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Simple Summary: Ovarian cancer is one of leading cause of death among women and early de-
tection is important for timely treatment. For its detection at early stages, machine learning can
be significantly important to speed up the screening and provide more accurate results. A stacked
model is designed in this study, combining the strengths of mutliple models to obtain better accuracy
compared to existing models. With a 96.87% accuracy, the model proves to be robust and accurate.
The use of explainable AI elaborates on the importance of various appropriate features to enhance
cancer detection accuracy in this regard.

Abstract: The importance of detecting and preventing ovarian cancer is of utmost significance for
women’s overall health and wellness. Referred to as the “silent killer,” ovarian cancer exhibits
inconspicuous symptoms during its initial phases, posing a challenge for timely identification.
Identification of ovarian cancer during its advanced stages significantly diminishes the likelihood of
effective treatment and survival. Regular screenings, such as pelvic exams, ultrasound, and blood tests
for specific biomarkers, are essential tools for detecting the disease in its early, more treatable stages.
This research makes use of the Soochow University ovarian cancer dataset, containing 50 features
for the accurate detection of ovarian cancer. The proposed predictive model makes use of a stacked
ensemble model, merging the strengths of bagging and boosting classifiers, and aims to enhance
predictive accuracy and reliability. This combination harnesses the benefits of variance reduction and
improved generalization, contributing to superior ovarian cancer prediction outcomes. The proposed
model gives 96.87% accuracy, which is currently the highest model result obtained on this dataset
so far using all features. Moreover, the outcomes are elucidated utilizing the explainable artificial
intelligence method referred to as SHAPly. The excellence of the suggested model is demonstrated
through a comparison of its performance with that of other cutting-edge models.
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1. Introduction

Ovarian cancer is currently one of the most fatal cancers among women. It was diag-
nosed in 295,414 women in 2018, while there were approximately 184,799 deaths globally.
The exuberating mortality rate is because of poor diagnosis at the initial stage due to the
lack of noticeable symptoms, resulting in poorer long-term survival prospects [1]. Despite
the fact that ovarian cancers usually respond well to chemotherapy, particularly with
taxane/platinum treatment, recurrence rates within 5 years for individuals with advanced
disease still range from 60% to 80% [2]. According to GLOBOCAN projections, there will
be an anticipated 56% surge in ovarian cancer incidence globally by 2050, with a significant
75% of cases being diagnosed in the later stages [3]. A large proportion (approximately 75%)
of cases arise in post-menopausal individuals, with an occurrence rate of 40 per 100,000 per
annum in patients aged 50 and above. Timely identification of this condition substantially
enhances the survival rate, increasing it from 3% (at Stage IV) to 90% (at Stage I) over a
span of five years [4]. The established benchmark for diagnosing and categorizing ovarian
cancer is histopathological assessment, which discerns various histological variations. Ac-
curate interpretation of cellular morphology is crucial for determining the various ovarian
cancer types and guiding treatment planning [5]. Qualified pathologists with expertise
in ovarian tumors are the most qualified for undertaking this responsibility. Nonetheless,
instances of inconsistencies among different observers in their grading assessments have
been documented. These variations in interpreting histopathology can result in imprecise
prognostic projections, less than optimal therapeutic approaches, and a deterioration in the
quality of life for patients [6].

Gynecologists often face the challenge of diagnosing whether a patient’s pelvic masses
are malignant and possibly indicative of tumors [7]. There are multiple ways of detection
of ovary cancers [8–10]. While definite methods such as helical computed tomography (CT)
scanning [11] and sonography are employed to differentiate malignant non-gynecologic
and benign conditions, detecting carbohydrate antigen 72-4 (CA72-4), carbohydrate antigen
125 (CA125) [7], and human epididymis protein 4 (HE4) as cancer biomarkers plays a
crucial role in distinguishing female pelvic masses [12]. In the same way, cervical cancer
detection has multiple way [13–15]. Several studies have investigated the differentiating
efficacy of these biomarkers of benign tumors from ovarian cancer. In one study, Moore et al.
compared the risk of ovarian malignancy algorithm (ROMA) and risk of malignancy index
(RMI) algorithms for 457 patients to predict epithelial ovarian cancer. The authors found
that ROMA exhibited higher sensitivity in identifying epithelial ovarian cancer patients
compared to RMI [16]. The study by Anton et al. evaluated the sensitivity of ROMA, CA125,
RMI, and HE4 in 128 patients and witnessed the highest sensitivity of HE4 in assessing
malignant ovarian tumors [17]. Additionally, for predicting the progression of ovarian
cancer, a multi-marker linear model was developed by Zhang et al. by incorporating HE4,
estradiol, progesterone, and CA125 [18]. The model aimed to provide insights into the
progression of the disease.

Ovarian cancer is a significant health concern due to its high mortality rate and
impact on women’s health. Early detection is challenging because symptoms often appear
late, effective screening tests are lacking, and there is a lack of awareness. The disease’s
heterogeneity and limited biomarkers further complicate diagnosis. Overcoming these
challenges is essential for improving outcomes and reducing the burden of ovarian cancer.
Predicting the risk of developing ovarian cancer is desirable, but an initial cancer diagnosis
is crucial, especially since effective early detection methods are still under development.
Cancer diagnosis can be framed as a classification challenge, where the goal is to build
a robust classifier to identify positive cases based on biomarkers. The effectiveness of a
classifier can be assessed using metrics such as sensitivity and specificity. In sensitive
medical contexts, it is often more important to understand how a model works than to
achieve the highest possible accuracy. This is because doctors need to be able to trust the
models they use to make decisions about patient care. Therefore, it is important to choose
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the right model and analytical approach for the task at hand. This will help to ensure that
the results are both understandable and accurate.

The ability to classify and the degree of model interpretability are influenced by the
nature of the data. For data with relatively simple patterns, simpler machine-learning
models may be sufficient. Complex models may not be necessary and could lead to
overfitting [19]. In such cases, analysis techniques such as Shapley Additive Explanation
(SHAP) can be used to understand complex models and guide the selection of a more
suitable model [20]. To address the significant health challenge of ovarian cancer and the
need for early biomarker discovery, a study [21] presented a best-practice framework that
combined machine learning (ML) and explainable artificial intelligence (XAI) techniques.
Using SHAP values, the study demonstrated the potential for improved accuracy and
utility in biomarker validation tasks.

The primary goal of this research is to develop a system capable of accurately catego-
rizing ovarian cancer into benign and malignant. The intention is to organize cancer-related
data in a manner that simplifies treatment access for patients and reduces associated
risks. To achieve this, computer-aided diagnosis (CAD) methods will be utilized to assist
physicians and pathologists in analyzing medical images more effectively [22,23]. Machine-
learning (ML) algorithms, using innovative approaches, hold great potential for predicting
disease progression and diagnosing malignancy. Despite numerous studies, the current
accuracy ratings of ovarian cancer diagnosis are not satisfactory, leaving room for improve-
ment. This proposed method introduces a novel aspect to enhance the reliability of clinical
assessment, benefiting patients and healthcare professionals [24–26].

Predominantly, existing approaches for ovarian cancer rely on single machine learning
or deep-learning algorithms and offer limited accuracy and generalizability. In addition,
the major focus of existing studies is on the optimization of the model, and the feature
engineering part is not very well investigated. The current study, on the other hand,
proposes a stacked ensemble model to overcome the limited accuracy offered by individual
models. The objective is to combine the strengths of bagging and boosting classifiers
to improve predictive accuracy and reliability. By combining these two techniques, this
research exploits the benefits of variance reduction and improved generalization, leading to
superior ovarian cancer prediction outcomes. The key areas of our research are as follows:

• This study introduces a comprehensive framework designed for the identification of
ovarian cancer through the utilization of feature-based data. The prediction of ovarian
cancer is carried out through the application of an ensemble approach involving
bagging and boosting classifiers.

• For a performance comparison, this study employs a diverse set of machine-learning
models, encompassing extreme gradient boosting (XGB), random forest (RF), stochas-
tic gradient descent (SGD), K-nearest neighbor (KNN), extra-trees classifier (ETC),
and gradient boosting machine (GBM) models. Moreover, to facilitate comparison,
the effectiveness of the proposed system is compared with several established cutting-
edge techniques, utilizing commonly recognized evaluation metrics such as accuracy,
precision, recall, and F1 score.

• The results obtained are further explained using the explainable AI technique Shapley
additive explanations (SHAP) to show the contribution of each feature in the prediction.

The paper’s organization is as follows: In Section 2, we perform an extensive review
of existing literature related to the detection of ovarian cancer using CAD. Section 3
outlines the materials and methodologies employed in this research. The discussion of
experimental outcomes and results is the focal point of Section 4. Finally, Section 5 provides
the conclusions and future research directions.

2. Related Work

This section discusses various methods for categorizing ovarian cancer, based on cell
type. Accurate identification of the ovarian cancer type is crucial for creating personalized
treatment plans for patients. Numerous studies have aimed to improve the cancer screening
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process and have resulted in the preclinical stage during the last decade. However, manual
image analysis by expert pathologists is not consistent among different individuals, and it
is also very time-consuming. Recently, ML algorithms have been vigorously used for the
initial screening and diagnosis of ovarian cancer. Various methods are recommended for
feature extraction from ultrasonic images and subsequent classification. This section also
explores several state-of-the-art ML-based approaches for detecting ovarian cancer.

Maria et al. [27] presented a machine-learning approach for ovarian cancer classi-
fication, employing six models: linear discriminant analysis (LDA), classification and
regression tree (CART), logistic regression (LR), Naive Bayes (NB), KNN, and support
vector machine (SVM). Remarkably, LR, CART, and LDA achieved an impressive accuracy
of 100% for ovarian cancer classification on the Kaggle dataset. Their experimentation
involved using only seven biomarkers from the dataset. On the other hand, Han et al. [28]
proposed an efficient machine-learning-based regularized LR model for ovarian cancer
prediction. The authors identified 30 crucial features within a single unified network and
utilized LR with LASSO regularization. The approach yielded an accuracy of 90.6%.

One study [29] introduced a group-penalized LR model to predict ovarian cancer.
The authors combined group SCAD/LASSO/MCP-penalized LR with an ML model to
enhance accuracy. The study utilized 46 features from the dataset, organized into 11 distinct
groups. The penalized LR process identified three groups, with Group MCP achieving
the highest accuracy of 93.33%. On the other hand, Ziyambe et al. [30] proposed an
efficient deep-learning-based system for diagnosing ovarian cancer. The authors trained a
convolutional neural network (CNN) model on a histopathological image dataset, achieving
an accuracy score of 94%. In the study, the authors also compared the performance of deep-
and transfer-learning models for this task.

Kalaiyarasi et al. introduced a state-of-the-art system for performance analysis of
machine-learning models using the microarray gene data of ovarian cancer [31]. The au-
thors utilized various techniques, such as discrete cosine transform (DCT), SDA, Hilbert
transformation, fast Fourier transform (FFT), and fuzzy C-means cluster (FCM) for feature
selection. The results revealed that the Gaussian mixture model with DCT features achieved
an accuracy of 88% for ovarian cancer prognosis. On a similar note, Azar et al. [32] projected
an ML-based system to efficiently predict the survival of ovarian cancer patients. They
employed six machine-learning models and used SHAP to ascertain feature importance for
clearer decision-making. The study demonstrated that the RF model attained an 88.72%
accuracy. This success can be attributed to SHAP’s efficient identification of important
features through extracted decision trees of the RF.

Ahamad et al. [33] presented an ML-based approach for the initial prognosis of ovarian
cancer. They partitioned the dataset’s 49 features into three distinct sets and conducted
experiments on these selected features. The study revealed that the ML models RF, GBM,
and LGBM achieved an accuracy of 91% using the selected features. Similarly, Lu et al. [12]
offered an ML-based system that employed maximum relevance–minimum redundancy
(MRMR) feature selection to extract relevant dataset features. The authors utilized the ML
models ROMA, DT, and LR. The results demonstrated that the LR model, using the top
10 features, achieved a remarkable accuracy of 97.4%.

Kasture et al. [34] introduced an enhanced deep CNN called KK-Net, which efficiently
and accurately classified four different classes. The authors also conducted comparisons
with multiple deep-learning and transfer-learning models for benchmarking. The study
results indicate that the proposed KK-Net achieved an accuracy of 91% on the TCGA
dataset. In a similar vein, Akazawa et al. [35] suggested a machine-learning-based system
for ovarian cancer detection. The study revealed that the ML model XGBoost (XGB)
achieved an accuracy of 80%.

Explainable AI (XAI) aims to make AI systems visible and intelligible to humans.
It tries to clarify how AI makes judgments, building trust and enabling the detection of
biases or errors. This openness is critical in a variety of domains to enable responsible
and ethical AI implementation. Arrieta et al. [36] provided an analysis of previous studies
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contributing to the domain of XAI. Consiglio et al. [37] applied fuzzy rules to explain
the gene expression of ovarian cancer. Lios et al. [38] predicted surgical cytoreduction
in ovarian cancer and also provided a model explanation using SHAP (Copyright 2018,
Scott Lundberg, Built with Sphinx and GoogleDeepMind location: Seattle, DC, USA).
The authors merged advanced AI modeling with the XAI framework to elucidate the
impact and relationships of features linked to a particular surgical difficulty level [39].
Huang et al. [21] performed discovery biomarkers using machine-learning models and also
used XAI to explain models. Additionally, the authors conducted a feature importance
analysis in the work.

A comprehensive summary of the related work is given in Table 1. Despite the results
reported in existing studies, some of which were very good, several issues and limitations
need further research for ovarian cancer. One study [27] utilized LR, NB, KNN, CART, NB,
LDA, and SVM and used only accuracy as an evaluation metric; precision, recall, and F1
scores were not reported. In addition, no cross-validation was carried out. Similarly, ref. [28]
focused only on increasing the prediction accuracy using LR with LASSO. Cross-validation
and performance comparison with other models was not considered.

Table 1. Summary of the related work.

Ref Classifiers Dataset Achieved Accuracy Biomarkers

[27] LDA, CART, LR, NB, k-NN, SVM Mendeley (same) 100% LR, CART, LDA 7 features

[28] LR with LASSO Mendeley (same) 90.6% LR with LASSO 30 features

[29] Penalized LR/Group SCAD/Group LASSO/ Mendeley (same) 93.33% MCP 46 feature divided into 11 groups
Group MCP, ANN, SVM

[30] Proposed CNN, LDA, GoggelNetV3, TCGA dataset (image) 94% proposed CNN
Deep hybrid learning

[31] GMM, LR, k-NN, Bayesian linear discriminant, E-GEOD-69207 88% GMM on DCT features
Non-linear regression, Detrended fluctuation
analysis

[32] XGB, k-NN, ADA, SVM, RF, DT SEER 88.7% RF

[33] RF, GBM, LR, LGBM, DT, SVM, XGB Mendeley (same) 91% RF, GBM, LGBM Selected features

[12] ROMA, DT, LR Mendeley (same) 97.4% LR 10 features

[34] AlexNet, VGG-16, VGG-19, GoogleNet, TCGA dataset (image) 91% KK-Net
KK-Net proposed

[35] RF, XGB, SVM, k-NN, NB, Tokyo women medical 80% XGB
LR university medical centre

In the same vein, in ref. [29], experiments were performed using LR with different
penalties such as LASSO, SCAD, MCP, etc., along with ANN and SVM models. No
validation was carried out in this study and performance was not compared with state-
of-the-art models. Similarly, in [30], experiments were performed using a single dataset
and the results were reported using accuracy, precision, recall, and F1 score. However,
cross-validation was not considered.

The authors utilized several models in [31] for ovarian cancer detection and ran
experiments with and without selective features. Despite good results from the study,
K-fold cross-validation was not carried out, thereby leaving doubts about the robustness
and generalizability of the proposed approach. Azar et al. [32] utilized radiomic features
for cancer detection and employed cross-validation, but the reported accuracy was low,
with approximately 70% accuracy on average.

A few studies have reported very high accuracy. In particular, refs. [12,27] reported
an accuracy of 100% and 97.4%, respectively. However, the accuracy of 100% shows a
case of model overfit. These works utilize a few selected features from 49 features but
no justification for feature selection is provided. Generalizability is questioned as K-fold
cross-validation is not considered to check the overfitting. Furthermore, ref. [12] completed
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the missing values of the dataset using mean values. This also supports the idea of
model overfitting.

3. Proposed Approach

This section provides a concise overview of the materials and methods employed in
classifying ovarian cancer. It encompasses details about the dataset used, the ML models
utilized for ovarian cancer detection, the proposed methodology, and the assessment
parameters employed to measure the performance of the learning models. Figure 1 shows
the workflow of the methodology adopted in this study.

Preprocessing

1. Missing Values
2. Label Encoder

Feature
Engineering

Train Test Split

70% Training {5-fold
cross validation}30% Testing

Stacked Ensemble
Bagging+Boosting

Trained
Model

Evaluation
 

Accuracy
Precision

Recall
F-score

Ovarian
Cancer
Dataset

Explainable AI
using SHAPly

Figure 1. Architectural diagram of the proposed methodology indicating the steps, while arrows
indicate the flow of steps.

3.1. Dataset

The study utilized a dataset containing 349 individuals, sourced from the Third Af-
filiated Hospital of Soochow University. The data were gathered over the period from
July 2011 to July 2018, and it encompassed two distinct categories: a group of 178 patients
diagnosed with benign ovarian tumors, and another group comprising 171 patients diag-
nosed with ovarian cancer (https://www.kaggle.com/datasets/saurabhshahane/predict-
ovarian-cancer, accessed on 27 October 2023). In total, the dataset contained 49 features,
which were obtained through pathology diagnosis. These 49 predictor variables consisted
of 22 general chemical tests, 19 blood routine tests, and 6 tumor markers, including age and
menopause information. All patients underwent postoperative case diagnosis, and none of
them had received preoperative radiotherapy or chemotherapy. The histological diagnosis
was classified based on World Health Organization criteria.

3.2. Machine-Learning Models

ML has shown great promise in various medical fields, including cancer prediction
and diagnosis. When it comes to ovarian cancer prediction, ML algorithms can be uti-
lized to analyze and interpret large amounts of patient data, helping to identify potential
cases earlier and more accurately. The ML model’s success in ovarian cancer prediction
depends upon the quality and quantity of data used for training. Access to a diverse and
representative dataset is crucial for building an accurate and reliable predictive model.
RF, KNN, SGD, ETC, XGB, and GBM are utilized in this study. The details of the model’s
hyperparameters are shown in Table 2. We have utilized the gridsearchCV method to
obtain the best hyperparameters. This function uses a list of parameters where a range for
each parameter can be specified. To determine an appropriate range for each parameter,
we analyzed the existing literature.

https://www.kaggle.com/datasets/saurabhshahane/predict-ovarian-cancer
https://www.kaggle.com/datasets/saurabhshahane/predict-ovarian-cancer
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Table 2. Hyperparameter details of all classifiers.

Classifier Hyperparameter

XGB n_estimators = 120, learning_rate = 0.2 , max_depth = 45,

RF n_estimators = 120, criterion = ‘entropy’, max_depth = 45,

SGD Larning_rate = ‘optimal’, epsilon = 0.2

ETC n_estimators = 120, max_depth = 45, criterion = ‘entropy’

GBM n_estimators = 120, learning_rate = 0.2 , max_depth = 45,

KNN n_neighbors = 5, leaf_size = 45

3.2.1. K Nearest Neighbor

KNN is an easy-to-implement and interpret ML algorithm utilized for both regression
and classification tasks. KNN is a lazy learner and leverages the entire dataset [40,41]. It
compares the training data with test data and then evaluates the distance in the training
dataset between the nearest neighbors. KNN can employ various distance metrics, with the
Euclidean distance being the most frequently used.

Euclidean =

√√√√ n

∑
p=1

(ip − jp)2 (1)

In the context of Euclidean n-space, i and j represent two points and “ip − jp” denotes
the Euclidean vectors starting from the origin of the space. Specifically, it represents the
difference between the coordinates of the points i and j in the Euclidean n-space.

3.2.2. Random Forest

RF is another model based on decision tree (DT), consisting of an ensemble of multiple
DTs. RF is applicable for both classification and regression tasks and demonstrates strong
performance on datasets with nonlinearity and class imbalance [42,43]. RF combines
the predictions of multiple DTs using a majority voting approach. Each DT in the RF
independently predicts the outcome for the test data, and the final prediction of the RF is
determined by selecting the class that is most frequently predicted by the individual DTs.

r f = modeDT1, DT2, DT3, · · · , DTn (2)

r f = mode
N

∑
i=1

DTn (3)

where DT1, DT2, and DT3 represent individual decision trees within the ensemble. The vari-
able n corresponds to tree numbers in the random forest.

3.2.3. Stochastic Gradient Descent

SGDC is based on the principles of LR and SVM classifiers [44,45]. SGDC utilizes
the convex loss function from LR, making it a robust classifier. It particularly excels in
multiclass classification tasks, employing the One-versus-All (OvA) approach to combine
multiple classifiers. One of the notable advantages of SGDC is its efficiency in handling large
datasets, as it processes a single example per iteration. Furthermore, SGDC is relatively
easy to implement and comprehend due to its reliance on regression techniques. To achieve
optimal results, appropriate parameter tuning is crucial for SGDC. Additionally, it is
important to note that feature scaling plays a significant role in the sensitivity of SGDC.

3.2.4. Extra Tree Classifier

The ETC algorithm is comparable to the RF technique but builds trees differently [46,47].
Unlike RF, ETC uses original data to construct trees rather than using samples from boot-
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strap data. In ETC, decision-making is based on random data sampling from the K-best
characteristics. The Gini index is used to find the top feature for dividing the tree. ETC and
RF are regarded as equivalent since both are ensemble learning models used for catego-
rization. The main distinction between ETC and RF lies in how the trees are constructed
within the forests. In ETC, K features’ random samples are drawn from feature collection
randomly and distributed to each tree’s test node.

3.2.5. Gradient Boosting Machine

GBM is a strong learning classifier made up of multiple weaker classifiers. GBM is
based on DT and builds separate trees, resulting in a longer execution time. The algorithm
has been improved through tweaks, specifically the probability approximately correct
(PAC) learning algorithm, which enhances its performance [48,49]. GBM handles missing
values effectively and hence performs well on raw data. GBM requires a segregated
loss mechanism to work. While regression methods commonly use logarithmic loss,
classification algorithms can also utilize it. The advantage of GBM is that it can employ
any differentiable loss function instead of creating a new one for each boosting iteration.
Several hyper-parameters in GBM must be tweaked to attain good accuracy. Setting “n” to
100, for example, shows 100 trees contributing to the forecast. Averaging all 100 decision
trees projections is needed to arrive at the final projections. The “max_depth” option can
be used to limit the maximum depth of 60 levels.

3.2.6. Extreme Gradient Boost

This is a famous ML algorithm designed for regression and classification tasks. A
boosting technique combining predictions of numerous weak learners (typically decision
trees) is employed to create a stronger ensemble model [50,51]. XGBoost optimizes a
differentiable loss function using gradient boosting, which emphasizes model accuracy
and efficiency. Its success lies in handling complex datasets, avoiding overfitting through
regularization, and providing excellent performance in various domains, making it a top
choice for many data scientists and machine-learning practitioners.

3.3. Proposed Framework

This section outlines the arrangement of the proposed methodology and its individual
components as implemented within the experiment. Figure 2 presents a detailed depiction
of the structure of the proposed framework. The proposed approach comprises two phases.
In the first phase, all learning algorithms are implemented and the proposed stacked
ensemble model, a fusion of bagging and boosting classifiers, undergoes training on the
dataset. Transitioning to the second phase, the SHAP explainable AI technique is utilized.
This technique provides insights into the contribution of features toward predictions. SHAP
methodically unveils the extent to which each feature participates in the ovarian cancer
prediction process.

The rationale behind adopting this stacking approach lies in harnessing the expertise
of bagging and boosting classifiers. The objective is to craft a more resilient and precise
framework that facilitates the early detection of ovarian cancer. In the medical domain,
prediction accuracy holds immense significance. The application of the SHAP technique
aids in portraying the final prediction in relation to features, offering a comprehensive
explanation of the model’s performance. The complete algorithm of the voting classifier is
shown in Algorithm 1.
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Bagging
Classifiers

 P(Normal)

P(Normal)= (P Bagging + P Boosting)/2
P(Cancer)= (P Bagging + P Boosting)/2

Final Prediction= argmax{P(Normal), P(Cancer)}

Training
Features

 P(Cancer)

Boosting
Classifiers

 P(Normal)  P(Cancer)

Figure 2. Architecture of the proposed stacked ensemble that combines bagging and boosting
classifiers to increase the classification accuracy of ovarian cancer.

Algorithm 1: Voting classifier with bagging and boosting models
Data: Training dataset D, Base model M, Number of base models N
Result: Final prediction for a given instance

1 Bagging Phase:;
2 for i = 1 to N do
3 Sample Subset: Sample a random subset Di from D with replacement;
4 Train Base Model: Train a base model Mi on Di;

5 Boosting Phase:;
6 Initialize weights for training instances: wi = 1/N, where 1 ≤ i ≤ N;
7 for i = 1 to N do
8 Train Base Model with Weighting: Train a base model Mi on D with instance

weights wi;
9 Compute Error: Compute the classification error εi of Mi on D;

10 Update Weights: Update instance weights based on εi: wi = wi · exp(αi · εi);
11 Normalize Weights: Normalize the weights so that they sum to 1;

12 Voting Phase:;
13 for i = 1 to N do
14 Make Predictions: Use each base model Mi to predict the class of the instance;

15 Majority Voting: Combine predictions using majority voting (or weighted
voting);

16 return Final prediction
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Evaluation Parameters

This study employs multiple assessment metrics to evaluate classifier performance.
These metrics include F1 score, accuracy, recall, and precision, which are computed based
on the values of false negatives (FN), true positives (TP), true negatives (TN), and false
positives (FP).

Accuracy shows the overall correctness of the model’s predictions using the ratio of
the truly classified samples (both positive and negative) to the total samples in the dataset

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Recall, also known as a delicacy or true positive rate, assesses the classifier’s ability to
correctly identify positive samples within a particular class. The recall is calculated using

Recall =
TP

TP + FN
(5)

Precision quantifies the percentage of correctly identified positive samples among all
the samples predicted as positive. It is determined using

Precision =
TP

TP + FP
(6)

The F1 score is utilized where data class imbalance occurs, combining both precision
and recall into a single score. It is given by

F1-Score = 2× precision× recall
precision + recall

(7)

These evaluation metrics help in comprehensively evaluating the classifiers perfor-
mance, taking into account different aspects of their predictions, such as false negatives,
false positives, true positives, and true negatives.

4. Results and Discussions

This study employs a variety of ML models for ovarian cancer detection. The dataset
is divided into training and testing sets in the ratio of 70:30, a widely adopted practice
in various classification studies to mitigate overfitting. The assessment of performance
involves diverse evaluation metrics tailored for the ML classifiers. All experimental proce-
dures are executed within a Python, ver. 3.12.0, environment, utilizing various libraries,
on a Dell PowerEdge T430 GPU (Chongqing, China) with 2 GB capacity, housing 2× Intel
Xeon 8 Cores operating at 2.4 GHz, and equipped with 32 GB of DDR4 RAM.

4.1. Results of the Machine-Learning Models

A comprehensive evaluation of supervised ML classifiers was conducted on the
complete set of features within the ovarian cancer dataset. This study encompassed a range
of regression-based, tree-based, and statistical-based models for ovarian cancer prediction.
The performance assessment of all ML models using the entire feature set is presented
in Table 3. The measurements used to evaluate the performance of the machine-learning
models presented in Table 3 include accuracy, precision, recall, and F1 score. In Table 3,
the accuracy values range from 77.94% to 87.14%. Higher accuracy indicates a better overall
performance of the model; however, accuracy alone is not enough to highlight a model’s
performance. The precision values range between 77.43% and 87.58%. Higher precision
indicates fewer false positives. The recall values range from 78.36% to 87.56%. Higher recall
indicates fewer false negatives. F1 score values range from 77.98% to 87.22%. A higher F1
score indicates a better balance between precision and recall.
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Table 3. Results of the ML models using full feature dataset.

Model Accuracy Precision Recall F1 Score

XGB 85.52 85.42 85.43 85.42

RF 85.66 86.35 87.56 86.22

SGD 84.94 85.72 85.87 85.65

ETC 86.89 86.52 86.52 86.52

GBM 87.14 87.58 87.53 87.19

KNN 77.94 77.43 78.36 77.98

As per the results, the ETC classifier achieved 86.89% accuracy, with an 86.52% score
for recall, precision, and F1 score alike. The RF ensemble model attained 85.66% accuracy
and 86.22% F1 score. The GBM classifier outperformed the rest using all features except
for recall score and obtained 87.14% accuracy, 87.53% recall, 87.58% precision, and 87.19%
F1 score. The KNN is the worst classifier for ovarian cancer prediction with 78.36% recall,
77.94% accuracy, 77.43% precision, and 77.98% F1 score. Performance comparison of all
models is presented in the figure below.

4.2. Results of Ensemble Models

The evaluation of various models and ensemble techniques for ovarian cancer classifi-
cation provided insightful performance metrics, as summarized in Table 4. Notably, this
study employed two baseline models (SGD and KNN), two bagging classifiers (ETC and
RF), and two boosting classifiers (GBM and XGB), followed by an investigation into their
ensemble configurations.

Table 4. Results of the ensemble models.

Model Accuracy Precision Recall F1 Score

Baseline classifier (SGD + KNN) 85.94 85.67 85.56 85.61

Bagging classifier (ETC + RF) 84.93 84.63 84.45 84.76

Boosting classifier (GBM + XGB) 88.24 88.68 88.49 88.69

The ensemble models results demonstrate diverse performance across different metrics,
shedding light on the efficacy of these methodologies for ovarian cancer prediction. It is
evident that the ensemble of boosting models (GBM + XGB) exhibited superior performance
compared to both the baseline and bagging classifier ensembles. This ensemble achieved
an accuracy of 88.24%, a precision score of 88.68%, a recall of 88.49%, and an F1 score of
88.69%. These metrics collectively indicate the robustness and efficiency of the boosting
ensemble in accurately predicting ovarian cancer.

In contrast, the baseline classifier ensemble (SGD + KNN) showcased commendable
performance, achieving an accuracy of 85.94%. While this ensemble demonstrated strong
predictive capabilities, its performance metrics fell slightly behind those of the boosting
ensemble. Interestingly, the bagging classifiers ensemble (ETC + RF) yielded the least
favorable performance among the ensemble models evaluated in this study, achieving an
accuracy of 84.93%. Despite its utilization of ensemble techniques, the bagging classifier
ensemble marginally lagged behind both the baseline and boosting ensembles in terms of
predictive accuracy, precision, recall, and F1 score.

These results underscore the significance of selecting appropriate ensemble method-
ologies for improving ovarian cancer prediction. The notable performance of the boosting
ensemble advocates for its adoption in future predictive models for ovarian cancer, owing
to its superior accuracy and precision in identifying and classifying cases. Additionally,
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the comparative analysis among these ensemble strategies highlights the nuanced dif-
ferences in their predictive capabilities, aiding researchers and practitioners in making
informed decisions when designing and deploying predictive models in medical contexts.

4.3. Results of Proposed Stacked Ensemble Model

In the realm of ovarian cancer classification, this study introduced a novel approach
centered around a stacking classifier system designed to integrate the strengths of ensemble
bagging and boosting techniques while leveraging selective features identified through the
application of the SHAP method for comprehensive feature analysis. The results attained
through the proposed ensemble model are summarized in Table 5.

Table 5. Results of proposed ensemble model.

Model Accuracy Precision Recall F1 Score

Stacking classifier 96.87 98.84 98.92 98.88

The experimental outcomes notably present the remarkable performance of the pro-
posed stacking ensemble model in the context of ovarian cancer prediction. The stacking
classifier demonstrated exceptional accuracy, achieving an impressive score of 96.87%. This
substantial accuracy level signifies the model’s ability to effectively discern and classify
ovarian cancer cases, showcasing a notably higher accuracy compared to the previously
evaluated models.

Beyond accuracy, the proposed stacking classifier exhibited superior performance
across other critical evaluation metrics. With a precision score of 98.84%, recall of 98.92%,
and an F1 score of 98.88%, this ensemble model consistently outperformed the other
learning models considered in this study. These metrics collectively portray the stacking
classifier’s capability to not only accurately identify positive instances of ovarian cancer
but also minimize false positives and negatives, indicating its robustness in both sensitivity
and specificity. The outstanding performance of the proposed ensemble model underscores
its potential as a highly effective tool for ovarian cancer classification. Achieving such high
precision and recall rates is pivotal in the medical domain, where accurately identifying and
diagnosing conditions such as ovarian cancer can significantly impact patient outcomes
and treatment strategies.

The introduction of the stacking classifier, incorporating selective features identified
through SHAP analysis, showcases a promising avenue for enhancing predictive models
in medical diagnostics. The substantial performance improvements demonstrated by
this ensemble model warrant further exploration and consideration in clinical settings,
potentially contributing to more accurate and reliable early detection of ovarian cancer.
The study’s findings suggest that the proposed ensemble model holds considerable promise
for practical implementation, potentially revolutionizing the landscape of ovarian cancer
diagnostics with its exceptional predictive capabilities.

4.4. Shapley Additive Explanations

It might be difficult to understand the connections between inputs and outputs be-
cause ML models are thought of as black-box algorithms. When working with labeled
data, in particular, this lack of interpretability results in a restricted understanding of the
significance of features in supervised learning on both a global and a local scale. A recent
development, the SHAP technique, resolves this problem by offering a quantitative method
to gauge model interpretability. The significance of elements inside the model may now be
better understood thanks to this advancement, which was first made by Lee and Lundberg
in 2017 and furthered by Lundberg et al. in 2018 [52,53].

The linear additive feature attribute method used by SHAP, which is based on ideas
from cooperative game theory, is used to describe complex models. In this method, an im-
portance value is imparted to each attribute on how it affects the model’s forecasting
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depending on feature presence or absence during SHAP estimation. To make the operation
of complex models more understandable, this approach of explanation offers a simpler
model. The use of the linear additive feature attribute technique and principles from
cooperative game theory is detailed in publications by Lee and Lundberg (2017), furthered
by Lundberg et al. (2020) [52,53].

f (a) = g(a′) = φ0 +
j

∑
j=1

φja′j (8)

The original ML model that we are explaining, in this case, is marked as (a), and the
more straightforward explanation model is labeled as g(a′). a′j, where j is a simplified input
seismic attribute number, denotes these attributes. All conceivable input orderings are
used to calculate the SHAP values, indicated as j. The presence or absence of a certain
seismic attribute is specified using an input vector that, during estimation, is called a′j. Last
but not least, φ0 denotes the model prediction when none of the qualities are taken into
account during the estimate. The complete feature importance calculated using SHAPly in
descending order is shown in Table 6.

Table 6. Feature importance calculated using SHAPly in descending order.

Weight Feature Description

0.1695 ± 0.0349 HE4 Human epididymis protein 4 is primarily associated with the female reproductive system.

0.0800 ± 0.0748 NEU Neutrophil ratio is a numerical value that represents the ratio of neutrophils to

Lymphocytes in a person’s blood.
0.0343 ± 0.0373 Age Age of patient.

0.0190 ± 0.0381 CA125 Carbohydrate antigen 125 is a protein biomarker that is found in the blood.

0.0095 ± 0.0120 LYM% Lymphocyte ratio refers to the ratio of lymphocytes to other types of white blood cells
(leukocytes) in a person’s blood.

0.0076 ± 0.0076 CA19-9 Carbohydrate antigen 19-9 is a protein biomarker.

0.0076 ± 0.0143 ALB Albumin is a type of protein that is found in the blood plasma.

0.0038 ± 0.0093 PCT Thrombocytocrit is a (platelet) content of the blood.

0.0019 ± 0.0305 HGB Hemoglobin is a protein found in red blood cells.

0.0000 ± 0.0120 AST Aspartate aminotransferase is an enzyme found in various tissues in the body.

0.0000 ± 0.0120 GLO Globulin is a group of proteins found in the blood plasma.

0.0000 ± 0.0000 Menopause Menopause marks the end of a woman’s reproductive years.

−0.0019 ± 0.0076 ALP Alkaline phosphatase is an enzyme found in various tissues throughout the body.

−0.0019 ± 0.0076 LYM# Lymphocyte ratio or lymphocyte count.

−0.0038 ± 0.0194 CEA Carcinoembryonic antigen is a protein.

−0.0038 ± 0.0093 PLT Platelet count is a standard component of a complete blood count.

SHAP analysis underscores the importance of features in relation to predicting ovarian
cancer. Although SHAP feature importance outperforms traditional methods, using it
alone provides only limited extra insights. Beeswarm plots offer a more detailed and
information-packed representation of SHAP values, revealing the relative significance of
features and their intricate relationships with the predicted outcome.

SHAP beeswarm plots are a visualization tool used to explain the output of machine-
learning models by showing how each feature contributes to individual predictions. They
combine aspects of beeswarm plots and summary plots to provide a clear view of feature
importance. The values and colors in SHAP beeswarm plots can be broken down as follows:

i. Values (X-Axis): The X-axis of a SHAP beeswarm plot represents the SHAP values
associated with each feature for each data point in your dataset. SHAP values quantify
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the impact of each feature on the model’s output for a specific prediction. These
values can be both positive and negative.

ii. Positive SHAP Values: These indicate that the feature contributes positively to increas-
ing the model’s output for that particular prediction. For example, a high positive
SHAP value for a feature might mean that an above-average value of that feature is
pushing the prediction higher. In our case, the future HE4 has the highest number of
positive samples.

iii. Negative SHAP Values: Conversely, negative SHAP values suggest that the feature
contributes negatively to the model’s output for that prediction. A high negative
SHAP value for a feature implies that an above-average value of that feature is
pushing the prediction lower. Again, the future HE4 has the highest number of
negative samples. This clearly means that the samples of feature HE4 play a vital role
in any class prediction. They are not neutral or misleading.

iv. Colors (Y-Axis): The Y-axis of a SHAP beeswarm plot represents the features them-
selves. Each point on the Y-axis corresponds to a feature in the dataset. The color of
each point is used to indicate the feature’s value.

v. Color Shading: The intensity of the color (e.g., darker (red) or lighter (blue) shades)
can also provide additional information. A darker shade of color indicates a stronger
or more influential feature value. In our case, the samples of feature HE4 are highest in
both class predictions but the samples are more influential in predicting the negative
class due to stronger red shades.

By examining a SHAP beeswarm plot, one can gain insights into which features are
driving individual predictions and whether they are having a positive or negative impact.
This visualization is especially useful for understanding how a model makes decisions
on a per-instance basis and for identifying which features are most important for specific
predictions. It is a powerful tool for model interpretability and can help one diagnose
model behavior and make informed decisions based on model outputs.

The SHAP summary demonstrates the contribution of each feature to every individual
case in the dataset. The combined effects of feature contributions and the bias element
result in the model’s initial prediction, which represents the prediction before the inverse
link function is applied. The visual representation of SHAP feature contributions can be
seen in Figure 3. Noteworthy is the observation that HE4 and NEU stand out as crucial
features, with a significant number of cases. In contrast, the majority of other features are
predominantly associated with predicting the presence of ovarian cancer.

The SHAP explanation provides insights into how features contribute to a particular
instance. The cumulative sum of feature contributions, along with the bias term, equals the
model’s original prediction, representing the forecast prior to the application of the inverse
link function. For complete implementation code of SHAP see Appendix A.

4.5. Discussion

Assessing the outcomes is essential for gaining a comprehensive understanding of a
model’s performance. Figure 4 presents the comparative analysis of the machine-learning
models. In the evaluation, the results of individual ensemble models are compared with
those of the proposed stacked ensemble model, which combines boosting and bagging
classifiers. Impressively, the proposed stacked ensemble model achieved the highest level
of performance, with an accuracy rate of 96.87%, as shown in Figure 5. This remarkable
accuracy underscores the potential of this ensemble approach for ovarian cancer prediction.

Moreover, the intricate relationships between the variables and their corresponding
SHAP values are analyzed, as visualized in Figure 3. One noteworthy observation was
the elevated variable values associated with HE4, signifying that instances with high HE4
values had a pronounced negative influence on the predicted outcomes. However, it is
essential to highlight a fascinating contrast: instances with elevated ALB (albumin) values
were found to contribute positively to the prediction outcome. This intriguing finding
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suggests that the relationship between ALB values and ovarian cancer prediction is complex
and multifaceted, warranting further investigation.

Figure 3. Graphical representation of SHAP feature importance, where color intensity indicates
a feature importance; red color indicates higher feature importance while blue color shows less
importance of a feature.
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Figure 4. Performance comparison of machine-learning models.
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Figure 5. Comparison of ensemble and stacked ensemble models.

The proposed workflow seamlessly guides the entire process from data collection to
result evaluation, integrating classification and XAI techniques. Furthermore, it presents
how SHAP results can be interpreted and harnessed in conjunction with domain knowledge,
enhancing the model’s interpretability and real-world applicability. The proposed approach
has proven to be highly effective, particularly for the categorical datasets of biomarkers.
The outstanding performance of the stacked ensemble model and the insights gleaned
from SHAP analysis exemplify the potential of this methodology in the critical domain of
ovarian cancer prediction.

XAI provides essential interpretability advantages in healthcare by offering clear
insights into how each feature influences model predictions. In ovarian cancer prediction,
this enables healthcare professionals to understand the significance of biomarkers and to
prioritize assessments and builds trust in the model’s decisions. Interpretability also aids in
informed decision-making, patient communication, clinical validation, and ensuring safety
and accountability in healthcare AI. Overall, XAI is a critical asset for improving patient
care and outcomes in the medical domain.

The improved prediction results obtained from the study hold significant implica-
tions in terms of both clinical applications and biological insights. On the clinical front,
the enhanced accuracy, precision, recall, and F1 scores indicate that the ML models are
adept at ovarian cancer detection, potentially leading to earlier diagnoses and better patient
outcomes. The reduction in false positives and negatives, as well as the balanced F1 scores,
underscores the models’ clinical utility. Moreover, the application of Shapley’s explainable
AI for model interpretation provides valuable biological insights. It highlights the impor-
tance of specific features, potentially revealing key biomarkers and shedding light on the
underlying biological pathways involved in ovarian cancer. This knowledge can guide
future research, offering a deeper understanding of the disease’s biology, subtypes, and het-
erogeneity, thereby advancing the development of more targeted and effective treatments.

The proposed approach addresses the practical use, generalizability, and ethics in ovar-
ian cancer detection. The proposed approach prioritizes model performance by achieving
high accuracy and a balanced precision–recall trade-off. This improvement in prediction
results makes the approach valuable in a clinical context, as it enhances the diagnostic
process and reduces false positives and negatives, thereby improving patient outcomes.
Shapley promotes trust and better decision-making. Rigorous validation through K-fold
ensures robustness and suitability for various clinical scenarios. Comprehensive measures
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address ethical concerns, such as data privacy, security, and bias, aligning with healthcare
equity and regulatory standards. The transparency and accessibility of model explanations
to healthcare professionals and continuous maintenance solidify the approach’s responsible
and ethical use in clinical practice.

The study showcases a highly accurate stacked ensemble model for ovarian cancer
prediction. The SHAP analysis reveals complex relationships between biomarkers, offering
valuable insights. The integrated workflow combines classification and XAI techniques
effectively, enhancing model interpretability. Overall, the findings have promising implica-
tions for clinical applications and advancing our understanding of ovarian cancer biology.

4.6. Study Limitations

The limitations and challenges encountered during ovarian cancer detection are as
follows:

i. Class distribution imbalance: The dataset may have a disproportionate number of
negative examples (i.e., samples without ovarian cancer), which can bias the model
towards predicting negative results. This can lead to decreased recall and F1 scores,
which are important metrics for cancer detection.

ii. Limited hardware resources: Training complex models on large datasets requires sig-
nificant computing power. If sufficient hardware resources are not available, it may be
necessary to use simpler models or smaller datasets, which can reduce performance.

iii. Generalization to new patient populations and data sources: Models trained on
one dataset may not perform well on other datasets, especially if the datasets differ in
terms of patient demographics, clinical characteristics, or image quality. It is therefore
important to validate models on external datasets to assess their generalizability.

4.7. Performance Comparison with Existing Studies

A comprehensive comparison was conducted to evaluate the performance of the
proposed model against existing state-of-the-art models, all aimed at enhancing accuracy.
The comparison is shown in Table 7. These selected works are used as benchmarks to
assess the effectiveness of the proposed model and highlight its advancements over existing
approaches. By comparing the results of advanced models with the proposed model, this
research work offers valuable insights into its superior performance in terms of accuracy
improvement. We can also observe in Table 7 that some researchers [12,27] tried to simplify
this problem using a simple logistic regression (LR) model with fewer features (7∼10).
The issue is that logistic regression becomes easily overfitted with a small sample size,
as parameter estimates can be unstable and have a high variance. In this way, logistic
regression captures noise instead of true patterns. In both these research works [12,27],
no regularization techniques (L1 or L2) are applied to mitigate the effect of overfitting.
Selecting fewer features and a small number of samples is the main problem, which is why
the results obtained are at a much higher accuracy rate. For instance, in [28] the authors
employed LR with LASSO and used 30 features of the dataset, which resulted in an accuracy
score of 90.6%. In [29], the MCP models were used for ovarian cancer detection, achieving
an accuracy of 93.33%, but they utilized only 46 features from the dataset. Similarly, in [54]
the authors applied RF for ovarian cancer using the OC Marker dataset and achieved
91% accuracy. Similarly, in [33] individual learning models such as LGBM, GBM, and LR
were employed for ovarian cancer prediction, achieving an accuracy of 91% on selected
features. Table 7 compares the performances of the existing studies with the proposed
model. The results unequivocally demonstrate that the proposed model outperforms the
existing models across various performance metrics.

We can also be observed in Table 7 that some researchers [12,27] tried to simplify
this problem using a simple logistic regression (LR) model with fewer features (7∼10).
The issue is that logistic regression becomes easily overfitted with a small sample size,
as parameter estimates can be unstable and have a high variance. In this way, logistic
regression captures noise instead of true patterns. In both these research works [12,27],
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no regularization techniques (L1 or L2) are applied to mitigate the effect of overfitting.
Selecting fewer features and a small number of samples may lead to a higher accuracy;
however, such studies lack generalizability and robustness. Despite showing high accuracy
for ovarian classification, changes in the dataset and number of features would greatly
affect the performance of such models. The proposed model, on the other hand, offers
better accuracy with generalizability and robustness.

Table 7. Comparison with state-of-the-art techniques using Mendeley (same) dataset.

Ref Proposed Classifiers Achieved Accuracy Biomarkers Used

[27] LR, CART, LDA 100% 7 features

[28] LR with LASSO 90.6% 30 features

[29] MCP 93.33% 46 feature divided into 11 groups

[33] RF, GBM, LGBM 91% Selected features

[12] LR 97.4% 10 features

[54] RF 91% OC marker

Proposed Stacking Classifier (bagging, boosting, Baseline) 96.87% 49 features

4.8. Practical Applicability and Generalizability

The proposed approach prioritizes model performance by achieving high accuracy
and a balanced precision–recall trade-off. This improvement in prediction results makes the
approach valuable in a clinical context, as it enhances the diagnostic process and reduces
false positives and negatives, thereby improving patient outcomes. Shapley promotes trust
and better decision-making. Comprehensive measures address ethical concerns, such as
data privacy, security, and bias, aligning with healthcare equity and regulatory standards.
The transparency and accessibility of model explanations to healthcare professionals and
continuous maintenance solidify the approach’s responsible and ethical use in clinical
practice. Rigorous validation through K-fold ensures robustness and suitability for various
clinical scenarios.

K-fold cross-validation is utilized to guarantee the dependability of the models. Table 8
displays the outcomes of 5-fold cross-validation during the testing phase, demonstrating
unequivocally that the suggested approach surpasses alternative models in accuracy, preci-
sion, recall, and F1 score. Table 9 displays the outcomes of 5-fold cross-validation during
the training phase. Furthermore, the proposed approach displays minimal standard devia-
tion, highlighting its reliability and consistency. These results indicate that the proposed
approach consistently delivers strong performance across numerous folds, instilling even
more confidence in its reliability and robustness.

Table 8. Results of the K-fold cross-validation during testing.

Model Accuracy Precision Recall F1 Score

1st fold 98.25 99.31 96.16 98.21

2nd fold 98.25 99.43 98.47 98.32

3rd fold 97.46 99.76 98.89 98.18

4th fold 98.80 99.87 98.76 98.85

5th fold 99.89 99.51 97.68 98.49

Average 98.61 99.72 97.54 98.41
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Table 9. Results of the K-fold cross-validation during training.

Model Accuracy Precision Recall F1 Score

1st fold 99.53 99.99 99.99 99.99

2nd fold 99.67 99.96 99.98 99.97

3rd fold 99.76 99.94 99.95 99.94

4th fold 99.85 99.99 99.99 99.99

5th fold 99.78 99.97 99.96 99.96

Average 99.74 99.97 99.98 99.98

5. Conclusions

Ovarian cancer is a deadly disease, but early detection and intervention can signifi-
cantly improve patient outcomes. This study addresses the critical challenge of ovarian
cancer prediction by developing an innovative stacked ensemble model that combines
the strengths of bagging and boosting classifiers. The model leverages feature-based data
to learn complex patterns associated with the disease, resulting in superior predictive
performance compared to state-of-the-art methods. This research has the potential to
contribute to the vital goal of improving early diagnosis and prognosis of ovarian cancer.
The introduction of a stacked ensemble model, merging the strengths of bagging and
boosting classifiers, aims to enhance predictive accuracy and reliability. This combination
harnesses the benefits of variance reduction and improved generalization, contributing to
superior ovarian cancer prediction outcomes. This study also employed XAI techniques,
specifically SHAP, to understand how our predictive model works. SHAP is a powerful
tool that helps us identify the most important features that contribute to a patient’s risk
of ovarian cancer. This information can be used by clinicians to make more informed
decisions about patient care. The research findings have significant potential for healthcare
practitioners, providing them with a valuable tool for more timely diagnoses and improved
patient outcomes. In summary, this study advances the frontier of ovarian cancer predic-
tion by developing an accurate and reliable model that can be used to identify patients at
high risk for the disease. This work has the potential to provide a meaningful impact on
clinical practice and patient well-being, ultimately helping to save lives and improve the
quality of care for those at risk of ovarian cancer. Future research and improvements for the
proposed method will focus on external validation with diverse datasets, real-time imple-
mentation, and integration of longitudinal and multi-omics data. Exploring interpretable
deep-learning models can enhance the method’s predictive accuracy, furthering progress in
ovarian cancer diagnosis and treatment. However, Shapley graphs are not as explainable as
requested in the medical domain, and other models such as PLENARY could be explored
for further model explanations.
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Appendix A. Implemented Code for SHAP

import shap
import xgboost as xgb
from sklearn.ensemble import VotingClassifier
from sklearn.linear_model import SGDClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, GradientBoost-
ingClassifier
xgb = xgb.XGBClassifier()
gbm = GradientBoostingClassifier(n_estimators = 100, random_state = 52)
rf = RandomForestClassifier(n_estimators = 100, random_state = 52)
etc = ExtraTreesClassifier(n_estimators = 100, random_state = 52)
sgd = SGDClassifier(max_iter = 1100, tol = 1 × 10−3)
knn = KNeighborsClassifier(n_neighbors = 3)
baseline = VotingClassifier(estimators = [(‘sgd’, sgd), (‘knn’, knn)], voting = ‘hard’)
bagging = VotingClassifier(estimators = [(‘etc’, etc), (‘rf’, rf)], voting = ’hard’)
boosting = VotingClassifier(estimators = [(‘gbm’, gbm), (‘xgb’, xgb)], voting = ‘hard’)
stacking = VotingClassifier(estimators = [(‘baseline’, baseline), (‘bagging’, bagging), (‘boost-
ing’, boosting)], voting = ‘hard’)
stackingEnsemble = stacking.fit(X_train, y_train).predict(X_test)
explainer = shap.Explainer(stackingEnsemble)
shap_values = explainer(X_train)
shap.plots.beeswarm(shap_values)

References
1. Stack, M.S.; Fishman, D.A.; Fishman, D.A.; Bozorgi, K. The scientific basis of early detection of epithelial ovarian cancer: The

National Ovarian Cancer Early Detection Program (NOCEDP). In Ovarian Cancer; Springer: Boston, MA, USA, 2002; pp. 3–28.
2. Marchetti, C.; Pisano, C.; Facchini, G.; Bruni, G.S.; Magazzino, F.P.; Losito, S.; Pignata, S. First-line treatment of advanced ovarian

cancer: Current research and perspectives. Expert Rev. Anticancer Ther. 2010, 10, 47–60. [CrossRef] [PubMed]
3. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of

incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [CrossRef] [PubMed]
4. Vázquez, M.A.; Mariño, I.P.; Blyuss, O.; Ryan, A.; Gentry-Maharaj, A.; Kalsi, J.; Manchanda, R.; Jacobs, I.; Menon, U.; Zaikin, A. A

quantitative performance study of two automatic methods for the diagnosis of ovarian cancer. Biomed. Signal Process. Control
2018, 46, 86–93. [CrossRef] [PubMed]

5. Jayson, G.C.; Kohn, E.C.; Kitchener, H.C.; Ledermann, J.A. Ovarian cancer. Lancet 2014, 384, 1376–1388. [CrossRef]
6. Kommoss, S.; Pfisterer, J.; Reuss, A.; Diebold, J.; Hauptmann, S.; Schmidt, C.; du Bois, A.; Schmidt, D.; Kommoss, F. Specialized

pathology review in patients with ovarian cancer: Results from a prospective study. Int. J. Gynecol. Cancer 2013, 23, 1376–1382.
[CrossRef] [PubMed]

7. Wang, J.; Gao, J.; Yao, H.; Wu, Z.; Wang, M.; Qi, J. Diagnostic accuracy of serum HE4, CA125 and ROMA in patients with ovarian
cancer: A meta-analysis. Tumor Biol. 2014, 35, 6127–6138. [CrossRef] [PubMed]

8. Su, Y.; Wang, M.; Yang, J.; Wu, X.; Xia, M.; Bao, M.; Fu, L. Effects of Yulin Tong Bu formula on modulating gut microbiota and
fecal metabolite interactions in mice with polycystic ovary syndrome. Front. Endocrinol. 2023, 14, 1122709.

9. Tang, L.; Li, J.; Bao, M.; Xiang, J.; Chen, Y.; Wang, Y. Genetic association between HER2 and ESR2 polymorphisms and ovarian
cancer: A meta-analysis. Oncotargets Ther. 2018, 11, 1055–1066. [CrossRef]

10. Yang, J.; Ullah, A.; Su, Y.; Otoo, A.; Adu-Gyamfi, E.A.; Feng, Q.; Ding, Y. Glycyrrhizin ameliorates impaired glucose metabolism
and ovarian dysfunction in a polycystic ovary syndrome mouse model. Biol. Reprod. 2023, 109, 83–96. [CrossRef]

https://www.kaggle.com/datasets/saurabhshahane/predict-ovarian-cancer/data
http://doi.org/10.1586/era.09.167
http://www.ncbi.nlm.nih.gov/pubmed/20014885
http://dx.doi.org/10.3322/caac.21492
http://www.ncbi.nlm.nih.gov/pubmed/30207593
http://dx.doi.org/10.1016/j.bspc.2018.07.001
http://www.ncbi.nlm.nih.gov/pubmed/30245736
http://dx.doi.org/10.1016/S0140-6736(13)62146-7
http://dx.doi.org/10.1097/IGC.0b013e3182a01813
http://www.ncbi.nlm.nih.gov/pubmed/24257551
http://dx.doi.org/10.1007/s13277-014-1811-6
http://www.ncbi.nlm.nih.gov/pubmed/24627132
http://dx.doi.org/10.2147/OTT.S149428
http://dx.doi.org/10.1093/biolre/ioad048


Cancers 2023, 15, 5793 21 of 22

11. Zhuang, Y.; Jiang, N.; Xu, Y.; Xiangjie, K.; Kong, X. Progressive Distributed and Parallel Similarity Retrieval of Large CT Image
Sequences in Mobile Telemedicine Networks. Wirel. Commun. Mob. Comput. 2022, 11, 667. [CrossRef]

12. Lu, M.; Fan, Z.; Xu, B.; Chen, L.; Zheng, X.; Li, J.; Znati, T.; Mi, Q.; Jiang, J. Using machine-learning to predict ovarian cancer. Int.
J. Med. Inform. 2020, 141, 104195. [CrossRef] [PubMed]

13. Wang, Y.; Xu, N.; Liu, A.; Li, W.; Zhang, Y. High-Order Interaction Learning for Image Captioning. IEEE Trans. Circuits Syst. Video
Technol. 2022, 32, 4417–4430. [CrossRef]

14. Chang, Q.Q.; Chen, C.Y.; Chen, Z.; Chang, S. LncRNA PVT1 promotes proliferation and invasion through enhancing Smad3
expression by sponging miR-140-5p in cervical cancer. Radiol. Oncol. 2019, 53, 443–452. [CrossRef] [PubMed]

15. Chen, S.; Chen, Y.; Yu, L.; Hu, X. Overexpression of SOCS4 inhibits proliferation and migration of cervical cancer cells by
regulating JAK1/STAT3 signaling pathway. Gynaecol. Oncol. 2021, 42, 554–560.

16. Moore, R.G.; Jabre-Raughley, M.; Brown, A.K.; Robison, K.M.; Miller, M.C.; Allard, W.J.; Kurman, R.J.; Bast, R.C.; Skates, S.J.
Comparison of a novel multiple marker assay vs the Risk of Malignancy Index for the prediction of epithelial ovarian cancer in
patients with a pelvic mass. Am. J. Obstet. Gynecol. 2010, 203, 228.e1–228.e6. [CrossRef] [PubMed]

17. Anton, C.; Carvalho, F.M.; Oliveira, E.I.; Maciel, G.A.R.; Baracat, E.C.; Carvalho, J.P. A comparison of CA125, HE4, risk ovarian
malignancy algorithm (ROMA), and risk malignancy index (RMI) for the classification of ovarian masses. Clinics 2012, 67, 437–441.
[CrossRef] [PubMed]

18. Lukanova, A.; Kaaks, R. Endogenous hormones and ovarian cancer: Epidemiology and current hypotheses. Cancer Epidemiol.
Biomark. Prev. 2005, 14, 98–107. [CrossRef]

19. Ramampiandra, E.C.; Scheidegger, A.; Wydler, J.; Schuwirth, N. A comparison of machine learning and statistical species
distribution models: Quantifying overfitting supports model interpretation. Ecol. Model. 2023, 481, 110353. [CrossRef]

20. Nohara, Y.; Matsumoto, K.; Soejima, H.; Nakashima, N. Explanation of machine learning models using shapley additive
explanation and application for real data in hospital. Comput. Methods Programs Biomed. 2022, 214, 106584. [CrossRef]

21. Huang, W.; Suominen, H.; Liu, T.; Rice, G.; Salomon, C.; Barnard, A.S. Explainable discovery of disease biomarkers: The case
of ovarian cancer to illustrate the best practice in machine learning and Shapley analysis. J. Biomed. Inform. 2023, 141, 104365.
[CrossRef]

22. Liu, H.; Xu, Y.; Chen, F. Sketch2Photo: Synthesizing photo-realistic images from sketches via global contexts. Eng. Appl. Artif.
Intell. 2023, 117, 105608. [CrossRef]

23. Pan, L.; Feng, F.; Wu, J.; Fan, S.; Han, J.; Wang, S.; Xu, K. Demethylzeylasteral targets lactate by inhibiting histone lactylation to
suppress the tumorigenicity of liver cancer stem cells. Pharmacol. Res. 2022, 181, 106270. [CrossRef] [PubMed]

24. Lu, S.; Yang, J.; Yang, B.; Yin, Z.; Liu, M.; Yin, L.; Zheng, W. Analysis and Design of Surgical Instrument Localization Algorithm.
Comput. Model. Eng. Sci. 2022, 137, 669–685. [CrossRef]

25. Wang, W.; Qi, F.; Wipf, D.P.; Cai, C.; Yu, T.; Li, Y.; Wu, W. Sparse Bayesian Learning for End-to-End EEG Decoding. IEEE Trans.
Pattern Anal. Mach. Intell. 2022, 45, 15632–15649. [CrossRef] [PubMed]

26. Su, H.; Pan, J.; Zhang, X.; Wang, X.; Lu, L.; Qing, X.; Liu, Q. Group identity modulates bidding behavior in repeated lottery
contest: Neural signatures from event-related potentials and electroencephalography oscillations. Front. Neurosci. 2023, 17,
1184601.

27. Maria, H.H.; Jossy, A.M.; Malarvizhi, S. A Machine Learning approach for classification of ovarian tumours. J. Phys. Conf. Ser.
2022, 2335, 012018.

28. Han, A.F.; Emedom-Nnamdi, P. Predicting Ovarian Cancer Using Regularized Logistic Regression. 2021. Available online: https:
//wp0.vanderbilt.edu/youngscientistjournal/article/predicting-ovarian-cancer-using-regularized-logistic-regression (accessed
on 27 October 2023).

29. Xie, Y. Group Penalized Logistic Regressions Predict Ovarian Cancer; Research Square: Durham, NC, USA, 2022.
30. Ziyambe, B.; Yahya, A.; Mushiri, T.; Tariq, M.U.; Abbas, Q.; Babar, M.; Albathan, M.; Asim, M.; Hussain, A.; Jabbar, S. A Deep

Learning Framework for the Prediction and Diagnosis of Ovarian Cancer in Pre-and Post-Menopausal Women. Diagnostics 2023,
13, 1703. [CrossRef]

31. Kalaiyarasi, M.; Rajaguru, H. Performance Analysis of Ovarian Cancer Detection and Classification for Microarray Gene Data.
BioMed Res. Int. 2022, 2022, 6750457. [CrossRef]

32. Avesani, G.; Tran, H.E.; Cammarata, G.; Botta, F.; Raimondi, S.; Russo, L.; Persiani, S.; Bonatti, M.; Tagliaferri, T.; Dolciami,
M.; et al. CT-based radiomics and deep learning for BRCA mutation and progression-free survival prediction in ovarian cancer
using a multicentric dataset. Cancers 2022, 14, 2739. [CrossRef]

33. Ghoniem, R.M.; Algarni, A.D.; Refky, B.; Ewees, A.A. Multi-modal evolutionary deep learning model for ovarian cancer diagnosis.
Symmetry 2021, 13, 643. [CrossRef]

34. Kasture, K.R. A new deep learning method for automatic ovarian cancer prediction & subtype classification. Turk. J. Comput.
Math. Educ. (TURCOMAT) 2021, 12, 1233–1242.

35. Akazawa, M.; Hashimoto, K. Artificial intelligence in ovarian cancer diagnosis. Anticancer Res. 2020, 40, 4795–4800. [CrossRef]
[PubMed]

36. Arrieta, A.B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; García, S.; Gil-López, S.; Molina, D.; Benjamins,
R.; et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf.
Fusion 2020, 58, 82–115. [CrossRef]

http://dx.doi.org/10.1155/2022/6458350
http://dx.doi.org/10.1016/j.ijmedinf.2020.104195
http://www.ncbi.nlm.nih.gov/pubmed/32485554
http://dx.doi.org/10.1109/TCSVT.2021.3121062
http://dx.doi.org/10.2478/raon-2019-0048
http://www.ncbi.nlm.nih.gov/pubmed/31626590
http://dx.doi.org/10.1016/j.ajog.2010.03.043
http://www.ncbi.nlm.nih.gov/pubmed/20471625
http://dx.doi.org/10.6061/clinics/2012(05)06
http://www.ncbi.nlm.nih.gov/pubmed/22666786
http://dx.doi.org/10.1158/1055-9965.98.14.1
http://dx.doi.org/10.1016/j.ecolmodel.2023.110353
http://dx.doi.org/10.1016/j.cmpb.2021.106584
http://dx.doi.org/10.1016/j.jbi.2023.104365
http://dx.doi.org/10.1016/j.engappai.2022.105608
http://dx.doi.org/10.1016/j.phrs.2022.106270
http://www.ncbi.nlm.nih.gov/pubmed/35605812
http://dx.doi.org/10.32604/cmes.2023.027417
http://dx.doi.org/10.1109/TPAMI.2023.3299568
http://www.ncbi.nlm.nih.gov/pubmed/37506000
https://wp0.vanderbilt.edu/youngscientistjournal/article/predicting-ovarian-cancer-using-regularized-logistic-regression
https://wp0.vanderbilt.edu/youngscientistjournal/article/predicting-ovarian-cancer-using-regularized-logistic-regression
http://dx.doi.org/10.3390/diagnostics13101703
http://dx.doi.org/10.1155/2022/6750457
http://dx.doi.org/10.3390/cancers14112739
http://dx.doi.org/10.3390/sym13040643
http://dx.doi.org/10.21873/anticanres.14482
http://www.ncbi.nlm.nih.gov/pubmed/32727807
http://dx.doi.org/10.1016/j.inffus.2019.12.012


Cancers 2023, 15, 5793 22 of 22

37. Consiglio, A.; Casalino, G.; Castellano, G.; Grillo, G.; Perlino, E.; Vessio, G.; Licciulli, F. Explaining ovarian cancer gene expression
profiles with fuzzy rules and genetic algorithms. Electronics 2021, 10, 375. [CrossRef]

38. Laios, A.; Kalampokis, E.; Johnson, R.; Thangavelu, A.; Tarabanis, C.; Nugent, D.; De Jong, D. Explainable artificial intelligence for
prediction of complete surgical cytoreduction in advanced-stage epithelial ovarian cancer. J. Pers. Med. 2022, 12, 607. [CrossRef]
[PubMed]

39. Laios, A.; Kalampokis, E.; Johnson, R.; Munot, S.; Thangavelu, A.; Hutson, R.; Broadhead, T.; Theophilou, G.; Leach, C.; Nugent,
D.; et al. Factors predicting surgical effort using explainable artificial intelligence in advanced stage epithelial ovarian cancer.
Cancers 2022, 14, 3447. [CrossRef] [PubMed]

40. Juna, A.; Umer, M.; Sadiq, S.; Karamti, H.; Eshmawi, A.; Mohamed, A.; Ashraf, I. Water Quality Prediction Using KNN Imputer
and Multilayer Perceptron. Water 2022, 14, 2592. [CrossRef]

41. Keller, J.M.; Gray, M.R.; Givens, J.A. A fuzzy k-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybern. 1985, SMC-15, 580–585.
[CrossRef]

42. Manzoor, M.; Umer, M.; Sadiq, S.; Ishaq, A.; Ullah, S.; Madni, H.A.; Bisogni, C. RFCNN: Traffic accident severity prediction based
on decision level fusion of machine and deep learning model. IEEE Access 2021, 9, 128359–128371. [CrossRef]

43. Kotsiantis, S.B. Decision trees: A recent overview. Artif. Intell. Rev. 2013, 39, 261–283. [CrossRef]
44. Umer, M.; Sadiq, S.; Missen, M.M.S.; Hameed, Z.; Aslam, Z.; Siddique, M.A.; Nappi, M. Scientific papers citation analysis using

textual features and SMOTE resampling techniques. Pattern Recognit. Lett. 2021, 150, 250–257. [CrossRef]
45. Bottou, L. Stochastic gradient descent tricks. In Neural Networks: Tricks of the Trade, 2nd ed.; Springer: Berlin/Heidelberg,

Germany, 2012; pp. 421–436.
46. Umer, M.; Sadiq, S.; Nappi, M.; Sana, M.U.; Ashraf, I. ETCNN: Extra Tree and Convolutional Neural Network-based Ensemble

Model for COVID-19 Tweets Sentiment Classification. Pattern Recognit. Lett. 2022, 164, 224–231. [CrossRef] [PubMed]
47. Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [CrossRef]
48. Ashraf, I.; Narra, M.; Umer, M.; Majeed, R.; Sadiq, S.; Javaid, F.; Rasool, N. A Deep Learning-Based Smart Framework for

Cyber-Physical and Satellite System Security Threats Detection. Electronics 2022, 11, 667. [CrossRef]
49. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
50. Majeed, R.; Abdullah, N.A.; Faheem Mushtaq, M.; Umer, M.; Nappi, M. Intelligent Cyber-Security System for IoT-Aided Drones

Using Voting Classifier. Electronics 2021, 10, 2926. [CrossRef]
51. Rish, I. An empirical study of the naive Bayes classifier. In Proceedings of the IJCAI 2001 Workshop on Empirical Methods in

Artificial Intelligence, Seattle, WA, USA, 4–10 August 2001; Volume 3, pp. 41–46.
52. Ahmad, M.A.; Eckert, C.; Teredesai, A. Interpretable machine learning in healthcare. In Proceedings of the 2018 ACM International

Conference on Bioinformatics, Computational Biology, and Health Informatics, Washington, DC, USA, 29 August–1 September
2018; pp. 559–560.

53. Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. In Proceedings of the Advances in Neural
Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30.

54. Ahamad, M.M.; Aktar, S.; Uddin, M.J.; Rahman, T.; Alyami, S.A.; Al-Ashhab, S.; Akhdar, H.F.; Azad, A.; Moni, M.A. Early-Stage
Detection of Ovarian Cancer Based on Clinical Data Using Machine Learning Approaches. J. Pers. Med. 2022, 12, 1211. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/electronics10040375
http://dx.doi.org/10.3390/jpm12040607
http://www.ncbi.nlm.nih.gov/pubmed/35455723
http://dx.doi.org/10.3390/cancers14143447
http://www.ncbi.nlm.nih.gov/pubmed/35884506
http://dx.doi.org/10.3390/w14172592
http://dx.doi.org/10.1109/TSMC.1985.6313426
http://dx.doi.org/10.1109/ACCESS.2021.3112546
http://dx.doi.org/10.1007/s10462-011-9272-4
http://dx.doi.org/10.1016/j.patrec.2021.07.009
http://dx.doi.org/10.1016/j.patrec.2022.11.012
http://www.ncbi.nlm.nih.gov/pubmed/36407854
http://dx.doi.org/10.1007/s10994-006-6226-1
http://dx.doi.org/10.3390/electronics11040667
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.3390/electronics10232926
http://dx.doi.org/10.3390/jpm12081211

	Introduction
	Related Work
	Proposed Approach
	Dataset
	Machine-Learning Models
	K Nearest Neighbor
	Random Forest
	Stochastic Gradient Descent
	Extra Tree Classifier
	Gradient Boosting Machine
	Extreme Gradient Boost

	Proposed Framework

	Results and Discussions
	Results of the Machine-Learning Models
	Results of Ensemble Models
	Results of Proposed Stacked Ensemble Model
	Shapley Additive Explanations
	Discussion
	Study Limitations
	Performance Comparison with Existing Studies
	Practical Applicability and Generalizability

	Conclusions
	Appendix A
	References

