-associated macrophages,
in turn enhancing LPS cell proliferation, invasion and metastasis [52]. More recently, miR-
1246, miR-4532, miR-4454, miR-619-5p and miR-6126 have been identified to be highly
expressed in human DDLPS cell lines and exosomes and are believed to promote tumour
progression [115].

On the contrary, certain miRNAs have been found to inhibit the progression of LPS
through suppression of proliferation and induction of apoptosis. miR-143 is downregulated
in both WDLPS and DDLPS tumours and cell lines [38,39]. Restoring miR-143 expression
in DDLPS cells decreased the expression of BCL2, topoisomerase 2A, protein regulator of
cytokinesis 1 (PRC1), and polo-like kinase 1 (PLK1). It was further shown that treatment
of LPS cells with a PLK1 inhibitor potently arrested cytokinesis in the G2–M phase and
induced apoptosis [38]. miR-486 expression was also found to be repressed in MLPS tissues,
with the restoration of miR-486 expression resulting in repressed MLPS cell growth [40].
Plasminogen activator inhibitor-1 (PAI-1), shown to promote tumour invasion and angio-
genesis [116], was identified as a target of miR-486. Accordingly, knockdown of PAI-1
inhibited the growth of MLPS cells [40]. Another miRNA that inhibits LPS cell growth and
migration in vitro and suppresses tumour growth in vivo is miR-195. Oxysterol-binding
protein (OSBP) was demonstrated as a direct target of miR-195, with the overexpression of
OSBP reversing the effects of miR-195 on LPS cell growth, migration and apoptosis [45].
miR-145 and miR-451 expression have also been found to be reduced in human LPS samples
of all subtypes [38,39,41], with the reintroduction of miR-145 and miR-451 in LPS cell lines
resulting in impaired cell cycle progression and cellular proliferation and increased cellular
apoptosis [41].

Some miRNAs may also regulate LPS progression by interfering with tumour cell
metabolism and introducing oxidative stress. miR-133a, significantly underexpressed in
DDLPS tissues, has been found to modulate DDLPS cell metabolism, with enforced expres-
sion of miR-133a resulting in decreased glycolysis and increased oxidative phosphorylation.
This was coupled with impaired cell proliferation and cell cycle progression [44]. miR-193b
is found to be underexpressed in DDLPS, with exogenous reintroduction of miR-193b
resulting in LPS cell apoptosis [42]. miR-193b targets CRK-like proto-oncogene (CRKL) and
focal adhesion kinase (FAK); in vivo studies to introduce miR-193b mimetics and an FAK
inhibitor resulted in inhibited LPS xenograft growth in both cases. In addition, miR-193b
also induced oxidative stress in LPS cells by targeting an antioxidant, methionine sulfox-
ide reductase A (MsrA) [42]. Further studies revealed that miR-193b also directly targets
PDGFRβ, SMAD4, and YAP1 [43]. Inhibition of PDGFRβ attenuates the differentiation and
proliferation of LPS cells, while knockdown of SMAD4 promotes adipogenic differentiation.
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Direct inhibition of YAP1 reduces the activity of Wnt/β-catenin signalling. Subsequent
introduction of a PDGFR inhibitor and a Wnt/β-catenin inhibitor demonstrated reduced
cell viability and increased apoptosis in DDLPS and WDLPS cells [43].

2.3. Rhabdomyosarcoma

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in paediatric
patients and young adults. RMS can be classified into two major histological subtypes:
embryonal rhabdomyosarcoma (ERMS) and alveolar rhabdomyosarcoma (ARMS). RMS
may be further classified based on clinical outcome into fusion-positive RMS or fusion-
negative RMS based on the presence or absence of either PAX3-FOXO1 or PAX7-FOXO1
gene fusions. As these gene fusions are absent in ERMS, ERMS patients are all fusion-
negative, while majority of ARMS patients are fusion positive [117–119]. Fusion-positive
RMS tends to have a worse prognosis and overall survival than fusion-negative RMS, thus
ARMS is associated with poorer prognosis [120–122].

In recent studies, miRNAs which have been identified to play a role in skeletal muscle
proliferation and differentiation such as miR-1, miR-133, miR-206 and miR-29 [123,124],
have been investigated for their roles in RMS. miR-206 plays an important role in the
regulation of RMS, with multiple studies demonstrating downregulation of miR-206 in
RMS tissues and cell lines as compared to human myotubes and skeletal muscle [54–61].
Exogenously increasing miR-206 levels in RMS has been shown to promote myogenic
differentiation and block tumour growth in xenografted mice by switching the global
mRNA expression profile to one that resembles mature muscle [54]. This was corroborated
by a separate study showing that the activation of miR-206 resulted in a genetic switch in
RMS cells from a proliferative growth phase to differentiation [57]. In ERMS, the following
regulation pathway of miR-206 was uncovered: PAX3/7-FOXO1 induced oxidative stress
response factor HO-1 expression, which in turn resulted in miR-206 repression. HO-1 inhi-
bition showed reduced RMS tumour growth and vascularisation in vivo, accompanied by
the induction of miR-206 [60]. miR-206 then exerts its anti-tumorigenic effects by targeting
and suppressing the Met receptor tyrosine kinase (c-Met), which is overexpressed in both
ARMS and ERMS [125], and has been implicated in RMS pathogenesis [54,55]. SMYD1
silencing, which occurs with low levels of miR-206 in RMS, impairs differentiation of all
subtypes of RMS. On the contrary, silencing of G6PD, a direct target of miR-206, successfully
suppressed RMS cell proliferation and growth [59]. Furthermore, ectopic expression of
miR-206 in a ERMS fusion-negative RMS cell line showed significant downregulation of
PAX3 protein expression, but this was not observed in ARMS fusion-positive RMS cells as
the formation of a fusion transcript between PAX3 and FOXO1 enabled the cells to evade
miRNA-mediated regulation of PAX3 [56]. In addition, PAX7 downregulation was shown
to be essential for miR-206-induced cell cycle exit and myogenic differentiation in fusion-
negative RMS but not in fusion-positive RMS. Genetic deletion of miR-206 in a mouse
model of fusion-negative RMS promoted tumor development [58]. Interestingly, while
there is much evidence to show that miR-206 is downregulated in RMS tumours and cell
lines, analysis of plasma samples of RMS patients has found significantly increased levels of
miR-206 as compared to healthy individuals and patients with non-RMS tumours [67,126].
This may be because RMS forms within skeletal muscle, and miR-206 is a muscle-specific
miRNA, thus elevated levels of this miRNA may be found in RMS patient serum.

Another notable miRNA in RMS regulation is miR-1 [54,55,63]. Besides downregu-
lating PAX3 expression in ERMS [56], miR-1 was also found to suppress c-Met expression
in RMS [55]. miR-1 was shown to encourage myogenic differentiation in RMS cells, and
ectopic increase in miR-1 expression resulted in growth inhibition of RMS cells, likely due
to G1-S cell cycle arrest [62]. Furthermore, overexpression of miR-1 and miR-133b also
resulted in autophagic cell death through the silencing of polypyrimidine tract-binding
protein 1 (PTBP1), a positive regulator of cancer-specific energy metabolism [63]. PAX3-
FOXO1, which could upregulate the expression of a key kinase involved in glycolysis and
the Warburg effect through increased expression of PTBP1, was targeted and repressed
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by miR-133b [63]. Overexpression of miR-133a in ERMS cells resulted in cell cycle arrest,
suggesting its role as a tumour suppressor [62].

Several miRNAs share similar targets in the regulation of RMS. miR-29 is a key
miRNA that is epigenetically silenced in RMS tissues and cell lines [56,64,65]. It has
been reported that the downregulation of miR-29 occurs via an activated NF-κB-YY1
pathway, in which NF-κB acts through Ying Yang 1 (YY1) [64]. miR-29 was found to
target and repress the expression of cell cycle regulators cyclin D2 and E2F7, resulting
in partial G1 arrest and decreased cell proliferation in RMS [56]. In addition, miR-29
also targets GEFT, which is associated with poor prognosis in patients with RMS [127].
Repression of GEFT activity by miR-29 weakened the effect of GEFT on the migration,
invasion and apoptosis of RMS cells [65] while restoration of miR-29 in mice inhibited
tumour growth and stimulated differentiation [64,65]. GEFT translation and expression
were also found to be inhibited by miR-874, an miRNA downregulated in RMS tissues.
Overexpression of miR-874 in RMS cells inhibited proliferation, invasion and migration
in RMS cells and also induced apoptosis, while GEFT restoration partially reversed the
anti-tumour effects of miR-874 [77]. miR-26a has also been found to be downregulated in
RMS tumours and cell lines. Expression levels of miR-26a were further demonstrated to
be inversely related to EZH2 [66], a histone methyltransferase overexpressed in various
aggressive cancers [128,129]. Circulating levels of miR-26a in RMS patient plasma were
also reduced, and miR-26a plasma levels were associated with fusion status, with PAX3/7-
FOXO1-positive RMS samples displaying lower levels of miR-26a compared to fusion-
negative samples [67]. Separately, EZH2 was found to downregulate miR-101 in ERMS
cells via a negative feedback loop, and overexpression of miR-101 was able to reduce ERMS
tumorigenic potential, impairing colony formation and cell cycle progression [76].

Other miRNAs which are downregulated in RMS cell lines and tissue samples have
also demonstrated anti-tumour effects in RMS by inducing apoptosis and myogenic dif-
ferentiation, as well as impairing cell proliferation, invasion and metastasis. In miR-7
transfected RMS cells, miR-7 acts via its target mitochondrial proteins solute carrier family
25 member 37 (SLC25A37) and translocase of inner mitochondrial membrane 50 (TIMM50)
to promote apoptosis and necroptosis [68], and also impair tumour invasion and lung
metastasis [69]. In addition, miR-7 and miR-324-5p regulate pro-oncogenic protein ITGA9,
and overexpression of the two miRNAs reduced tumour growth in orthotopic mice tumour
models [69]. Insulin-like growth factor receptor 1 (IGF1R), a key signalling molecule in
RMS, was shown to be a target of miR-378a-3p. Upregulation of miR-378a-5p expression
resulted in apoptosis, decreased cell viability and G2 phase cell cycle arrest in RMS cells,
along with upregulation of myogenic proteins such as MyoD and MyHC, demonstrating a
shift towards myogenic differentiation [70]. Similarly, miR-450b-5p, suppressed in RMS by
TGF-β1 through a pathway mediated by Smad3 and Smad4, exerted anti-tumour effects
in tumour implants and cells by arresting RMS growth and upregulating MyoD expres-
sion [71]. An autoregulatory loop between TGF-β1/miR-411-5p/SPRY4 and MAPK in
RMS has also been established, in which it is suggested that miR-411-5p inhibits SPRY4
to activate MAPK, promoting apoptosis and myogenic differentiation in RMS cells [73].
miR-203 was also reported to be downregulated by promoter hypermethylation in RMS
tumour samples and cell lines. Restoration of miR-203 expression in RMS cells was able
to inhibit their migration and proliferation. Furthermore, miR-203 promoted myogenic
differentiation by inhibiting the Notch and JAK1/STAT1/STAT3 pathways via its target
proteins p63 and leukaemia inhibitory factor receptor [72]. miR-214 reintroduction into
RMS cells was able to inhibit tumour cell growth, promote apoptosis and induce myogenic
differentiation. Proto-oncogene N-ras was reported as a conserved target of miR-214 in its
suppression of xenograft tumour growth [75]. Lastly, exogenous expression of miR-410-3p
was shown to inhibit EMT in RMS, with the inhibition of RMS cell invasion, migration and
proliferation [78].

In contrast, miR-27a and miR-486-5p were discovered to be upregulated in the more
aggressive fusion-positive RMS samples and cell lines [74,79]. miR-27a was further found
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to enhance cell cycle progression by targeting the retinoic acid alpha receptor (RARA)
and retinoic X receptor alpha (RXRA), resulting in increased RMS cell proliferation [79].
Regulation of miR-27a via a HDAC3–SMARCA4–miR-27a–PAX3-FOXO1 circuit further
demonstrated the ability of miR-27a to destabilize PAX3-FOXO1 mRNA in ARMS cells [80].

2.4. Malignant Peripheral Nerve Sheath Tumour

Malignant peripheral nerve sheath tumour (MPNST) is an aggressive soft tissue sar-
coma arising from peripheral nerves or deep neurofibromas. It has a poor prognosis due to
its propensity for metastasis and local recurrence. MPNSTs may occur sporadically, but
around half of MPNST cases arise in patients with the autosomal dominant genetic disorder
neurofibromatosis type 1 (NF1) [130,131]. Most NF1-related tumours demonstrate abnor-
mal Ras signalling pathways, with various genes involved in the Ras pathway deregulated
in MPNSTs [132].

miR-204 was found to be downregulated in both NF1 and non-NF1 MPNST tissues
and cell lines [81]. Restoration of miR-204 levels resulted in reduced cellular proliferation,
migration and invasion in vitro, and decreased tumour growth and invasion in vivo. It was
further found that miR-204 modulated Ras signalling and carcinogenesis progression in
MPNSTs via direct inhibition of HMGA2 [81]. Members of the miR-30 family have also been
reported to be downregulated in MPNSTs. The transcription of miR-30d is inhibited by
high levels of enhancer of zeste homolog 2 (EZH2) in MPNST, thereby leading to enhanced
expression of karyopherin beta 1 (KPNB1), a direct target of miR-30d. Exogenous regulation
of the EZH2–miR-30d–KPNB1 signalling pathway was able to induce MPNST cell apoptosis
in vitro and suppress tumorigenesis in vivo [82]. A further study showed that miR-30a
demonstrated similar regulation of expression in MPNSTs via the EZH2–miR-30a–KPNB1
signalling pathway [83]. MiR-200b was found to be suppressed by EZH2, resulting in
EMT in MPNST cells, often thought to be one of the initial steps in metastasis [83]. Finally,
miR-34a expression is downregulated in MPNSTs relative to neurofibromas due to p53
inactivation, with exogenously increased expression of miR-34a demonstrating increased
apoptotic cell death [84].

Likewise, certain miRNAs in MPNSTs are upregulated. miR-21 expression levels
in MPNST clinical samples were significantly higher compared to NF samples [85], con-
gruent to its high levels of expression in multiple other types of cancers and soft tissue
tumours [133]. Inhibition of miR-21 in MPNST cell lines showed suppressed cell growth
and upregulated levels of its target protein, programmed cell death protein 4 (PDCD4),
which is known to act as a tumour suppressor gene and is upregulated during apopto-
sis [134]. It was further found that miR-21 inhibition decreased caspase activity, suggesting
that miR-21 plays a crucial role in modulating programmed cell death in MPNSTs [85].

2.5. Leiomyosarcoma

Leiomyosarcomas (LMS) are highly aggressive malignancies of smooth muscle tissues
which account for approximately 10% of all STS [135]. Uterine leiomyosarcomas (UMLS)
account for the single largest site-specific group of LMS and is also the most common
subtype of uterine sarcomas [135,136].

There are statistically significant differences in the expression of multiple miRNAs
between LMS and smooth muscle samples [137], endometrial stromal sarcomas [138] and
undifferentiated pleomorphic sarcomas [91], pointing towards a unique miRNA signature
which could be used for the detection and diagnosis of LMS. In LMS, high levels of miR-181b
were observed in both ULMS and soft tissue LMS, though to a greater extent in ULMS [90].
On the contrary, miR-152 down regulation was observed in LMS samples [89]. Transfection
of miR-152 into LMS cells resulted in decreased proliferation, increased apoptosis and
S-phase cell cycle arrest. This was coupled with downregulation of proto-oncogenes MET
and KIT mRNA and protein expression, which in turn was associated with a transient
down-regulation of the PI3K/AKT pathway [89]. In addition, overexpression of maternal
embryonic leucine zipper kinase (MELK), an oncogenic kinase [139,140], in ULMS showed
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significant downregulation of miR-34a expression. The IL-6 receptor was identified as the
target gene of miR-34a, such that decreased miR-34a could induce the activation of the
JAK2/STAT3 pathway and a consequent anti-apoptotic mechanism [88].

2.6. Synovial Sarcoma

Synovial sarcoma is a high-grade mesenchymal neoplasm that accounts for 10% to
20% of all soft tissue sarcomas in adolescents and young adults [141,142].

Downregulation of miR-494-3p and miR-126 was discovered in synovial sarcoma
tumours [92,93]. Re-expression of miR-494-3p in synovial sarcoma cells was associated
with a decrease in cell proliferation and migration, along with apoptosis induction. CXCR4,
involved in tumour development and metastatic spread in a variety of cancers [143,144],
as well as synovial sarcoma cell migration and invasion [145], has been identified as a
potential target of miR-494-3p [92]. The long non-coding RNA HOTAIR was shown to
regulate the expression of miR-126 in synovial sarcoma, and miR-126 in turn targeted
SDF-1, a protein that modulates EMT, migration and proliferation in synovial sarcoma [93].

Likewise, oncogenic miRNAs involved in the potentiation of synovial sarcoma were
also reported. Overexpression of let-7e microRNA and miR-99b in synovial sarcoma were
found, and the downregulation of the two miRNAs using miRNA inhibitors resulted in
the suppression of cell proliferation, accompanied by an increased expression of their
putative targets, high mobility group (HMGA2) and SMARCA5 [94], both of which are
associated with the development of tumours [146–149]. miR-214 also played a role in
synovial sarcoma development by enhancing cytokine expression, though there was no
evidence to suggest that it could induce cellular growth, migration or invasion [96]. In
addition, miR-9 was found to induce EMT in synovial sarcoma cell via its target protein
CDH1, thereby activating associated MAPK/ERK and Wnt/β-catenin signalling pathways
and eliciting pro-tumorigenic effects and inhibiting apoptosis [97]. miR-17, expressed and
upregulated in synovial sarcoma, was shown to target p21 [98], a tumour suppressor shown
to induce growth arrest and differentiation in cancers [150]. Knockdown of miR-17 in turn
showed significantly decreased cell growth [98].

2.7. Fibrosarcoma

Fibrosarcomas are defined as a malignant neoplasm composed of fibroblasts with
variable collagen production [151]. miR-197-3p is downregulated in human fibrosarcoma
cells [100]; restoration of miR-197-3p levels inhibits fibrosarcoma cell viability, colony
forming and migration ability, and triggers G2-M phase cell cycle arrest and autophagy.
Ras-related nuclear protein (RAN) which is overexpressed in various cancers [152–154],
has been identified as a direct target of miR-197-3p. Exogenous expression of miR-197-
3p resulted in the suppression of RAN and the consequent attenuation of fibrosarcoma
cell proliferation and migration [100]. The miR-29 family (miR-29s) has also been found
to be under expressed in human fibrosarcoma cells [99]. It was further discovered that
MMP2, a pro-tumorigenic pro-angiogenic enzyme commonly overexpressed in metastatic
cancer [155,156], is a direct target of miR-29s. Ectopic expression of miR-29s resulted in
reduced MMP2 enzyme activity and inhibition of fibrosarcoma cell invasion [99]. Con-
versely, miR-520c and miR-373, overexpressed in fibrosarcoma cells, directly target mTOR
and SIRT1, which are negative regulators of MMP9 expression. An ectopic increase in
miR-520c and miR-373 levels therefore demonstrated a resultant increase in MMP9 activity,
enhancing cell migration and growth [101].

2.8. Angiosarcoma

Angiosarcomas are vascular sarcomas of endothelial cell origin [157]. Three microR-
NAs, miR-497-5p, miR-210 and miR-340 act as tumour suppressors and are downregulated
in angiosarcomas [102–104]. Theintroduction of miR-497-5p mimics in vitro inhibited cell
proliferation, cell cycle progression, and invasion by downregulating MMP9 and cell cycle
related proteins cyclin D1 and p53. miR-497-5p was also found to target and repress the
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calcium-activated potassium channel KCa3.1, such that the use of a KCa3.1 inhibitor or
miR-497-5p mimics in an in vivo angiosarcoma xenograft inhibited tumour growth [102].
miR-210 was shown to target E2F transcription factor 3 and ephrin A3, in which knockdown
of the two proteins resulted in angiosarcoma cell number reduction [103]. Finally, over-
expression of miR-340, an established tumour-suppressor in multiple cancers [158–160],
demonstrated growth inhibition and reduced invasion in angiosarcoma cells. Sirtuin
7 (SIRT7) was identified as a target gene of miR-340, with silencing of SIRT7 resulting in
the inhibition of angiosarcoma cell proliferation and invasion [104].

3. MicroRNAs in Prognostication of Soft Tissue Sarcomas

Recent studies have also reported the correlations between miRNA expression and
metastatic risk, tumour grade, overall survival and recurrence-free survival, indicating the
possible utility of miRNA-guided prognostication of soft tissue sarcomas. A summary of
the miRNAs involved in the prognostication of soft tissue sarcomas is found in Table 2.

Table 2. miRNAs that prognosticate for poor survival and metastasis in soft tissue sarcoma.

GIST

Poor patient survival

miR-494 (downregulation) [24]
miR-133b (downregulation) [33]
miR-1915 (downregulation) [161]
miR-196a (overexpression) [37]
let-7e (downregulation) [162]

Increased metastatic risk

miR-494 (downregulation) [24]
miR-133b (downregulation) [33]
miR-1915 (downregulation) [161]
miR-186 (downregulation) [163]
miR-196a (overexpression) [37]

miR-215-5p (downregulation) [164]

Liposarcoma
Poor patient survival

miR-26a-2 (overexpression) [49]
miR-135b (overexpression) [51]
miR-155 (overexpression) [39]

Increased metastatic risk miR-135b (overexpression) [51]

Rhabdomyosarcoma
Poor patient survival miR-206 (downregulation) [61]

miR-26a (downregulation) [67]

Increased metastatic risk miR-206 (downregulation) [61]
miR-486-5p (overexpression) [74]

Leiomyosarcoma

Poor patient survival miR-181b (downregulation) [90]

Increased metastatic risk
miR-15a (overexpression) [138]
miR-92a (overexpression) [138]
miR-31 (downregulation) [138]

Synovial sarcoma
Poor patient survival miR-214 (overexpression) [96]

Increased metastatic risk miR-494-3p (downregulation) [92]

3.1. Gastrointestinal Stromal Tumour

In GIST, smaller tumour size and a lower mitotic rate correspond with lower metastatic
risk [165]. Negative correlations between miR-494 expression and tumour size, mitotic
index, grade and survival were found. Kaplan–Meier analysis revealed that patients ex-
pressing weak levels of miR-494 had poorer overall survival [24]. miR-133b, downregulated
in GIST, has been found to target and suppress the expression of fascin-1 directly. Ele-
vated levels of fascin-1 expression were significantly correlated with shorter disease-free
survival, and several pathological features associated with a more aggressive phenotype
and metastasis, such as tumour size, mitotic counts, risk grade, blood vessel invasion
and mucosal ulceration [33]. In addition, low expression of miR-1915 has been correlated
with metastasis, shorter disease-free survival and overall survival using Kaplan-Meier
analysis [161]. Low miR-186 levels in GIST are also associated with metastatic recurrence
and a poor prognosis, with the inhibition of miR-186 resulting in the upregulation of a set
of genes implicated in cancer metastasis [163]. Furthermore, under-expression of let-7e
miRNA and the overexpression of its target genes were associated with poorer relapse-free
survival [162]. miR-215-5p expression and the risk grade of GIST were also negatively
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correlated [164]. In contrast, overexpression of miR-196a in GIST was associated with a
high-risk grade, a greater propensity for metastasis and poor survival [37].

3.2. Liposarcoma

Kaplan–Meier survival analysis revealed that overexpression of miR-26a-2 was sig-
nificantly correlated with poor patient survival in WDLPS, DDLPS and MLPS [49]. The
expression levels of miR-135b and THBS2 were associated with a higher risk of metas-
tasis, and accordingly correlated significantly with a poorer prognosis in MLPS/RLPS
patients [51]. Furthermore, miR-155 has been found as an indicator of unfavourable progno-
sis in LPS, with higher miR-155 expression levels associated with a worse overall survival
rate and relapse-free survival [39].

3.3. Rhabdomyosarcoma

In RMS, certain miRNAs are differentially expressed between fusion-negative RMS
and fusion-positive RMS (RMS with either PAX3-FOXO1 or PAX7-FOXO1 fusion onco-
genes) and therefore point toward varied clinical outcomes. Low miR-206 expression was
correlated with poor overall survival and was an independent predictor of shorter survival
in metastatic ERMS and fusion-negative ARMS. Low miR-206 expression also significantly
correlated with high SIOP stage and the presence of metastases at diagnosis [61]. Lower
levels of circulating miR-26a were found to be present in patients with fusion-positive
RMS as compared to fusion-negative RMS, and patients with progressive disease and
poorer overall and progression-free survival showed lower levels of miR-26a as well [67].
Furthermore, the PAX3-FOXO1 fusion protein, present in fusion-positive RMS, repressed
miR-221/222 that exerts anti-tumorigenic effects on RMS through the negative regulation of
cyclin D2, CDK6 and ERBB3. In contrast, PAX3-FOXO1 transcriptionally upregulates miR-
486-5p expression and promotes fusion-positive RMS proliferation, invasion and colony
formation [74].

3.4. Leiomyosarcoma

In LMS, miR-181b-5p was associated with recurrence-free survival, and high miR-181b
levels were found to be an independent predictor of recurrence-free survival regardless
of LMS subtype and tumour size [90]. Furthermore, a comparison between primary
and metastatic ULMS lesions showed relative overexpression of miR-15a and miR-92a
in metastatic ULMS, while miR-31 was relatively overexpressed in primary lesions in-
stead [138]. These three miRNAs control the expression of six different genes that are part
of the Wnt signalling pathway, including the Frizzled-6 precursor (FZD6) gene, which was
found to be of higher levels in metastatic ULMS samples. Subsequent siRNA silencing of
Frizzled-6 inhibited cellular invasion and impaired MMP2 activity in ULMS cells [138].

3.5. Synovial Sarcoma

In metastatic tumour samples of synovial sarcoma, downregulation of miR-494-3p
and increased expression of its potential target CXCR4 were more pronounced than in
non-metastatic tumours and healthy tissues [92]. High expression levels of miR-214 in
synovial sarcoma tumours were also correlated with poor prognosis and shorter overall
survival [96]. Interestingly, the correlation between serum miR-92b-3p levels and tumour
size was observed to be statistically significant, thus suggesting that serum miR-92b-3p
levels could reflect tumour burden in synovial sarcoma patients [95].

4. MicroRNAs in Treatment Resistance

miRNAs have also been shown to play a role in influencing the resistance of soft
tissue sarcomas to various forms of treatment (Figure 4). Reversal of miRNA expression
in resistant tumours has the ability to modulate tumour progression, demonstrating the
potential utility of miRNA-based therapy in the treatment of soft tissue sarcomas.
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Imatinib, a tyrosine kinase inhibitor, works by inhibiting KIT activation, thereby block-
ing the activation of the downstream MAP kinase and PI3K-AKT cell survival pathways.
Due to the prevalence of GISTs harbouring activating mutations in KIT, clinical manage-
ment of metastatic or recurrent GIST usually involves the use of a tyrosine kinase inhibitor
such as imatinib mesylate [166]. However, a number of GISTs may progress during or after
treatment with imatinib, posing a challenge to clinicians [167]. Recent studies show that
miRNAs play a role in modulating imatinib resistance in GIST, which could be useful in
guiding clinical management of imatinib-resistant GISTs, or even using miRNAs as a novel
therapeutic tool in the treatment of GIST.

miR-218 expression was found to be decreased in imatinib-resistant cell lines, but
subsequent ectopic overexpression of miR-218 in imatinib-resistant cells under the effect of
imatinib mesylate resulted in significantly decreased cell viability and increased apoptosis.
It was further suggested that the PI3K/AKT signalling pathways could play a role in this
mechanism [26]. Similarly, miR-21 increased the susceptibility of GIST cells to imatinib, with
miR-21-transfected GIST cells demonstrating increased growth inhibition and apoptosis in
response to imatinib treatment compared to controls [168]. miR-518a-5p, downregulated
in imatinib-resistant GISTs, was able to reduce imatinib-resistant GIST cell proliferation
and increase apoptosis when introduced exogenously. It is suggested that modulation of
PIK3C2A, the direct target of miR-518a-5p, affects the cellular response of GIST to imatinib
mesylate, thereby causing resistance [34]. Lower levels of miR-30a were also detected in
GIST cells with lower sensitivity to imatinib treatment, with imatinib treatment further
reducing miR-30a levels in GIST cells. miR-30a was found to increase susceptibility to
imatinib via Beclin-1 knockdown, which increased imatinib sensitivity in GIST cells. These
results were confirmed in mouse tumour models [169]. miR-130a suppression by the long
non-coding RNA HOTAIR increased autophagy and promoted imatinib-resistance in GIST,
through its target autophagy-related protein 2 homolog B (ATG2B) [170]. Interestingly,
GISTs with lower miR-320a expression showed significantly shorter time to imatinib resis-
tance, though the mechanism through which this was mediated was not indicated in the
study [171].

In contrast, overexpression of miR-125a-5p and miR-107 was associated with imatinib
resistance in GIST specimens. It was further shown that expression of the miR-125a-5p
target PTPN18 was suppressed in imatinib-resistant GIST samples, and that the silencing
of PTPN18 expression increased cell viability in GIST882 cells with a homozygous KIT
mutation subsequent to imatinib treatment. However, miR-125a-5p expression did not
modulate imatinib sensitivity in GIST48 cells with double KIT mutations [161]. It was also
observed that higher expression levels of phosphorylated FAK (pFAK), a downstream target
of PTPN18, were present in a GIST cell line with acquired imatinib resistance as compared
to its imatinib-sensitive parental cells. High FAK and pFAK levels were also associated
with KIT mutation status in clinical GIST samples. Treatment with a FAK inhibitor showed
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that it could reverse the imatinib-resistance effect due to miR-125a-5p overexpression and
cause reduced cell viability and increased apoptosis with imatinib treatment [172].

The use of miRNAs as potential biomarkers of imatinib resistance in GIST was studied
by Kou et al. who found that serum miR-518e-5p could discriminate imatinib-resistant
GIST patients from healthy controls and imatinib-sensitive GIST patients [173]. This could
have potential implications in the way detection and diagnosis of imatinib resistance is
made, thereby influencing clinical management.

In ARMS, the PAX3-FOXO1 fusion oncogene regulates chemotherapy and radio-
therapy tolerance [120]. Repression of the oncogenic miR-27a was found to play a role
in PAX3-FOXO1 mRNA destabilization and increased susceptibility of RMS models to
the chemotherapy drug vincristine. This downregulation of miR-27a could be achieved
through the use of the histone deacetylase inhibitor entinostat, which repressed the activity
of the chromatin remodeling enzyme SMARCA4 by inhibiting HDAC3 expression, thereby
downregulating miR-27a [80].

Higher levels of MELK were associated with doxorubicin chemoresistance in ULMS
cells. MELK overexpression in ULMS could induce M2 macrophage polarization via
the miR-34a/JAK2/STAT3 pathway, contributing to doxorubicin chemoresistance in the
tumour microenvironment [88]. In synovial sarcoma, miR-17 was able to confer doxorubicin
resistance by reversing the effects of doxorubicin in p21 expression [98].

A summary of the miRNAs implicated in treatment resistance in soft tissue sarcomas
may be found in Table 3.

Table 3. miRNAs implicated in treatment resistance in soft tissue sarcomas.

Type of Treatment Soft Tissue Sarcoma microRNA Involvement

Imatinib GIST

miR-218 [26]
miR-518a-5p [34]
miR-130a [170]
miR-320a [171]
miR-21 [168]

miR-30a [169]
miR-125a-5p [161,172]

miR-107 [161]
miR-518e-5p [173]

Vincristine Rhabdomyosarcoma miR-27a [80]

Doxorubicin resistance
Leiomyosarcoma miR-34a [88]

Synovial sarcoma miR-17 [98]

5. Conclusions and Future Directions

The exciting field of miRNA research has seen miRNA-based technology entering
pre-clinical and clinical settings as diagnostic and therapeutic tools for various diseases
in recent years. At present, several miRNA-targeted therapeutics for cancer have reached
clinical development, including the use of an miR-34 mimic (MRX34) encapsulated in
lipid nanoparticles for the treatment of multiple solid tumours and an miR-16 mimic for
the treatment of lung cancer [174]. However, important challenges to the clinical use
of miRNA-based therapies remain. The ability of miRNAs to target multiple different
mRNAs is a double-edged sword—while a single miRNA can regulate multiple cancer-
related pathways, off-target effects in healthy cells remain a significant concern. Thus,
identification of miRNAs specific to cancer cells, and directed delivery of miRNAs to target
sites to eliminate this risk is crucial. Furthermore, the delivery of miRNAs is in itself one of
the biggest hurdles for miRNA advancement into the clinical setting. Delivery associated
toxicity, immune response, and difficulties in transfection and biodistribution are but some
of the barriers facing safe and efficient miRNA delivery [175]. Therefore, the need for
rigorous evaluation of toxicity and target engagement is required to avoid early failure in
clinical trials.

In this review, three key areas in which miRNAs may be utilised in the management
of soft tissue sarcomas have been discussed: (i) prognostication, (ii) prediction of treat-
ment resistance, and (iii) therapeutics. The use of miRNAs in the prognostication of soft
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tissue sarcomas could guide clinical management by identifying patients who have higher
metastatic risk and thus require closer surveillance or a lower threshold for adjuvant treat-
ment. Studying miRNA expression in patient serum could also serve as a biomarker for
the earlier detection of disease relapse. Distinguishing which cancers are more amenable to
treatment options based on their miRNA signature could also increase the overall efficacy of
soft tissue sarcoma therapy. Furthermore, the prediction of treatment resistance to specific
agents can potentially guide systemic treatment choices in advanced soft tissue sarcomas.
Finally, miRNA-based therapies offer an appealing approach to cancer treatment because a
single miRNA can regulate multiple target genes and/or signalling pathways within cancer
cells. While few miRNA-based strategies have reached clinical routine, continuous ad-
vancements in this field offer great promise for their utility in diagnosing, prognosticating
and improving treatment outcomes for soft tissue sarcomas.
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