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Simple Summary: The microbiome has been implicated in both homeostasis and disease states,
including cancer. Mechanistic investigations into the role of the microbiome in head and neck
squamous cell carcinoma (HNSCC) are in their relative infancy. To date, the literature suggests an
altered microbiome in subjects with HNSCC, but the mechanisms behind these changes remain to be
elucidated. The use of in vitro models utilizing co-culture of cancer cells with microbes, including
traditional monolayer culture, 3D organotypic culture, and 3D organoids, may help characterize the
underpinnings of the complex relationship between the microbiome and HNSCC, with the goal of
improving risk stratification and ultimately guiding treatment.

Abstract: The microscopic species colonizing the human body, collectively referred to as the micro-
biome, play a crucial role in the maintenance of tissue homeostasis, immunity, and the development
of disease. There is evidence to suggest associations between alterations in the microbiome and the
development of head and neck squamous cell carcinomas (HNSCC). The use of two-dimensional (2D)
modeling systems has made significant strides in uncovering the role of microbes in carcinogenesis;
however, direct mechanistic links remain in their infancy. Patient-derived three-dimensional (3D)
HNSCC organoid and organotypic models have recently been described. Compared to 2D models,
3D organoid culture systems effectively capture the genetic and epigenetic features of parent tissue in
a patient-specific manner and may offer a more nuanced understanding of the role of host–microbe
responses in carcinogenesis. This review provides a topical literature review assessing the current
state of the field investigating the role of the microbiome in HNSCC; including in vivo and in vitro
modeling methods that may be used to characterize microbiome–epithelial interactions.

Keywords: head and neck squamous cell carcinoma; microbiome; in vitro modeling; organotypic
culture systems; 3D organoids

1. Introduction

Head and neck squamous cell carcinoma (HNSCC) affects an estimated 890,000 new
patients every year across the world [1]. Stratification of this patient population is dif-
ficult, due to the existence of few clinically validated biomarkers and a heterogenous
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patient population [2]. Clinicians often rely on clinicopathologic features to guide decision-
making, including depth of invasion, lymphovascular invasion, and perineural invasion [3].
However, there remains debate regarding specific clinical implications of many of these
metrics [2]. While outcomes have improved for human papillomavirus (HPV)-positive
cancers, the prognosis of HPV-negative HNSCC remains largely stable [4]. There remains
an urgent need to further understand the mechanistic underpinnings of the pathogenesis
of HNSCC, and one component of this may be understanding the role of the microbiome.

The microbes colonizing the human aerodigestive tract, collectively referred to as the
microbiome, have been increasingly investigated in recent years and have been implicated
in many disease states, including HNSCC [5,6]. Emerging evidence suggests that the
pathogenesis of HNSCC may be affected by ecological principles such as host–microbe
interactions, cellular communication, and competition at the tumor–host interface to create
multidimensional intertumoral and intratumoral heterogeneity [7]. However, there remains
controversy regarding the specific microbiome profiles in HNSCC tissue implicated in can-
cer microecology, with a lack of consistency between studies potentially due to limitations
in sample collection and modeling techniques.

The examination of host–microbe interactions in disease development warrants the
use of in vitro tissue culture systems containing microorganisms to adequately model
in vivo host biology. While two-dimensional (2D) modeling of host–microbe interactions
has provided useful evidence linking candidate microbes with features such as epithelial
invasion and proliferation [8,9], these modeling systems may be limited in their ability to
recapitulate the multi-layer epithelial architecture present in human host tissue. Three-
dimensional (3D) in vitro models such as organotypic and 3D organoid culture systems
have been utilized to bridge this gap, serving as a relevant tool to examine microbe–tissue
interactions in the setting of carcinogenesis [10]. While 3D culture systems hold significant
potential for investigating host–microbe interactions in the context of oral cavity HNSCC,
their utilization in this area is still in its nascent stages.

This topical review describes the bacterial microbiome of the head and neck, with
particular attention to the altered microbiome present in subjects with HNSCC. Techniques
used to investigate tumor–microbiome interactions are explored, with particular attention
given to the utility of monolayer cell culture techniques and the potential of 3D culture
techniques as novel tools for HNSCC tumor–microbiome profiling.

2. The Microbiome Plays a Role in Head and Neck Homeostasis

The human body is home to thousands of bacteria. The microbiome of the intestinal
tract is perhaps best characterized, with recent attention given to the microbiota of the
head and neck. A recent review of the literature highlighted the diverse bacterial profiles
discovered in anatomic subsites within the head and neck, including the sinuses, larynx,
and ear [11]. Furthermore, the oral microbiome, which itself consists of over 700 unique
species of bacteria, can be divided into anatomic regions with unique bacterial communities,
including the dorsum of the tongue, hard palate, soft palate, subgingival plaque, and
others [12]. Although these anatomically distinct profiles throughout the aerodigestive
tract have been defined, the sites are highly related and likely influence each other. For
example, the administration of chlorhexidine mouthwashes modified the microbiomes
of both the treated oral cavity as well as that of the distal esophagus, highlighting the
interrelatedness of the microbial communities throughout the tract [13].
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In healthy individuals, bacteria of the microbiome serve many beneficial functions [14].
The majority of the investigations into specific bacterial–host interactions have been con-
ducted in intestinal epithelia, where the microbiome has been shown to play a critical role
in normal immune defense. Briefly, a low-level inflammatory response is physiologic in the
healthy intestine, which is initiated by commensal bacteria activating Toll-like receptors
(TLRs) [15]. Local commensal bacteria adhere to epithelial cells and activate a variety of
downstream inflammatory systems via interactions with immune cells including dendritic
cells and Th17 cells [16]. Some commensal bacteria even appear to prevent higher-level
inflammation and secrete products that actively relieve inflammation [17]. Bacteria also
modulate tissue dynamics, as administration of Bifidobacteria has been shown to decrease
intestinal permeability [18]. Although there is a paucity of parallel mechanistic investiga-
tions within the head and neck regions, it is likely that the microbiome similarly contributes
to healthy baseline function.

3. The Microbiome May Be Altered in HNSCC

Bacteria have been linked to several kinds of cancer, notably Helicobacter pylori (H. pylori)
with gastric cancer and Fusobacterium nucleatum (F. nucleatum) with colorectal cancer [19].
Emerging evidence within the past decade has suggested altered microbiomic content in
patients with cancers of the head and neck compared to healthy controls. However, the specific
changes remain unclear.

While many studies suggest that the bacteria of the microbiome associated with HN-
SCC is altered compared to healthy tissue, it is unclear whether the microbiome is directly
involved in disease pathogenesis or simply a marker that reflects an altered tissue environ-
ment. Figure 1 illustrates the current understanding of how microbial infection contributes
to HNSCC pathogenesis. One hypothesized pathogenic role for the microbiome is that spe-
cific bacteria may contribute to inflammation that promotes carcinogenesis [20,21]. Known
HNSCC risk factors, including tobacco, alcohol, and poor oral hygiene, may facilitate this
inflammatory state via the breakdown of tissue integrity and resultant exposure of TLR’s
to the microbiome [6]. In addition to promoting a pro-inflammatory state, prior studies
suggest that periodontal pathogens such as Porphyromonas gingivalis (P. gingivalis) may pro-
mote immune evasion by inducing expression of programmed death ligand (PD-L1/B7-H1)
in squamous cell cancer cells [22,23]. Other studies have suggested that bacteria such as F.
nucleatum are associated with tumor suppressor hypermethylation, resulting in induction
of cell proliferation, as well as impaired transcriptomic regulation of immunomodula-
tory genes (i.e., latexin) [19]. There is also evidence that the microbiome is altered in
precancerous states, further emphasizing a potential stepwise and mechanistic role for
microbiota [24]. Conversely, the biomarker theory of the altered microbiome suggests that
the cancer itself may alter the tissue environment such that different bacterial specimens
are allowed to thrive [5]. It is, of course, possible that each of these hypotheses has validity,
and a rigorous understanding of changes in the microbiome may enable earlier detection
of disease and improved risk stratification [24].

There is a lack of consensus concerning the salient changes to the microbiome that
are seen in patients with HNSCC. To explore the discrepancies, we performed a topical
literature review of works in PubMed published between 2012 and 2023 investigating the
microbiome of human subjects with HNSCC through clinical specimen collections (tissue,
swab, saliva, or some combination). All studies reviewed are represented in Supplementary
Table S1.

Many studies directly compared the microbiomes of samples from patients with HN-
SCC to samples from healthy controls (Table 1). Others investigated whether specific
microbiome profiles were associated with either risk of clinical outcomes (including can-
cer development, mucositis, metastases, or survival) or genetic conditions (i.e., specific
mutations, and other neurodegenerative diseases) (Table 2).
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Figure 1. Schematic illustration of the current understanding of the relationship between microbial
infection and carcinogenesis. This figure was created using Biorender.com (accessed on 23 October 2023).

Our findings concurred with the predicted lack of scientific agreement regarding
bacterial diversity in cancerous specimens (Tables 1 and 2). Some studies report increased
bacterial diversity in cancerous tissue compared to normal tissue [25–28], while others
repeat either decreased diversity [29–32] or no significant differences at all [17,33–35].
One study found differences in diversity even between different cancer mutation sub-
groups [36]. Furthermore, another group elucidated diversity alterations when comparing
the microbiome of cancerous tissue to adjacent normal tissue within the same subject, but
no differences in diversity when comparing HNSCC patients to healthy controls at the
cohort level, suggesting that alterations in the microbiome may be patient specific [19].

The discrepancies in findings may be, at least in part, due to diverse experimental de-
signs and sample collection techniques, different sequencing practices, and bias introduced
in statistical analysis (Supplementary Table S1). While some studies utilize tumor biopsies,
investigations utilizing saliva samples may suffer from the limitation that they combine
contents from multiple anatomic subsites with baseline differences in microbiomes and may
not reflect the microbiome of the tumor subsite, while mouthwash samples may be limited
by alterations in the microbiome caused by exposure to the mouthwash, itself [33]. In
addition, many of the studies included in this review utilize 16s rRNA sequencing to detect
microbial communities; however, this technique can carry the risk of introducing bias in
taxa identification due to differential amplification of certain taxa in the PCR process, even
with well-defined primers [37]. The size of the library (the sequencing depth) and statistical
processing of data can also introduce bias into data analysis, as fundamentally rare taxa
may be missed in studies with low sequencing depth. As such, microbiome data can be
hugely impacted by a variety of components involved in its generation and analysis—thus,
differences in such components across studies may be the source of discordance on the
influence of the microbiome on HNSCC pathogenesis. Furthermore, the general skew of
investigations into OSCC over other subsites may both reflect a sampling bias in terms of
ease of prospective collection of saliva/oral cavity samples as well as a consequence of the
increased prevalence of OSCC cancers [38].

Biorender.com
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Beyond microbial diversity, researchers have also sought to identify specific bacteria
that are either enriched or depleted in cancerous tissue compared to normal (Table 1).
Several studies demonstrated higher expression of Lactobacillus in HNSCC microbiomes
compared to healthy controls [21,39,40]. Interestingly, Lactobacillus colonization in the
colon has been proposed to prevent colorectal cancer via exertion of pro-apoptotic effects,
suggesting diverse roles for the same bacteria within different areas of the body [41]. In ad-
dition, comparing cancerous tissue to normal, several groups found an increased presence
of Fusobaceteria [42,43], and multiple investigations demonstrated a decrease in Streptococ-
cus [5,19,28,44]. Studies have also suggested the association of specific microbial signatures
with disease states, including precancerous lesions and risk of metastases (Table 2) [24,43].
There remains a need to further prospectively characterize clinical outcomes based on
microbiome in both HNSCC patients as well as asymptomatic, at-risk patients.

There may also be elements of the microbiome that protect against HNSCC. In a large
case–control study, Hayes et al., posited that higher concentrations of Corynebacterium and
Kingella were associated with a decreased risk of HNSCC, possibly due to the carcinogen
metabolic abilities of these bacteria [33].

HPV-positive and HPV-negative carcinomas are thought to potentially be clinically
different disease entities [4]. Many microbiome studies assess both HPV-positive and
-negative patients (see Supplementary Table S1); a subset investigated based solely on HPV
status, with several addressing HPV-negative carcinomas [17,19,44] and fewer focusing
on HPV-positive HNSCC patients [35,40]. Many studies do not report the HPV status
of their subjects [5,6,27,29,32,34,45,46]. While there is a well-characterized mechanistic
link between HPV status and the development of squamous cell carcinoma, these studies
suggest that the microbiome may affect this relationship in a manner yet to be elucidated.

Together, these studies (Tables 1 and 2, Supplementary Table S1) have demonstrated
many different associations between bacterial microbial signatures and HNSCC. This
underscores the need to understand the mechanistic links at play and whether therapies
targeting the microbiome may have a role in the treatment of HNSCC.

Table 1. Topical summary of the literature investigating oral microbiome in HNSCC subjects.

Sample Citation
Number

Technique
Bacterial Diversity Notable Specific Bacterial Populations Enriched or Depleted

in Cancer

Alpha Beta Enriched Depleted

Tissue

[20] 16S rRNAseq NR NR Entereobacteriaceae

[25] 16S rRNAseq Increased NR Fusobacterium, Capnocytophaga,
Alloprevotella Streptococcus, Veillonella, Lautropia

[5] 16S rRNAseq Increased + Fusobacterium, Prevotella,
Capnocytophaga

Streptococcus, Veillonella,
Parvimonas

[17] 16s rDNAseq No difference − Parvimonas Actinomyces

[27] 16S rRNAseq Increased + Fusobacterium, Prevotella,
Porphyromonas Streptococcus, Veillonella, Rothia

[29] 16S rRNAseq Decreased + Stenotrophomonas, Ruminococcus,
Comamonadaceae Tannerella, Veillonella, Kingella

[40] PathoChip NR Lactobacillus, Lactococcus, Proteus NR

[35] 16S rRNAseq No difference + Firmicutes, Actinobacteria Spirochetes, Synergistetes,
Fusobacteria

[47] 16s rRNAseq NR + Fusobacteria and Spirochaetes Firmicutes and Actinobacteria
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Table 1. Cont.

Sample Citation
Number

Technique
Bacterial Diversity Notable Specific Bacterial Populations Enriched or Depleted

in Cancer

Alpha Beta Enriched Depleted

Saliva

[39] 16S rRNAseq Increased + Lactobacillus, Streptococcus,
Staphylococcus

Aggregatibacter, Haemophillus,
Neisseria

[21] 16S rRNAseq Increased + Streptococcus, Lactobacillus,
parvmonas Leptotrichia, Fusobacterium

[33] 16S rRNAseq No difference - Actinobacteria NR

[42] RNASeq NR - Fusobacteria, Selenomonas,
Capnocytophaga NR

[26] 16S rRNAseq Increased + Fusobacterium Streptococcus, Haemophilus,
Porphyromonas

[6] 16S rRNAseq NR Prevotella, Fusobacterium Streptococcus

[34] 16S rRNAseq No difference + None None

[44] 16S rRNAseq No difference + Fusobacterium, Prevotella,
Alloprevotella Streptococcus

[31] 16S rRNAseq Decreased + Streptococcus, Gemella, Veillonella Haemophilus, Veillonella,
Fusobacterium

[48] 16S rRNAseq No difference + Fusobacteria, Prevotella, Veillonella Neisseria, Rothia, Rhodotorula

[49] 16S rDNAseq NR Granulicatella, Alloscardovia,
Stenotrophomonas Moryella, Kingella, Centipeda

[30] 16S rRNAseq Decreased + Lactobacillus, Ochrobactrum,
Parvimonas Neisseria and Phyllobacterium

[50] 16S rRNAseq No difference + Lachnospiraceae, Eikenella Lactobacillus, Bacillus,
Bifidobacteriaceae

Tissue/
Saliva

[32] 16S rRNAseq Decreased +
Tissue: Acinetobacter,

Fusobacterium, Campylobacter
Saliva: Streptococcus, Prevotella

NR

[19] 16S rRNAseq Decreased +

Tissue: Fusobacterium,
Peptostreptococcus, Johnsonsella

Saliva: Fusobacterium,
Alloprevotella, Prevotella

Tissue: Streptoccocus, Neisseria,
Veillonella

Saliva: Streptoccocus, Neisseria,
Rothia

[43] 16S rDNAseq Decreased + Fusobacterium, Peptostreptococcus,
Prevotella

Streptococcus, Neisseria,
Haemophilus

[51] 16S rDNAseq Increased * + Fusobacterium, Prevotella,
Actinomyces Streptococcus, Veillonella, Rothia

[52] 16S rDNAseq Increased +/−
** Veillonella, Fusobacterium Streptococcus, Neisseria, Prevotella

Swab [28] 16S rRNAseq Increased + Fusobacterium, Peptostreptococcus,
Prevotella Streptococcus

+ = significant difference in bacterial colonies between HNSCC and control. − = no significant difference
in bacterial colonies between HNSCC and control. * Higher abundance of known oral pathogens. ** See
Supplementary Table S1 for details.
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Table 2. Investigating the associations between distinct microbiome profiles and the risk of clinical outcomes or genetic conditions.

Sample Citation
Number

Technique Stratification
Bacterial Diversity Notable Specific Bacterial

Populations Enriched or Depleted
Key Findings

Alpha Beta

Tissue

[53] 16S rRNAseq Chemotherapy
induction Decrease +

Enriched in induced chemotherapy
group: Mycoplasma and unidentified

Veilloneliaceae.
Depleted in induced chemotherapy
group: Veillonella, Rhodococcus and

Acinetobacter.

In a non-induced
chemotherapy group,

Fusobacterium and Actinomyces
were associated with more
advanced stage of disease.

[54] 16S rRNAseq Length of survival

Decreased diversity
in patients who

survived less than
3 years compared
with those who

survived greater than
3 years

Significant difference
in bacterial

communities
between those who
survived less than
3 years and those

who survived greater
than 3 years.

Enriched in cases with survival less
than 3 years: Methyloversatilis and

Schlegelella.
Enriched in cases with survival

greater than 3 years: Bacillus,
Lactobacillus and Sphingomonas.

Patients with tumors with
increased dysbiosis exhibited
shorter overall survival than

those with less dysbiosis.

[55] RNAseq

Subsite Location

NR

Enriched Oral HNSCC:
Fusobacterium, Leptotrichia,
Selenomonas and Treponema.
Enriched Nonoral HNSCC:

Clostridium and Pseudoalteromonas.

Microbial signatures were
correlated with the Kyoto
Encyclopedia of Genes and

Genomes pathways for both
oral and non-oral cancers.

Oral cancers showed
signatures involved in

neurodegenerative diseases
and non-oral cancers showed
signatures involved in HSV-1

infection.

[56] RNAseq NR

Enriched by Subsite
Oral Cavity: Pseudomonas

Oropharynx: Actinomyces and
Sulfurimonas

Larynx: Filifactor, Pseudomonas, and
Actinomyces

Microbial diversity was
dependent on tumor location

(oral cavity, oropharynx,
larynx).
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Table 2. Cont.

Sample Citation
Number

Technique Stratification
Bacterial Diversity Notable Specific Bacterial

Populations Enriched or Depleted
Key Findings

Alpha Beta

Saliva

[36] 16S rRNAseq Tumor Mutational
Characterization

Significant difference
between mutational

signal cluster
cluster 2 and 3

Slight difference in
bacterial

communities
between mutational

signal cluster 1, 2
and 3

Enriched in MSC1 and MSC2: Rothia
Enriched in MSC2:

Firmicutes
Enriched in MSC2 and MSC3:

Selenomonas
Enriched in MSC3: Capnocytophaga

Inferred functional assessment
for microbial communities

across mutational states
showed differential

enrichment in pathways
linked to cell-mobility

[57] 16S rRNAseq Development of Oral
Mucositis No difference * − * See key findings

Patients with enrichment in
Cardiobacterium, Granulicatella,
Prevotella, and Fusobacterium

had increased risk of
developing early onset severe

oral mucositis after
chemoradiation. Patients with

enrichment of Streptococcus
had a decreased risk of

developing early onset severe
oral mucositis after

chemoradiation.

[45] 16S rRNAseq Metastasis

No difference
between metastatic

cancer and
non-metastatic

cancer

Significant difference
between metastatic

cancer and
non-metastatic

cancer

Enriched in metastatic group:
Prevotella, Stomatobaculum,

Bifidobacterium, Peptostreptococcaceae,
Shuttleworthia and Finegoldia

Enriched in non-metastatic group:
Neisseria, Haemophilus.

A machine learning program
used the oral microbiome to

predict lymph node
metastases with 86.3%

accuracy.

+ = significant difference in bacterial colonies between HNSCC and control. − = no significant difference in bacterial colonies between HNSCC and control. * From baseline study cohort
before treatment with radiation/chemotherapy.
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4. Animal Models Suggest the Microbiome May Contribute to the Development and
Progression of HNSCC

Most in vivo studies of the HNSCC microbiome have utilized the 4-nitroquinolone-
1-oxide (4-NQO) mouse model. 4-NQO, which is a water-soluble quinolone derivative,
reliably produces premalignant and malignant lesions when spread on the palatal surface
of mice [58]. These lesions have been shown to both histologically and morphologically
resemble HNSCC [59]. The carcinogenic effect is largely due to an interaction between
4-NQO and the nucleophilic part of DNA, resulting in the formation of DNA adducts
around guanine residues [60]. Common models of HNSCC include the administration of
4-NQO in the drinking water of mice for anywhere from 8 to 25 weeks, followed by sample
collection [61]. Tumor samples can be further processed to assess for any transcriptional,
proteomic, or histological abnormalities [61]. Such methods provide a robust platform to
understand the development of HNSCC and interrogate its associated risk factors.

Some studies have used the 4-NQO model to explore the impact of the microbiome
on HNSCC (Figure 2). Binder-Gallimidi et al., found that administration of P. gingivalis
and F. nucleatum contributed to carcinogenesis in mice treated with the oral carcinogen
4-NQO, with evidence demonstrating increased activity on the TLR2/TLR4/IL-6/STAT3
pathway [8]. Furthermore, coinfection was also associated with tumor progression: mice
treated with P. gingivalis and F. nucleatum in addition to 4-NQO developed larger and more
invasive tumors relative to mice administered 4-NQO alone [8]. Frank et al. demonstrated
that antibiotic depletion of the mouse microbiome delayed oral tumorigenesis in mice
administered 4-NQO, and transplantation of microbiota from mice with cancer accelerated
it [30]. Furthermore, Stashenko et al. showed that gnotobiotic mice inoculated with the
microbiome of both healthy and OSCC-positive mice experienced increased tumor sizes
and numbers when exposed to 4-NQO compared to microbiome-free mice, implying further
nuance in bacterial–tissue dynamics [62].
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These studies suggest that certain bacterial populations may contribute to the devel-
opment of cancer; however, mice and humans have notably different bacterial populations 
and immune system compositions [63,64]. This limitation of animal models, along with 
the time and cost associated with animal studies, underscores the need for reliable in vitro 
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Figure 2. Schematic of 4-NQO model to study microbial infection in HNSCC. Mice inoculated with
microbes of interest preceding (green rectangle) or in conjunction with 4-NQO administration (or-
ange rectangle), followed by a period of vehicle administration with or without microbial treatment
(blue rectangle). Downstream analysis upon tissue collection includes histology, immunohistochem-
istry, genetic profiling, and proteomics. This figure was created using Biorender.com (accessed on
23 October 2023).

These studies suggest that certain bacterial populations may contribute to the devel-
opment of cancer; however, mice and humans have notably different bacterial populations
and immune system compositions [63,64]. This limitation of animal models, along with
the time and cost associated with animal studies, underscores the need for reliable in vitro
systems to model the interaction between human cancer cells and microbes. While OSCC
predominates the clinical literature surrounding the microbiome of the head and neck
(Supplementary Table S1), this is even more true for in vitro studies. As such, the remain-
der of this review will focus on experiments that have modeled host–microbe dynamics
within the oral cavity, with the understanding that additional investigations are required to
continue these inquiries within other regions of the head and neck.

5. In Vitro Modeling of Host–Microbe Interactions in HNSCC

Conventional cell culture models of host–microbe interactions typically entail co-
culturing a confluent monolayer of epithelial cells with single or multiple microbial species
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(Figure 3A,B) [65]. Some studies additionally incorporate biofilms to capture the unique
properties of polymicrobial plaque formation (Figure 3C) [66,67]. Numerous studies have
co-cultured immortalized gingival epithelial cells with P. gingivalis to investigate the po-
tential impact of infection on the malignant transformation of host epithelial cells. Ex-
posure of human oral epithelial cells to P. gingivalis promoted cell proliferation [68,69],
inhibition of pro-apoptotic pathways [70,71], and enhanced both cell migration and in-
vasion [68,69,72,73]. Additionally, Sztukowska et al., demonstrated that P. gingivalis co-
cultured with oral cancer cells promoted the epithelial-to-mesenchymal transition (EMT)
through upregulation of Zeb1, a canonical EMT transcription factor. These co-cultured
oral cancer cells were found to have increased expression, secretion, and activation of
pro-matrix metalloproteinase-9 (MMP-9), facilitating increased invasiveness [74]. Groeger
et al. demonstrated that P. gingivalis co-culture led to the upregulation of B7-H1 and B7-DC
receptors in squamous carcinoma cells, further implicating a role of bacterial infection in
facilitating immune evasion by oral cancer cells [75].
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Figure 3. Standard 2D monolayer culture systems studying host–microbe interactions. (A) Two-
dimensional monolayer culture with single-species microbes. (B) Two-dimensional monolayer co-
culture with multispecies microbes. (C) Two-dimensional monolayer culture with biofilm suspended
on a Transwell insert. This figure was created using Biorender.com (accessed on 23 October 2023).

Binder-Gallimindi et al. demonstrated that co-culture of F. nucleatum with two human
OSCC lines increased IL-6 expression and induced key molecular markers, such as cyclin
D1, MMP-9, and TNFα, which are hypothesized to be involved in oral cancer cell invasion
and tumor aggressiveness [8]. Furthermore, they found that exposure to these pathogens
stimulated cellular proliferation [8]. These findings were supported by Harrandah et al.,
who demonstrated that exposure of human oral cancer cells to F. nucleatum led to a signifi-
cant increase in STAT3 and MYC, promoted EMT through increased expression of TGF-β,
ZEB1, MMP-9, and MMP-1, and enhanced invasiveness in vitro [72].

However, while monolayer culture systems are easily accessible and low cost, they do
have several limitations. The biggest is the inability of 2D cell lines to adequately capture
inter- and intratumoral cancer cell heterogeneity [76], which is critical in modeling host–
microbe interactions given patient- and subsite-specific differences in microbial profiles
associated with HNSCC [55]. In monolayer culture, there is a loss of the cell–cell and
cell–extracellular interactions that are observed in vivo and that have been shown to
play important roles in response to stimuli [77–80]. Three-dimensional culture systems,
including organotypic culture and 3D organoids, may address some of these concerns by
better recapitulating intercellular interactions and differentiation gradients [81] and, as
such, enable more physiologic modeling of host–microbe interactions.

6. Organotypic 3D Culture Systems to Study Host–Microbe Interactions

Organotypic 3D culture models have largely focused on P. gingivalis and F. nucleatum
as bacterial targets of choice for experimentation. As findings from prior 2D monolayer co-
culture experiments implicated a role of these bacterial pathogens in basement membrane
dysregulation; similar results were found employing organotypic 3D culture, as with
Andrian et al., who showed the upregulation of these same MMPs upon co-culturing of
human oral mucosa with P. gingivalis [82]. In addition, this modeling system has been
shown to capture the unique immune microenvironment following microbe co-culture of
the oral epithelium. P. gingivalis co-culture was also shown to initiate a pro-inflammatory
response in the oral epithelium, increasing expression of IL-1B, IL-6, IL-8 and TNF-a [83].
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As such, this model has served as a valuable resource to study the impact of single-species
infection on tissue dynamics.

Some studies have also used the organotypic 3D model to explore the impact of
synthetic biofilms on the oral epithelium. Gursoy et al., found that exposure of an organ-
otypic dento-epithelial model to biofilms of two different strains of F. nucleatum resulted
in the expression of the antimicrobial peptides, human B- defensin-2 and -3, as well as
cathelicidin—a response known to occur within the gingival epithelium in vivo [84]. Other
groups have focused on using biofilms of multiple microbial species to model complex
host–microbiome interactions. In particular, Brown et al., exposed co-cultured immune
cells and oral mucosa to biofilms containing up to ten common oral microbes and found
upregulation of the pro-inflammatory cytokine CXCL10 [85]. Overall, this modeling sys-
tem demonstrates a capability to examine the theorized pro-inflammatory influence of
microbial/polymicrobial infection, as well as the ensuing dysregulation of the basement
membrane on malignant transformation in HNSCC.

7. Three-Dimensional Organoids to Model Host–Microbe Interactions

Organoids are single-cell-derived 3D clusters of epithelial cells grown in a basement
membrane gel [86]. These cultures can be derived from adult stem cells present in a variety
of tissue sampling methods including excess tissue from surgical resections, solid needle
or punch biopsies, and even fresh frozen tissue samples [87]. HNSCC 3D organoids have
been shown to recapitulate the morphologic characteristics and response to stimuli of the
parent tissue from which they were derived [88], making them compelling models to study
host–microbe interactions in disease development. Though 3D organoid culture systems
have been used to model host–microbe interactions at distal sites of the gastrointestinal
tract (i.e., stomach, small intestine, colon) there is a paucity of the literature examining
this interaction in the context of HNSCC. In 3D organoid culture, it is the “outer” basal
layer that is typically exposed to stimuli such as growth factors in media and, in studies
of host–microbe interactions, the co-cultured microbes. In reality, however, host–microbe
interactions happen at the apical mucosal surface which corresponds to the center of the
organoid. To this end, there have been several co-culturing approaches described (Figure 4).
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7.1. Co-Culture via Microinjection

The first technique includes microinjection of microbes into the lumen of intact
organoids. Using this approach, microbes are introduced to the apical aspect of the po-
larized epithelium, achieving an accurate and efficient co-culture method with limited
cytotoxicity [89–92]. An advantage to this approach is the freedom to optimize a precise
dose of microbes to be injected. Such optimized dosages can be administered at a single
time to be measured and characterized over time [89]. This approach has been used to in-
vestigate the antibacterial function of defense secreted by epithelial cells and can be readily
translated to the investigation of additional products [89]. Microinjection represents a use-
ful approach to examining host–microbe interaction for high-throughput applications. For
instance, Williamson et al., developed and validated a high-throughput semi-automated
organoid microinjection system for both cargo delivery and lumen sampling of colonic
organoids [93]. Despite these advantages, there are associated limitations to the microin-
jection approach. This approach is optimized to microinject a single bacterial species,
which may not adequately demonstrate the dynamic interplay between multiple microbial
species in the microenvironment. Furthermore, the optimization of oxygen and nutrient
levels to maintain symbiotic microbe–host interactions is still in its early stages [94]. To
preserve microinjection accuracy and mitigate damage to organoid cells with consequential
leakage of injected bacteria towards the basolateral side, this approach requires specialized
equipment with the appropriate setup, as well as adequately trained users [93].

7.2. Microbial Infection of Dissociated Epithelial Cells

In this approach, organoids are dissociated into a single-cell suspension and subse-
quently co-plated with microbes/microbe products [95–98]. As the organoids begin to
form within the extracellular matrix, the co-cultured microbes become incorporated into
the apical surface of the organoid to model infection. Unlike the microinjection approach,
this method is relatively simple and does not require special equipment to perform. In their
study, Huang et al., adopted this approach to perform a quantitative proteomic analysis
comparing total proteomes of intestinal organoids co-cultured with Listeria monocytogenes.
Their analysis found over three hundred differentially expressed proteins, which were
related to host immune response, biological metabolism, and energy metabolism [99]. A
drawback to this approach is that it is challenging to pinpoint the initial time of interaction
between host epithelial cells and microbes, and the infection efficiency is variable depend-
ing on the microorganisms utilized. As this approach leads to bacterial interactions with
both the apical and basolateral sides of the organoids, the physiological relevance can be
questioned. Additionally, it is challenging to quantify the amount of microbe entrapped
within the organoid’s lumen [90,100].

7.3. Epithelial-Microbial Co-Culture Using Organoid-Derived Monolayers

As an alternative approach, organoids can be dissociated into single cells and subse-
quently in a 2D monolayer. Previous studies have shown that organoid-derived monolayers
exhibit differentiation that reflects the parent tissue from which it was derived [101,102].
Nickerson et al. demonstrated the presence of multiple cell types, such as enterocytes,
mucus-producing goblet cells, and M cells were present in their human intestinal organoid-
derived epithelial model (HIODEM) [102]. Thorne et al. demonstrated similar findings,
showing that intestinal organoid-derived monolayers generated major intestinal cell types,
and additionally organized into proliferative and differentiated zones [101]. When the
single-cell suspension is seeded onto a coated plate with an extracellular matrix-based
hydrogel such as Matrigel (Corning, Glendale, AZ, USA) or collagen, the cells adhere to
the surface with the apical side facing upward. Directly adding microorganisms to culture
media in this orientation facilitates microbe-epithelial contact [101]. Due to the simplicity
of this approach, there have been a growing number of studies using this technique to
examine the characteristics of microbial-epithelial interactions including microbe-mediated
immune activation and cytokine responses to pro-inflammatory stimuli [103–105]. This
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paradigm may be useful for co-culture experiments involving aerobic and facultative
anaerobic bacteria since the coated plate has a larger area in contact with oxygen. How-
ever, co-culturing obligate anaerobic bacteria with epithelial cells in this system may be
challenging due to differential oxygen requirements [106–108]. It is also critical to note
that as organoids transition to monolayer culture, there is an appreciable loss of cellular
heterogeneity and intercellular interactions, and this may pose a challenge to recapitulate
the tissue architecture and function observed in vivo [100].

7.4. Three-Dimensional Organoids to Examine Microbial Contributions to Carcinogenesis in the
Aerodigestive Tract

To our knowledge, there has only been one study conducted involving the use of
organoids to study host–microbe interactions within the oral cavity. Bugueno et al., utilized
a 3D spheroid model of the gingiva to better understand interactions between different
cell types and the impact of P. gingivalis infection [109]. Elsewhere along the GI tract,
however, there have been studies utilizing organoids to investigate the interactions between
enteric microbes and epithelial cells [89]. For example, Zhang et al., demonstrated that
intestinal organoids co-cultured with S. enterica revealed bacterial adherence and invasion
of intestinal epithelial cells, and elicited NF-kappaB signaling activation [98]. Bartfeld et al.,
observed a similar effect modeling H. pylori infection of gastric organoids, demonstrating
that microinjected bacteria became tightly associated with the organoid epithelium and
induced expression of NF-kappaB target genes including IL-8 [110]. In addition, to study the
role of H. pylori infection on gastric carcinogenesis, Wroblewski et al. successfully infected
murine gastric organoids with H. Pylori cagA+ wild-type via microinjection, which resulted
in increased epithelial cell proliferation and B-catenin nuclear translocation [111]. These
findings have since been validated using human gastric organoids [112–114], demonstrating
the use of this 3D model system as a tool for both discovery and validation. Insights
gleaned from such studies have added to our understanding of microbial mechanisms of
infection, host–microbe crosstalk, as well as patterns of physiological response to microbial
infection [115].

8. Future Directions: 3D Microbiome Co-Culture Models to Investigate
HNSCC Carcinogenesis

Given recent advancements in co-culturing techniques, experiments employing the use
of 3D organoids to study the microbiomic influences on HNSCC may provide vital insights
into the complex pathogenesis of this disease, as well as the role of bacterial infection in
the progression from normal mucosa to precancerous lesions to HNSCC. The impact of
the microbiome on neoplastic progression can be evaluated by co-culturing 3D organoids
derived from normal oral mucosa with specific microbes of interest while assessing the
development of cellular atypia, patterns of invasion, and molecular changes as readouts of
progression. Furthermore, co-culturing human HNSCC organoids with microbes would
offer insights into the influence of microbial infection on the expression heterogeneity in
HNSCC. For instance, F. nucleatum has previously been shown to induce EMT, a known risk
factor in metastatic disease [116], in oral epithelial cell lines [117], providing the basis for
future studies to focus on characterizing EMT within co-treated 3D organoids. Our group
has shown that HNSCC tumors express a partial-EMT (p-EMT) program, which retains
certain epithelial characteristics and has been shown to drive tumor heterogeneity and
invasion [118]. As such, inquiry into the relationship between F. nucleatum and p-EMT may
lend valuable information to the underlying influence of the microbiome on carcinogenesis.

Additionally, 3D organoids may also present a unique opportunity to explore the viral
influences on HNSCC development. There is a clear relationship between HPV infection
and the development of oropharyngeal HNSCC [119]. While the prognosis of HPV-positive
HNSCC is better than that of HPV-negative [119], much remains unknown regarding the
potential pathogenic involvement of the microbiome [35,40]. Some studies have suggested
a mechanistic interaction between HPV and the microbiome in other disease processes such
as bacterial vaginosis [120]. However, such an interaction has not been similarly discovered
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in HNSCC. Previous studies validated the ability to productively infect HNSCC organoids
with HPV [88]. As such, co-cultured HPV-positive HNSCC organoids with candidate
microbes may serve as an effective method for uncovering mechanisms of disease that
influence patient morbidity and mortality.

There are limitations associated with the use of 3D organoids. Although 3D organoids
can be used to study interactions between microbes and epithelium, immune and stro-
mal cells are not represented in organoid culture. While some immune and stromal cells
are retained during early passages, these components are eventually lost in culture [121].
Given the well-described role of oral microbial infection in the relationship between chronic
inflammation and cancer, the incorporation of immune cells into in vitro experiments may
be useful in improving our understanding of this link. Though previous studies have
demonstrated alterations in the expression of pro-inflammatory mediators such as IL-6,
IL-8, and TNF-a in epithelial cells co-cultured with microbes, experimental approaches in-
volving direct co-culture with organoid and immune cells remain in nascent stages [66,122].
Additionally, there are several approaches to co-culturing epithelial organoids with mi-
crobes, each with its advantages and disadvantages, and it is unclear which method best
recapitulates physiological responses to exposure.

9. Conclusions

The microbiome is an important component of human physiology in health and dis-
ease. Despite growing interest in this area of study over the past decade, our understanding
of microbe-epithelial interactions in HNSCC remains limited. Animal models and conven-
tional in vitro studies have made significant strides in examining the role of the microbiome
in HNSCC, from highlighting candidate microbes and patterns of microbiome composition
implicated in disease to developing theorized mechanisms of pathogenesis. However, these
modeling systems are met with their challenges. Three-dimensional culture techniques
serve as a promising tool to investigate the complex interplay between the microbiome and
the development of HNSCC while faithfully recapitulating human features in a manner
that animal models and conventional in vitro models lack. Insights gleaned from such
studies may aid strategies to improve risk stratification, an underlying issue contributing to
the continued poor prognosis in HPV-negative HNSCC, and potentially guide treatment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15245810/s1, Table S1: Summary of Topical Literature
Assessing HNSCC Microbiome Profile.
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