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Simple Summary: Malignant pleural mesothelioma is an invasive and drug-resistant tumor related
to asbestos exposure, with limited therapy options. It is associated with an unfavorable prognosis and
a 5-year survival rate of only 12%. Current standard-of-care treatment based on platinum-pemetrexed
chemotherapy has been in place for the past two decades, though survival is increased by just a few
months. In this article, we aim to review the current chemotherapy and immunotherapy options for
this malignancy and highlight recent developments with regard to chemoimmunotherapy, targeted
agents and cellular therapy.

Abstract: The incidence of malignant pleural mesothelioma is expected to increase globally. New
treatment options for this malignancy are eagerly awaited to improve the survival and quality of life
of patients. The present article highlights the results of recent advances in this field, analyzing data
from several relevant trials. The heterogeneous tumor microenvironment and biology, together with
the low mutational burden, pose a challenge for treating such tumors. So far, no single biomarker has
been soundly correlated with targeted therapy development; thus, combination strategies are often
required to improve outcomes. Locally applied vaccines, the expansion of genetically engineered
immune cell populations such as T cells, the blockage of immune checkpoints that inhibit anti-
tumorigenic responses and chemoimmunotherapy are among the most promising options expected
to change the mesothelioma treatment landscape.

Keywords: mesothelioma; pleura; asbestos; chemotherapy; immunotherapy; targeted agents; cellular
therapy

1. Introduction

Malignant pleural mesothelioma (MPM) is a rare malignancy of the pleural lining
highly associated with asbestos exposure (over 80% of the cases) [1]. In spite of its well-
established relation with this mineral fiber, the risk of developing the malignancy is only
5% in high-risk populations [2]. The prevalence is higher in men due to occupational
exposure, and the median age of diagnosis is 71 years [1]. This aggressive type of tumor
undergoes a long latency period (10–40 years), is mostly diagnosed at late stages and has a
poor prognosis and a median survival time of one year [3].

The implementation of rigorous regulations in developed countries during the 1990s
led to a decrease of over 75% in asbestos usage across various industries. This regulatory
approach stands as the foremost strategy for reducing the incidence of MPM within these
developed nations. On the other hand, major developing economies have embraced less
stringent regulations concerning asbestos, allowing for its ongoing widespread use. This
disparity raises concerns about the potential for a global increase in MPM cases [4]. Even
within developed nations, the potential for a sustained or increased incidence of MPM
is present, primarily stemming from a demographic shift towards an aging population.
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While asbestos exposure continues to be the predominant risk factor, there are a few other
etiologies that may be associated with mesothelioma: exposure to other mineral fibers
(erionite, fluoroedenite and balangeroite), radiation, chronic pleural inflammation and
germline mutations [5].

A better understanding of MPM’s molecular biology may provide a benchmark for
the development of more efficient treatments. The best outcomes so far for patients with
mesothelioma have been reported in those who have received multimodal therapy, which
usually includes a combination of chemotherapy, surgery and radiation treatment. How-
ever, few patients are candidates for this type of approach, and systemic therapy alone
is what is feasible to most. Expanding our knowledge with the use of next-generation
sequencing and computational technology may further elucidate important pathologic and
genomic aspects of the disease, which add to the histologic subtype, and other biomarkers
are fundamental to personalizing and determining the optimal treatment [2,6].

MPM’s increasing incidence, aligned with the population aging, high lethality and
only modest treatment advances in the past decade, prove to be an unmet medical need.
This review highlights the recent advances in the treatment of this aggressive tumor, such
as chemoimmunotherapy, and brings to light other promising strategies with the use of
targeted agents and cellular therapies.

2. Molecular Biology, Genomics and Immunology

MPM can be histologically classified as an epithelioid, which accounts for the majority
of cases (around 50%) and has a better prognosis when compared to the sarcomatoid
(10% of cases), a more rare, invasive and resistant tumor subtype. The remaining 40%
correspond to the biphasic subtype, a mosaic of the previous two [7,8]. However, intra-
tumor biology is heterogeneous, and a thorough description of the pathologic specimen
may have important prognostic implications. A recent multi-omic study, integrating
epigenetic and transcriptomic data, proposed a new method of classification that takes
into account not only the histological aspects of MPM but also its microenvironment and
inter- and intra-tumor variability. The resulting classification ranks the tumor in a scale
from epithelioid to sarcomatoid, creating a continuum of these two populations [9]. A
further understanding of tumor biology may also provide novel predictive biomarkers to
better inform therapeutic options and clinical trial design, especially in the field of targeted
therapies and immunotherapies [9].

Genomic alterations in MPM are primarily related to a loss of function of tumor
suppressor genes. BAP1 is the most frequently reported, and others include NF2, CDKN2A,
TP53, LATS2 and SETD2 [6,10]. Mesothelioma has a lower tumor mutational burden
than most solid tumors, and hence, other predictive immunotherapy biomarkers are
warranted [6].

The tumor’s microenvironment, constituting endothelial, stroma and immune cells,
has drawn attention as a possible driver of disease, influencing tumor progression, and,
therefore, has been under extensive scrutiny for possible therapeutic targets [11]. Some of
the immune infiltrating tumor cells are known to be anti-tumorigenic, while others favor
tumor growth by dampening the immune response [12]. As an example, lymphocytes (cy-
totoxic and T helper cells), dendritic cells and natural killer cells are anti-tumorigenic, while
myeloid-derived suppressor cells and regulatory T cells are pro-tumorigenic; macrophages
and neutrophils have a variable role and can be related to both pro- and anti-tumor activ-
ity [13,14]. The mesothelioma microenvironment is subject to the influence of asbestos fiber
exposure, which has been linked to the development of an immunosuppressive profile [11].
New therapies should employ a combination of strategies, including immunotherapies that
could both inhibit and stimulate specific immune cells of the MPM microenvironment [15].

Pre-clinical models have increasingly played an important role for better understand-
ing MPM’s development and for the investigation of newer interventions and drug testing.
However, cell lines, either 2D or 3D spheroids, suffer from similar limitations in which
the replication of the true tumor microenvironment and tumor heterogeneity are hard
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to accomplish. Animal models are helpful in understanding tumorigenesis with specific
gene knockouts or asbestos-infused murine pleura, but limitations include the preferential
development of aggressive sarcomatoid models in the former and one more similar to
human histology in the latter, although unviable for drug testing because of its long latency
period [16]. The most promising innovation for the acceleration of drug development in
cancer precision medicine may rely on organoids, which have been shown to be applicable
in the prediction of cisplatin sensitivity in mesothelioma models [17].

3. Current Treatments

The current treatment landscape for MPM emphasizes its palliative intent. The 5-year
overall survival estimates are 5–12% at best [18]. Supportive care strategies must encompass
pleural effusion and pain management. Surgery is indicated for a small fraction of patients
with mesothelioma due to its complexity and high morbidity rate, even in those with a
favorable performance status and tumor characteristics [19]. Prior to surgery, pleuroscopy
may be needed to elucidate the necessity and feasibility of surgery. Even for patients
who are candidates for surgery, the randomized phase 3 trial MARS2 did not show an
advantage for patients who were operated on versus those who underwent chemotherapy
alone, though some patients can still be individually benefited [20]. Most patients are
candidates for systemic treatment, which can improve the survival and quality of life.
Palliative radiation can be judiciously used at the physician’s discretion.

3.1. Chemotherapy and the Vascular Endothelial Growth Factor Receptor (VEGFR) Pathway

The established treatment for MPM is platinum-antifolate chemotherapy, with a
combination of pemetrexed and cisplatin, or carboplatin for patients who cannot tolerate
cisplatin. This treatment strategy was established in 2003 in the EMPHACIS trial, which
showed an increased median overall survival by 2–3 months when compared to that of
cisplatin alone [21–23]. Since then, a long gap of treatment approvals was initiated until
more recent advances with immunotherapy. An exception occurred with the possible
addition of bevacizumab, an anti-VEGF monoclonal antibody, to the treatment regimen.
The Mesothelioma Avastin plus Pemetrexed-Cisplatin Study (MAPS) tested a combination
of bevacizumab to the present standard of care (pemetrexed and cisplatin) compared
to chemotherapy alone, showing an improved median overall survival by 2.8 months
and a possible benefit in pain control [24]. Despite the improvement in the quality of
life and survival, this treatment regimen has not been filed for an FDA-license [7]. As
a second-line regimen, several agents have been tested, with limited activity [25–27].
Notably, gemcitabine combined with ramucirumab, an anti-VEGFR-2 monoclonal antibody,
improved overall survival compared to gemcitabine alone in a randomized phase 2 trial
(RAMES), emphasizing the role of VEGF pathway blockage [28].

3.2. Immunotherapy

Several immune checkpoint inhibitors (ICI) are under investigation as potential treat-
ments for mesothelioma. Nivolumab, a programmed cell death 1 (PD-1) inhibitor, was
evaluated in the CONFIRM phase III trial, in which patients with refractory disease follow-
ing platinum-based doublet chemotherapy were given nivolumab or placebo [29]. Patients
in the experimental arm showed longer progression-free survival and overall survival with
the use of nivolumab. The benefit seemed to be driven by those with tumor-expressing
PD-L1, which was more common in non-epithelioid tumors.

Another strategy is to target two immune checkpoints with the association of an anti-
PD-1 antibody and anti-cytotoxic T-lymphocyte protein 4 (CTLA-4) antibody. MAPS2 was
a non-comparative, randomized phase 2 trial testing the efficacy of nivolumab alone and
nivolumab-ipilimumab (anti CTLA-4 antibody) regimens in patients with relapsed disease.
The trial showed numerically similar disease control rates, with 44% with nivolumab
and 50% with nivolumab-ipilimumab progression-free at 12 weeks [30]. The phase III
Checkmate 743 study randomized 600 patients to either cisplatin-pemetrexed or nivolumab-
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ipilimumab as a first-line treatment [31]. The nivolumab plus ipilimumab regimen had a
median OS of 18.1 months compared to 14.1 months of the chemotherapy regimen (HR: 0.73;
95% CI: 0.61–0.87). At three years, the progression-free survival rates were 14% versus 1%.
The duration of response at the three-year mark also favored nivolumab plus ipilimumab
versus nivolumab alone, 28% versus 0%, respectively. At four years, the OS rates were
17% versus 11% [32]. The results indicated that nivolumab plus ipilimumab should be
the standard-of-care treatment for unresectable MPM based on the evidence of a longer
survival benefit over chemotherapy regardless of tumor histology, though the benefit was
particularly more pronounced in the sarcomatoid subtype. The outcomes of this trial
for unresectable MPM led the FDA to approve the use of nivolumab/ipilimumab as a
first-line treatment.

Another potential treatment uses pembrolizumab, an anti-PD-1 antibody [33], which
has been tested in the KEYNOTE-028 phase I trial in patients with MPM. As an early
phase trial, it presented promising results; however, the PROMISE-meso phase 3 trial was
negative in the second-line setting [33,34].

Table 1 summarizes the trials with relevant results related to the current practice.

Table 1. Relevant clinical trials on current MPM treatment.

Study Name Description Treatment Study
Completion

ClinicalTrials.gov
Number

MARS2

Multicenter open parallel group randomized
controlled trial comparing the effectiveness

of surgery—(extended) pleurectomy
decortication—versus no surgery for the

treatment of pleural mesothelioma

Surgery + chemotherapy vs.
chemotherapy 2022 NCT02040272

EMPHACIS

Phase III trial determining whether treatment
with pemetrexed and cisplatin results in a

survival time superior to that achieved with
cisplatin alone

Pemetrexed + cisplatin vs.
cisplatin alone 2003 -

MAPS

Randomized, controlled, open-label, phase III
trial assessing the effect on survival of

bevacizumab when added to the present
standard of care, cisplatin plus pemetrexed,
as a first-line treatment of advanced MPM

Bevacizumab + pemetrexed +
cisplatin vs. pemetrexed +

cisplatin alone
2016 NCT00651456

RAMES

Randomized, double-blind,
placebo-controlled, phase II trial assessing
the efficacy and safety of the anti-VEGFR-2

antibody ramucirumab combined with
gemcitabine in patients with pretreated MPM

Gemcitabine + ramucirumab vs.
gemcitabine + placebo 2020 NCT03560973

CONFIRM

Multicenter, placebo-controlled,
double-blind, parallel group, randomized,

phase III trial assessing the efficacy and safety
of nivolumab, an anti-PD-1 antibody, in

patients with pleural or peritoneal malignant
mesothelioma who have progressed

following platinum-based chemotherapy

Nivolumab vs. placebo 2023 NCT03063450

MAPS2

Multicenter randomized, non-comparative,
open-label, phase II trial prospectively

assessing the anti-PD-1 monoclonal antibody
alone or in combination with the

anti-cytotoxic T-lymphocyte protein 4
(CTLA-4) antibody in patients with MPM

Nivolumab + ipilimumab vs.
nivolumab alone 2019 NCT0271627

CHECKMATE 743

Open-label, randomized, phase III study
testing the effectiveness and tolerability of

the combination of nivolumab and
ipilimumab compared to pemetrexed and

cisplatin or carboplatin in patients with
unresectable pleural mesothelioma

Nivolumab + ipilimumab vs.
pemetrexed +

cisplatin/carboplatin
2023 NCT0289929

MPM: malignant pleural mesothelioma.
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4. Novel Treatments for MPM
4.1. Chemoimmunotherapy

A phase II, multicenter, single-arm trial (DREAM), conducted with 54 previously
untreated patients, evaluated the combination of durvalumab (anti-PD-L1 antibody) and
chemotherapy with cisplatin and pemetrexed for advanced MPM [35]. The results were
promising, with 57% of patients alive and progression-free at 6 months.

The IND227 phase 3 trial tested the combination of pembrolizumab with pemetrexed-
platinum chemotherapy to chemotherapy alone, showing a statistically significant OS
benefit with the combination (HR: 0.79; 95% CI: 0.64–0.98; p = 0.0324), with a median OS
of 17.3 months compared to 16.1 months in the control arm. The three-year survival rates
were also higher in the experimental arm (25% against 17%). The study showed that the
addition of pembrolizumab to platinum-pemetrexed improves the overall response rate
from 38% to 62%, with no new safety concerns. Exploratory analysis indicates again that
non-epithelioid histologies may benefit the most from the addition of immunotherapy to
the treatment regimen [36,37].

The Bevacizumab and Atezolizumab in Malignant Pleural Mesothelioma (BEAT-
meso), a randomized phase III trial, is assessing the efficacy of atezolizumab (a PD-L1
blocker) combined with bevacizumab in addition to standard chemotherapy compared
to the administration of bevacizumab and chemotherapy [38]. The study has recruited
400 patients across Europe, and its results are expected to be released in 2024. Similarly,
the DREAM3R, a phase III randomized trial, is evaluating the use of anti PD-L1 and
durvalumab, in combination with cisplatin and pemetrexed, for the first-line treatment of
advanced MPM [39].

4.2. Novel Immunotherapy Approaches
4.2.1. Immune Checkpoints

New emerging immune checkpoints, such as lymphocyte activation gene-3 (LAG-3),
are being evaluated in MPM. LAG-3 is expressed on the surface of T cells, whose negative
regulatory role hampers T-cell activation and proliferation against tumor antigens [40]. It
has been shown that LAG-3 is expressed on immune cell infiltrates isolated from patients
with MPM. Pre-clinical models have shown delayed tumor growth and a survival benefit
in mice with the administration of an anti-PD-1 plus anti-LAG-3 antibody [41,42]. A
phase I trial designed to assess the safety and tolerability of tebotelimab, a bispecific
antibody designed to bind PD-1 and LAG-3 and restore the function of exhausted T cells in
advanced solid tumors, showed encouraging preliminary results [43]. VISTA is another
relevant immune checkpoint, expressed mostly by epithelioid MPM tumors, and is being
investigated as a potential target for MPM treatment in several studies that combine the
anti-VISTA antibody with vaccines and other ICIs [44,45].

4.2.2. Oncoviral Therapy

Oncoviral therapy also represents a potential line of treatment for mesothelioma.
Modified viruses, such as adenovirus or measles virus containing human genes, are injected
into patients to induce polyclonal anti-tumor activity by their own immune system [46]. A
phase II trial with 40 patients demonstrated the safe and feasible results of administering an
intrapleural injection of a non-replicating adenoviral vector (Ad) expressing the immune-
activating cytokine interferon-alpha (IFN) in patients with MPM, followed by celecoxib
and chemotherapy. Celecoxib is an inhibitor of the immunosuppressive molecule PGE2
used to further manipulate the tumor microenvironment. The regimen causes a large
production of interferon in the pleura, translated into an intense stimulus to the patient’s
immune system, with a promising disease control rate of 88% [46]. A larger, randomized
phase III trial (INFINITE) is currently underway, testing the administration of adenovirus-
delivered Interferon Alpha-2b (rAd-IFN) in combination with celecoxib and gemcitabine in
53 patients with MPM [47]. The results are expected by the end of 2024.
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4.2.3. Cellular Therapy
CAR-T

Cellular therapy involving Chimeric Antigen Receptor (CAR) T cells has been proven
to be a successful treatment for hematological tumors but still has not presented compelling
evidence in the treatment of solid tumors due to its heterogeneous nature [48]. For T-cells to
be able to exert anti-tumoral activity, they need to fulfill several steps. They must infiltrate
the tumor tissue and be activated against tumor antigens. T-cell therapies are challenged
with some of the following barriers: (i) an immunosuppressive microenvironment of
solid tumors imposes resistance to T-cell therapy, (ii) an expression of PD-L1 in tumor
cells inactivates T-cells and (iii) genomic instability leads to tumor cell heterogeneity,
with different clonal populations expressing different antigens [49]. To overcome such
barriers, researchers have: (i) applied CAR-T cells regionally on the pleura to increase
tumor infiltration, a strategy that granted better success rates compared to intravenous
infusion, (ii) carried out the blockage of inhibitory signals by tumor cells and the tumor
microenvironment and (iii) focused on using targets for CAR-T cell therapy that are less
expressed in healthy tissues but overexpressed in MPM cells, which is the case for the
antigen mesothelin (MSLN)—overexpressed in 80–90% of MPM [49]. So far, phase I/II
clinical trials using anti-MSLN CAR T cells to treat MPM have been promising, showing
anti-tumor activity and good safety outcomes.

CAR-T cell therapy is likely the most promising treatment strategy compared to other
targeted therapies. Once infused, CAR-T cells multiply and persist in the patient’s body,
which may overcome the tumor’s immune tolerance and promote long-term immune
surveillance, preventing recurrence through immune-reactivation once re-encountering
the tumor’s antigens [50]. CAR-T cell therapy may be enhanced with the combination of
ICI therapies, such as PD-1 or PD-L1 blockade, further preventing tumors from immune
evasion. A phase I trial demonstrated that the intrapleural administration of MSLN CAR
T-cell followed by a PD-1 blockade (pembrolizumab) in pretreated patients with MPM
was feasible and well tolerated [51]. Furthermore, patients who received the combined
treatment had a median overall survival of almost two years compared to 17.7 months in
patients who received only CAR-T cells. Several groups are currently conducting trials
evaluating different CAR-T cell products in mesothelin-expressing tumors [52–54].

Dendritic Cell Therapy

Although checkpoints inhibitors have been shown to improve outcomes for MPM
patients, only a few derive significant benefits from immunotherapy. The use of PD-1 or
PD-L1 inhibitors is expected to activate the T-cell killing capacity [55]. In this sense, a low
density of CD8+ T-cells may limit its single-agent activity [56]. CD8+ T-cell infiltration
positively correlates with a better overall survival in MPM patients.

Dendritic cell (DC) therapy aims to induce the proliferation of T cells and promote the
activation of CD4+ and CD8+ T-cells by presenting them with tumor antigens, allowing
CD8+ T-cells to infiltrate the tumor microenvironment [57]. DC can be derived from
the patient’s bone marrow or peripheral blood through an ex vivo maturation process
stimulated by cytokines. Matured DCs are loaded with tumor antigens (peptides, lysate
and others) that are processed by the cell and transferred to its surface (through MHC I and
II molecules). These processed DC cells are then transferred back to the patient to stimulate
the immune response against the tumor [58].

Phase I trials have demonstrated that autologous tumor lysate-pulsed DC immunother-
apy increased the T-cell response against MPM; however, using autologous tumor material
imposes many challenges to conducting larger clinical trials [59]. Therefore, efforts have
been made to verify the plausibility of using allogeneic tumor lysate as an antigen source.
The DENIM randomized phase II/III trial is assessing the efficacy of autologous DCs
loaded with allogeneic tumor lysate as a potential maintenance treatment for MPM fol-
lowing first-line treatment with chemotherapy in patients who had not shown disease
progression [57].
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4.3. Targeted Agents
4.3.1. EZH2

The hyperexpression of the enhancer of zeste homolog 2 (EZH2) is related to cancer
progression. EZH2 is a subunit of the oncogenic polycomb repressive complex 2, frequently
present in association with BAP1 loss [36]. Mesothelioma cells with inactivated BAP1 are
sensitive to EZH2 pharmacologic inhibition, a fact that led investigators to launch a phase II
trial to assess the effect of tazemetostat, an EZH2 inhibitor, in relapsed MPM patients with
inactivated BAP1 [60,61]. The disease control rate was 54% at week 12 (primary outcome of
the trial) and 28% at 24 weeks. Tazemetostat also presented a favorable toxicity profile [61].

4.3.2. ASS1

Arginine is an amino acid synthesized by cells and is essential for their growth.
Notwithstanding, some tumors lack an important enzyme in the process of synthesizing
arginine, called argininosuccinate synthetase 1 (ASS1), depending on the exogenous sup-
ply [62]. Lower ASS1 expression has been associated with more aggressive tumors and
worse prognoses in different malignancy types, including mesotheliomas [62]. Arginine
deprivation, therefore, is currently being evaluated by several studies as a potential therapy.
Arginine-depleting agent (ADI-PEG 20) has already presented promising outcomes in
treating patients with MPM in a phase I trial combined with cisplatin and pemetrexed
chemotherapy, paving the way for a randomized phase II/III trial to scale this potential
therapy (ATOMIC-Meso Phase 2/3 Study) [63]. ATOMIC recruited 249 MPM patients and
is currently investigating the safety and efficacy of the same treatment regimen tested in
the phase I trial mentioned before.

4.3.3. Molecular-Stratified Therapy

The Mesothelioma Stratified Therapy (MiST) is a multicenter ongoing clinical trial
being conducted in the United Kingdom (UK), trying to identify predictive biomarkers
and evaluate new personalized therapy for mesothelioma [64]. It seeks to stratify patients
based on the molecular characteristics of their disease to better individualize treatment
strategies. MiST has been designed with three different arms.

MiST1: Patients in this arm were selected based on mutations in the BRCA-1 or BAP1,
known to be found in MPM tumors. BAP1, similar to the BRCA1 gene, is involved in
DNA repair and can potentially be targeted with the use of poly-ADP ribose polymerase in-
hibitors (PARPi). The Mesothelioma Stratified Therapy 1 (MiST1) is a phase II trial studying
the use of rucaparib, a PARPi, in 26 patients diagnosed with relapsed mesothelioma with
BAP1 or BRCA-1 deficiency. The results showed some activity, with manageable toxicity,
with a 58% disease control rate at 12 weeks and one of 23% at 24 weeks [65].

MiST2: MiST2 is a phase II trial focused on p16ink4A-negative mesothelioma pre-
viously treated with chemotherapy. The loss of the gene CDKN2A, frequently found in
mesotheliomas, is associated with poorer prognosis due to the loss of the tumor suppressor
p16ink4A, an endogenous suppressor of cyclin-dependent kinase (CDK)4 and CDK6. The
trial is investigating the use of abemaciclib, an inhibitor of CDK4/6, in 26 patients; the
results have also shown a 54% disease control rate at 12 weeks [66].

MiST3: The third arm trial, MiST3, will test the inhibition of AXL, a member of the
TAM (Tyro3, AXL, Mer) family of receptor tyrosine kinases. AXL is a key regulator of tumor
plasticity and immune evasion, contributing to tumor-intrinsic and microenvironmental
immune suppression [67]. The overexpression of AXL in 74% of mesothelioma tumors
examined by an analysis led to an ongoing trial investigating the potential of bemcentinib,
an AXL inhibitor, combined with pembrolizumab in patients with relapsed mesothelioma.

4.4. Tumor-Treating Fields

In 2019, The Food and Drug Administration (FDA) approved the NovoTTF system,
a humanitarian use device, to be used in combination with first-line standard chemother-
apy (platinum-pemetrexed) for the treatment of MPM. NovoTT is a device based on the
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application of specific electric frequencies (tumor treatment fields, TTF) to diminish cancer
growth [6,68]. This approval occurred sooner than expected, since the results from a ran-
domized phase III trial have not yet confirmed the results of the phase II STELLAR trial,
a single-arm study with 80 patients conducted in Europe, which demonstrated that TTF
combined with chemotherapy had an overall survival of 18.2 months [69].

Table 2 summarizes the most relevant trials related to novel treatment pathways.

Table 2. Relevant clinical trials on novel MPM treatment.

Study Name Description Treatment Study
Completion

ClinicalTrials.gov
Number

Chemoimmunotherapy

DREAM

Multicenter, single-arm, open-label, phase 2
trial evaluating the activity of durvalumab, an
anti-PD-L1 antibody, given during and after
first-line chemotherapy with cisplatin and

pemetrexed in patients with advanced MPM

Durvalumab + pemetrexed +
cisplatin 2019 ACTRN12616001170415 *

IND227
Phase 2 trial comparing the progression-free

survival of standard platinum and
pemetrexed (CP) versus CP + pembrolizumab

Platinum + pemetrexed vs. platinum
+ pemetrexed + pembrolizumab 2023 NCT02784171

BEAT-meso

Multicenter randomized phase III trial
comparing atezolizumab plus bevacizumab

and standard chemotherapy versus
bevacizumab and standard chemotherapy as

first-line treatments for advanced MPM

Bevacizumab + pemetrexed +
carboplatin vs. bevacizumab +

pemetrexed + carboplatin +
atezolizumab

2024 NCT03762018

DREAM3R

Phase III randomized trial aiming to
determine the effectiveness of including

durvalumab with first-line
platinum-pemetrexed chemotherapy in

advanced MPM

Durvalumab + pemetrexed +
cisplatin/

carboplatin vs. pemetrexed +
cisplatin/

carboplatin alone

2025 NCT04334759

Novel Immunotherapies

INFINITE

A Phase 3, open-label, randomized, parallel
group study evaluating the efficacy and safety

of the intrapleural administration of
adenovirus-delivered interferon Alpha-2b

(rAd-IFN) in combination with celecoxib and
gemcitabine in patients with MPM

rAd-IFN + celecoxib + gemcitabine
vs. celecoxib + gemcitabine alone 2024 NCT03710876

A Phase I/II Clinical Trial of
MPD Treated With
Autologous T Cells

Genetically Engineered to
Target the Cancer-Cell

Surface Antigen Mesothelin

Open-label, dose-escalating, non-randomized,
single-center, phase I/II study of

mesothelin-targeted T cells administered
intrapleurally as an infusion in patients with a

diagnosis of MPD from mesothelioma, lung
cancer or breast cancer

CAR T-cell + pembrolizumab 2024 NCT04577326

DENIM

Open-label, multicenter, randomized phase
II/III trial patients will be randomized to

receive either dendritic cell therapy plus best
supportive care (BSC) or BSC alone according
to the discretion of the local investigator after

first-line chemotherapy treatment.

Dendritic cell therapy + BSC vs. BSC
alone 2023 NCT03610360

Targeted Agents

A Multicenter Study of the
EZH2 Inhibitor Tazemetostat

in Adult Subjects With
Relapsed or Refractory

Malignant Mesothelioma
With BAP1 Loss of Function

Phase 2, multicenter, open-label, two-part,
single-arm, two-stage study aiming to

evaluate the anti-tumor activity and safety of
tazemetostat in patients with measurable

relapsed or refractory MPM

Tazemetostat 2019 NCT02860286

ATOMIC-Meso

Randomized, double-blind, phase II/III study
in subjects with MPM assessing the efficacy of

ADI-PEG 20 combined with pemetrexed
and cisplatin

ADI-PEG20 + pemetrexed + cisplatin
vs. placebo + pemetrexed + cisplatin 2022 NCT02709512

Mesothelioma Stratified
Therapy (MiST)

Stratified multi-arm phase IIa clinical trial
enabling the accelerated evaluation of

targeted therapies for relapsed malignant
mesothelioma. Stage 1: molecular

pre-screening for the identification of patients,
biomarker testing and analysis.

Stage 2: the treatment protocol will be specific
to the patient based on the results of their

biomarker testing in stage 1 **.
Stage 3: molecular profiling to understand the

genomic basis of the drug response in the
MiST trial

Rucaparib
ademaciclib

pebrolizumab + bemcentinib
Atezolizumab + bevacizumab

dostarlimab + niraparib

2023 NCT03654833
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Table 2. Cont.

Study Name Description Treatment Study
Completion

ClinicalTrials.gov
Number

Tumor-treating Fields

STELLAR

Prospective, single-arm, non-randomized,
open-label phase II trial designed to study the

safety and efficacy of a medical device, the
NovoTTF-100L, concomitant with pemetrexed
and cisplatin or carboplatin in MPM patients

TTFields at a frequency of 150 kHz to
the thorax + pemetrexed + platinum/

carboplatin
2018 NCT02397928

* This study is registered with the Australia New Zealand Clinical Trials Registry. ** Treatment options are
described on the treatment column. Drug names of all possible treatments in the trial. MPM: malignant pleural
mesothelioma; TTFields: tumor treatment fields; MPD: malignant pleural disease.

5. Discussion

The global incidence of MPM has been suffering upward pressure due to the widespread
use of asbestos by industries in large developing economies and the aging population shift
in developed countries. The aggressiveness of the disease also drives researchers to look for
more favorable treatments that could improve survival and reduce morbidity [4]. Given the
proven efficacy of chemotherapy and immunotherapy, the possibility of achieving better
outcomes from combining both strategies led researchers to investigate novel therapies.
However, the low mutational burden coupled with a diverse tumor microenvironment and
biology pose challenges to defining a predictive biomarker for more suitable therapeutic
options [9].

Mesothelioma has an immunosuppressive profile; hence, focus may be on boosting
immune cells to increase the anti-tumorigenic response and on inhibiting pro-tumorigenic
cell functions. In this direction, several immunotherapy strategies are being evaluated, but
still with small practical breakthroughs (Figure 1). Nivolumab/ipilimumab is the only one
approved by the FDA as a first-line treatment for unresectable MPM. The FDA’s decision
was supported by the results of the Checkmate 743 trial, which showed a 4-month increase
in overall survival compared to chemotherapy regardless of the tumor histology type [31].
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Clinical trials have been assessing the potential of chemoimmunotherapy, combining
standard-of-care chemotherapy (platinum-pemetrexed) with different immunotherapeutic
strategies. The addition of pembrolizumab (anti-PD-1 antibody) to chemotherapy seems to
improve overall survival by only a month, with a more pronounced effect in non-epithelioid
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histologies, as reported by the IND227 trial [37]. Several ongoing phase III trials may reveal
interesting options of combining available ICI and anti-VEGF agents with chemotherapy.

The evolution of immune oncology has led to the discovery of several other check-
points currently being evaluated in most solid tumors, including MPM. LAG-3 and VISTA
are among promising proteins to be targeted. The use of vaccines to stimulate the immune
system coupled with chemotherapy is another avenue that could lead to positive outcomes.
Delivering such therapies locally in the pleura may enhance their potential while minimiz-
ing systemic toxicities [15]. Even though preliminary data on oncoviral therapy regionally
applied are favorable, more sound results are still necessary. The phase III trial INFINITE
is testing adenovirus-delivered Interferon Alpha-2b efficacy and should indicate whether
oncoviral treatment may be used as MPM therapy [47]. Similarly, CAR-T cells directed
to mesothelin, locally administered, are expected to improve outcomes. Dendritic cell
therapies may also increase CD8+ T-cell density and enhance anti-PD-1 activity.

Even though the search for biomarkers has been under a lot of focus, there does not
seem to be a single driver alteration that is amenable to targeted therapy. The loss of tumor
suppressor genes, mainly BAP1 and CDKN2A, is the most predominant genomic alteration
in MPM, and it could represent an important biomarker. In this sense, agents targeting
PARP enzymes, CDK4/6 and AXL are being evaluated.

6. Conclusions

The recent advances in understanding the immune landscape and molecular profile
of MPM allowed for several agents used in different scenarios to be investigated for this
disease. Moreover, novel biomarker-directed therapies are being developed to target
specific mechanisms of mesotheliomas. The complexity and heterogeneity of this deadly
disease may have an increased chance of success with combined approaches.
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