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Simple Summary: Chimeric antigen receptor T (CAR-T) therapy has revolutionized cancer im-
munotherapy by inducing a durable response in patients with acute lymphoblastic leukemia (ALL)
and non-Hodgkin lymphoma (NHL). The challenges for cancer immunotherapy concern complex
resistance mechanisms; therefore, a very important therapeutic approach is to focus on the develop-
ment of rational combinations of targeted therapies with non-overlapping toxicities. Recent progress
in the development of potential therapeutics has significantly improved anticancer responses, while
next-generation CAR-T-cells may overcome current limitations and decrease unwanted side effects in
targeting hematological malignancies.

Abstract: CAR-T cell therapy has revolutionized the treatment of hematological malignancies with
high remission rates in the case of ALL and NHL. This therapy has some limitations such as long
manufacturing periods, persistent restricted cell sources and high costs. Moreover, combination
regimens increase the risk of immune-related adverse events, so the identification new therapeu-
tic targets is important to minimize the risk of toxicities and to guide more effective approaches.
Cancer cells employ several mechanisms to evade immunosurveillance, which causes resistance to
immunotherapy; therefore, a very important therapeutic approach is to focus on the development
of rational combinations of targeted therapies with non-overlapping toxicities. Recent progress in
the development of new inhibitory clusters of differentiation (CDs), signaling pathway molecules,
checkpoint inhibitors, and immunosuppressive cell subsets and factors in the tumor microenviron-
ment (TME) has significantly improved anticancer responses. Novel strategies regarding combination
immunotherapies with CAR-T cells are the most promising approach to cure cancer.

Keywords: immunotherapy; CR-T; hematological malignancies; checkpoint inhibitors; TME

1. Introduction

CAR-T therapy has revolutionized the treatment of hematological malignancies with
high remission rates in the case of ALL and NHL [1]. In some contemporary clinical trials,
the cure rate of childhood ALL has exceeded 90% [2]. Current therapeutic approaches in-
clude inotuzumab, blinatumomab and CAR-T cell therapy for B-ALL, which offer hope for
high-risk patients or poor early-treatment responders who do not have targetable genetic le-
sions [3]. Dual-targeted (CD19/CD22) CAR-T cells show a prominent antileukemia activity
in patients with relapsed/refractory ALL (R/R ALL) [4]. Importantly, long-term outcome
in children and adults might be increased via treatment of relapsed and/or refractory
(R/R) B-ALL with allogeneic stem cell transplant (Allo-SCT) after CAR-T therapy [5]. NHL
is the most prevalent group of hematological malignancies, with aggressive or indolent
entities. Among patients with R/R NHL, the 5-year survival duration after diagnosis
is poor. Thus, treatment of R/R NHL is mainly based on targeted/directed therapies,
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including B-cell receptor (BCR) signaling inhibitors, checkpoint inhibitors, Bcl-2 inhibitors,
monoclonal antibodies (mAbs), immunomodulatory agents, epigenetic modulators and
CAR-T cells [6,7]. CAR-T therapy has certain limitations like long manufacturing peri-
ods, persistent restricted cell sources and high costs [8]. Moreover, combination regimens
increase the risk of immune-related adverse events, so finding new therapeutic targets
is key to minimize the risk of toxicities and to guide more effective approaches [9]. A
comprehensive management of ALL and NHL is also important to determine the mini-
mal/measurable residual disease (MRD) [10,11]. The identification of MRD that persists
after chemotherapy is key when assessing the prognosis of patients with ALL [12]. The
diagnosis of MRD after hematopoietic stem cell transplantation (HSCT) is of particular
importance in ALL and is important to guide post-transplant maintenance treatment [13].
MRD and immunosurveillance are regulated by many factors in the TME of hematological
malignancies [14]. In this review, we describe emerging therapeutic targets and elucidate
drug resistance mechanisms in immunotherapy of hematological malignancies.

2. Targets for Drugs in Cancer Immunotherapy
2.1. Immune Checkpoint

A crucial mechanism by which tumors can escape the anti-tumor immune response is
enhanced signaling of the programmed cell death protein 1 (PD-1)/cytotoxic T-lymphocyte
antigen-4 (CTLA-4) pathway. Clinical responses in R/R disease in hematological malignan-
cies have been observed after the use of anti-PD-1 therapy [15]. PD-1-blocking antibodies
have been used in patients with heavily treated R/R Hodgkin lymphoma to enhance
immunity in several malignancies and have obtained durable responses [16]. Immune
checkpoints such as CTLA-4 and PD-1 have an important role in the maintenance of pe-
ripheral immune tolerance. Then, effective anti-tumor immune responses are caused by the
blockade of CTLA-4 and PD-1 [17,18]. Immune checkpoints are also important targets in
cancer immunotherapy, such as lymphocyte-activation gene-3 (LAG-3), T cell immunoglob-
ulin and ITIM domain (TIGIT), V-domain Ig suppressor of T cell activation (VISTA), and T
cell immunoglobulin and mucin-domain containing-3 (TIM-3) [17] (Figure 1).
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Immune checkpoint inhibitors (ICIs) reactivate suppressed T cells, especially in the
TME [19]. New agents are being investigated to target immune checkpoints and cancer-
intrinsic oncogenic pathways [20]. Immune checkpoint inhibitors (ICIs) have shown promis-
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ing clinical effects in the treatment of hematological malignancies [21,22]. Ipilimumab, as an
anti-CTLA-4 monoclonal antibody, is an FDA-approved immune checkpoint inhibitor [23].
Anti-PD-1 (pembrolizumab, nivolumab and cemiplimab) and anti-PD-L1 (avelumab, ate-
zolizumab and durvalumab) antibodies have been approved for use in the treatment
of hematological malignancies and obtained long-term efficacy [24,25]. ICIs targeting
CTLA-4 and the PD-1/PD-L1 axis strengthen anti-tumor immune responses by disrupting
co-inhibitory T-cell signaling [26]. These antibodies acting against immune checkpoints
are very effective for cancer immunotherapy of hematological malignancies [27]. ICIs as
first-line therapies for advanced cancers have led to unprecedented results in patients with
previously incurable metastatic diseases [28]. Sustained overexpression of co-inhibitory
receptors on CD8+ T cells promotes T-cell exhaustion or dysfunction, leading to cancers,
whereas autoimmunity is caused by dysregulated expression of co-inhibitory receptors on
CD4+ T cells [29].

Also, the costimulatory molecule 4-1BB/CD137 or OX40/CD134 agonistic antibodies
cause T-cell priming via dendritic cell activation [30]. Glucocorticoid-induced tumor necro-
sis factor receptor-related protein (GITR) as a costimulatory receptor plays an important
role in regulating the effector functions of T cells. Bispecific molecules composed of an
anti-PD-1 antibody linked with a multimeric GITR ligand (GITR-L) show dose-dependent
tumor growth inhibition [31].

2.2. Clusters of Differentiation (CDs) and B-Cell Maturation Antigen (BCMA)

Clusters of differentiation like CD19, CD20, CD30, CD33, CD38, CD47, CD123, CD138
and CD269 (BCMA) as targets have demonstrated great potential for CAR-T cell therapy,
while CD23 and SLAMF7 have also shown promising results in clinical trials [32,33]
(Figure 1).

CD20

Rituximab is an anti-CD20 chimeric monoclonal antibody used in patients with various
CD20-expressing lymphoid malignancies [34]. It was shown that rituximab has improved
results in patients with B-cell non-Hodgkin lymphomas [35]. Rituximab not only prolongs
the time to disease progression but also extends overall survival, as demonstrated in
clinical trials [34]. Rituximab is well tolerated; however, increased use of rituximab has
been associated with hypersensitivity reactions (HSRs) [36].

CD25

CD25 is widely expressed on regulatory T cells (Tregs) and activated circulating
immune cells, as well as in hematological malignancies. Infiltration of Tregs in the tumor
microenvironment (TME) is associated with the progression of cancers, but Teff/Treg
cell ratio shows an efficient anti-tumor response to immunotherapy [37]. Camidanlumab
tesirine (ADCT-301) targeting human CD25, either alone or in combination with ICIs, is
being investigated in a phase I trial (NCT03621982) [38].

CD30

CD30 is a transmembrane protein from the tumor necrosis factor receptor superfamily
and is expressed on activated T and B lymphocytes and in various lymphoid neoplasms [39].
The CD30 antigen is highly expressed on neoplastic cells in hematological malignancies
such as DLBCL, representing an ideal immunotherapeutic target [40]. CAR-T cells targeting
CD30 in patients with R/R CD30+ hematological malignancies have shown high response
rates with durable remissions [41]. A CD30-directed antibody–drug conjugate (ADC),
brentuximab vedotin, is approved for treating patients with CD30-expressing hematological
malignancies [42].

CD33

Lintuzumab-CD28/CD3ζ CD33 CAR-T immunotherapy is now under evaluation in a
preclinical trial involving children and adolescents/young adults with relapsed/refractory
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acute myeloid leukemia (AML) [43]. In an ex vivo study against AML cells, targeting
CD33 showed AMG 330-mediated T-cell cytotoxicity and expansion [44]. Gemtuzumab
ozogamicin has been approved as a selective anti-CD33 antibody–calicheamicin conjugate
for the treatment of hematological malignancies [45].

CD38

The transmembrane glycoprotein CD38 has a comparatively low expression on normal
and lymphoid cells and is expressed in high levels in multiple myeloma (MM) [46,47].
Daratumumab as a monoclonal antibody (mAb) targeting CD38, CD38-specific CAR-T cells
and bispecific antibodies to stimulate T cells to eliminate CD38+ MM cells is a very effective
therapeutic approach [48]. Its synergistic activity with pomalidomide and lenalidomide, as
well as PD1/PD-L1 inhibitors and CD38-targeting antibodies, has been demonstrated in
preclinical and clinical studies [49].

CD47

CD47 is expressed on healthy and malignant cells and may regulate macrophage-
mediated phagocytosis by sending a “don’t eat me” signal to the signal regulatory protein
alpha (SIRPα) receptor [50]. High levels of CD47 in hematological malignancies are as-
sociated with mechanisms of immune evasion [51]. Many studies have confirmed that
blocking CD47 interaction with SIRPα can enhance cancer cell clearance via macrophage
inhibition of CD47/SIRPα interaction, which may increase antigen cross-presentation,
leading to an adaptive anti-tumor immune response with T-cell priming [52]. It has been
shown that CD47 expression is crucial for the effectiveness of CAR-T therapy [53]. Blocking
CD47/SIRPα signaling enhances the anti-tumor effect of CAR-T cells [54].

CD123

CD123 is the interleukin-3 receptor alpha chain (IL-3R). It is expressed on more
differentiated leukemic blasts and leukemic stem cells (LSCs), and is widely overexpressed
in B-ALL and other hematological malignancies. CD123 is an attractive therapeutic target
for treating AML or blastic plasmacytoid dendritic neoplasm (BPDCN). Different anticancer
agents, like Tagraxofusp (SL401, Stemline Therapeutics), that are directed against CD123
have demonstrated promising results for the treatment of either R/R disease or MRD [55].

CD138

Synergistic cytotoxicity in hematological malignancies is triggered by combinations
of the proteasome inhibitor carfilzomib (CFZ) with a pharmacological isocitrate dehydro-
genase 2 (IDH2) inhibitor (AGI-6780). CFZ/AGI-6780 treatment enhances the death of
primary CD138+ cells in multiple myeloma (MM) patients and presents a beneficial cytotox-
icity profile toward bone marrow-derived stromal cells and peripheral blood mononuclear
cells (PBMCs) [56].

BCMA

B-cell maturation antigen (BCMA), as a transmembrane glycoprotein in the tumor
necrosis factor receptor superfamily 17 (TNFRSF17), is an antigen expressed on the surface
of plasma cells [57]. BCMA is expressed on malignant plasma cells (PCs) and is a key
target for multiple myeloma (MM) treatment [58]. Antibody–drug conjugates (ADCs),
like Belantamab mafodotin-blmf (GSK2857916), as BCMA-targeted therapeutics have been
approved for highly refractory MM. BCMA-targeted ADCs have achieved remarkable
clinical responses in patients with R/R MM, including bispecific T cell engagers (BiTE)
conjugated to CAR-T cells [59].

2.3. Signaling Pathways
2.3.1. Phosphatidylinositol 3-kinase (PI3K)/AKT/Mammalian Target of the Rapamycin
(mTOR) Signaling Pathway

PI3K/Akt/mTOR signaling plays important roles in promoting tumor initiation, pro-
gression and therapy responses [60]. This pathway may be activated in childhood ALL,
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as well as in some lymphoproliferative disorders and pediatric lymphomas [61]. mTOR
is a protein kinase regulating metabolism, cell growth, survival and immunity. mTOR
catalyzes the phosphorylation of AKT, protein kinase C (PKC), ribosomal protein S6 kinase
β-1 (S6K1), eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and type-I
insulin-like growth factor receptor (IGF-IR). Activation of mTOR may promote tumor
growth and metastasis [45]. IFN may induce functional HIF-1α expression and regulate
epithelial–mesenchymal transition (EMT), cellular metastasis and anti-apoptosis activity
via the activation of the PI3K/AKT/mTOR axis. Moreover, targeting HIF-1α is important
for inhibiting tumorigenesis and EMT [62]. It has been shown that PI3K/AKT/mTOR in-
hibitors may improve patient response in cancers [60]. Rhapontigenin (Rha) may inhibit the
progression of cancer by disrupting angiogenesis and EMT [63]. Also, sirolimus as a target
in this pathway has been used successfully in pediatric hematological malignancies [61].

It has been shown that poor prognosis in hematological malignancies is associated
with the PI3K pathway, whereas a critical mechanism underlying PI3K inhibitor resistance
in lymphoma is IL-6-induced STAT3 or STAT5 activation [64,65].

2.3.2. The Transforming Growth Factor (TGF)-β Signaling Pathway

TGF-β is a cytokine that signals via plasma membrane TGF-β type I and type II re-
ceptors and intercellular SMAD transcriptional effectors [66]. TGF-β, in the early phase
of tumorigenesis, has tumor suppressive functions through apoptosis and cell cycle ar-
rest [67], whereas in late-stage cancer, TGF-β can promote tumorigenesis, metastasis and
chemoresistance [68]. Through the production of mitogenic growth factors, tumor cells
develop mechanisms to overcome the TGF-β-induced suppressor effects and stimulate
tumor proliferation and survival [69]. TGF-beta has a dual role as both a tumor suppressor
and a pro-oncogenic factor; therefore, the choice of therapeutic drug dosage and patient
selection should be careful. Moreover, members of the TGF-β signaling pathway are
being considered as key molecular targets for prevention and treatment of cancer and
metastasis [68].

2.3.3. Signal Transducer and Activator of Transcription 3 (STAT3)

STAT3 controls autophagy molecules and induces apoptosis in T lymphocytes [70].
STAT3 is a crucial molecular hub in malignant tumors that plays important roles in promot-
ing the production of immunosuppressive factors and inhibiting the expression of critical
immune regulators [71]. STAT3 is key target in cancer immunotherapy, which is important
in enhancing anti-cancer immune responses by rescuing the suppressed immunologic
microenvironment in tumors [72]. Targeting STAT3 in combination with other drugs may
prove to be a successful therapeutic strategy to overcome acquired DR [73].

2.3.4. Mitogen-Activated Protein Kinase (MAPK) Signaling Pathways

MAPK pathways involving extracellular signaling-regulated kinases (ERKs), the Jun
N-terminal kinases (JNK) and p38 MAPK are signal transduction pathways important
for modulating drug sensitivity and resistance in cancers [74]. It has been confirmed
that the RAS/RAF/MEK/ERK (MAPK) signaling cascade is key for cell inter- and intra-
cellular communication, which regulates cell functions such as differentiation, growth and
survival [75]. Acquired resistance and insensitivity to drug treatment may be caused by a
number of genetic and epigenetic alterations in MAPK signaling; therefore, they are key
targets for cancer immunotherapy [76]. The Ras/Raf/MEK/ERK pathway is associated
with sensitivity and resistance to leukemia therapy [77]. Growth factors and mitogens may
use the Ras/Raf/MEK/ERK signaling cascade to regulate gene expression and prevent
apoptosis. Mutations occur in the components (e.g., Ras and B-Raf) of these pathways
and in genes encoding upstream receptors (e.g., EGFR and Flt-3); moreover, chimeric
chromosomal translocations (e.g., BCR-ABL) transfer their signals via these pathway [78].
Also, granulocyte/macrophage colony-stimulating factor (GM-CSF) and cytokine genes
have trans-acting binding sites for the transcription factors regulated by this cascade [79,80].
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2.4. Exhaustion and Senescence

Exhausted T cells contain heterogeneous cell populations with unique differentiation
and functional states and have altered effector functions (cytokine production and killing
function), dysregulated metabolism-altered signaling cascades and poor memory recall re-
sponse [81,82]. These cells lose their effector functions, exhibit altered epigenetic signatures
and transcriptional networks, and gain the constitutive expression of coinhibitory recep-
tors [83]. It has been shown that antibodies targeting PD-1/PD-L1 reinvigorate “exhausted”
T cells in TME and show persistent response, durable remission and acceptable toxicity
profile [84]. The heterogeneity comprises stem-like and terminally differentiated cells
within the exhausted CD8+ T cell lineage [85]. Environmental signals promote epigenetic
alterations, which set the transcriptomes needed for T cell function [86].

Immunosenescence is a complex regulatory process with changes in both the innate
and adaptive immune responses and might be caused by an increased activity of immuno-
suppressive cells [87,88]. It is associated with thymic involution, naïve/memory cell ratio
imbalance, epigenetic changes, chronic inflammation and dysregulated metabolism and
is considered the main risk factor for age-related diseases [89]. Chronic antigen stimula-
tion causes premature senescence of immune cells, with a proinflammatory senescence-
associated phenotype [89]. This process is induced by damage signals such as oxidative
stress, mitochondrial dysfunction, persistent DNA damage and cytokines [90].

Importantly, EVs derived from effector CAR-T cells have anti-tumor potential in
treating hematological malignancies [91]. These vesicles may have secretory phenotypes
associated with exhaustion and senescence [92,93]. EVs like exosomes derived from ex-
hausted CD8+ T cells have distinct lncRNA expression profiles and could attenuate the
function of CD8+ T cells [94].

2.5. The Immunosuppressive Tumor Microenvironment (TME)

By increasing T regulatory (Treg) cells and inhibiting T effector (Teff) cell function,
tumor-extrinsic factors may alter the composition and activity of tumor-infiltrating lym-
phocytes (TILs) and promote tumor progression. The response rates and clinical outcomes
of anti-cancer therapy are limited by factors like soluble suppressive molecules, immuno-
suppressive cells or inhibitory receptors expressed by immune cells [95]. In the TME,
tumor cells escape anti-tumor responses by constantly evolving to reduce neoantigen gen-
eration [95]. Tumor-associated macrophages (TAMs), myeloid-derived suppressor cells
(MDSCs), Treg cells, Breg cells and tumor-associated neutrophils (TANs) play a crucial role
in shaping the tumor immunosuppressive environment. They can inhibit the function of
effector cells, such as CD8+ T cells, NK cells and Th1 cells, by releasing cytokines, such
as TGF-β, IL-10, IL-35 and adenosine, and expressing PD-L1 [87,96,97]. Treg cells are
heterogeneous and express different immune checkpoint molecules, which play critical
roles in the maintenance of immune homeostasis by favoring their immune suppressive
function [98,99]. Myeloid-derived suppressor cells (MDSCs) play a critical role in the
regulation of the immune response in cancer [100,101]. Direct targeting of MDSCs may
abrogate their pro-tumorigenic impact within the tumor microenvironment through the
activation of the adaptive immune response [100]. The immunosuppressive network also
includes polymorphonuclear (PMN-MDSC) myeloid-derived suppressor cells, which are
immature myeloid cells induced by inflammatory mediators and monocytic MDSC (M-
MDSC) [87]. Quiescent cancer cells (QCCs) form clusters with higher tumorigenic capacity
and constitute immunotherapy-resistant reservoirs [102].

3. New Emerging Targets in Cancer Immunotherapy

Antigens such as CD27, CD37, CD70, CD80, CD86, B7-H3 and B7-H4, which are
expressed in hematological malignancies and targeted by CAR-T cells, are promising
candidates for clinical development [103–105] (Figure 2).
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CD27 and CD70

CD27 is a member of the tumor necrosis factor receptor superfamily. CD27, by binding
to its natural ligand CD70, provides a costimulatory signal important in T-cell activa-
tion [106]. Varlilumab, as a CD27 agonistic antibody, has shown promising efficacy in hema-
tological malignancies, particularly in combination approaches with PD1 axis-targeting
ICIs, such as atezolizumab and nivolumab [107]. Importantly, CD70 may be used as a
target for antibodies inducing ADCC and specific dendritic cell vaccination [106,108].
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CD37

CD37 is a cell-surface tetraspanin expressed on B-cells but is absent on normal stem
cells and plasma cells. Anti-CD37 monoclonal antibodies improve the overall survival
of patients with NHL and chronic lymphocytic leukemia (CLL) [109,110]. Also, chemical
agents like anti-CD37 antibodies are a promising therapeutic approach in B-cell malig-
nancies. Furthermore, novel antibodies targeting CD37 are being evaluated in clinical
trials [111–113].

CD80 and CD86

T cells are regulated by B7 ligands (B7.1 or CD80 and B7.2 or CD86), which are
expressed on antigen-presenting cells (APCs) like dendritic cells (DCs) and interact with
CD28 and CTLA-4 receptors on T cells [114]. T-cell function is associated with the PD-
L1/PD-1 axis. Also, DCs are an important target of PD-L1-blocking antibodies. It has been
shown that blocking PD-L1 on DCs enhances T-cell priming via B7.1/CD28 interaction [115].
Therefore, B7 ligands are key targets in cancer immunotherapy [116].

B7-H3 and B7-H4

B7-CD28 family member proteins like B7-H3 and B7-H4 are inhibitory B7 family
checkpoint molecules [117]. B7-H3 (CD276) is induced on APCs and plays an important
role in the inhibition of T-cell function. B7-H3 is a key target for cancer immunotherapy
through its expression on tumor cells and correlates with poor clinical outcomes [118,119].
Also, the B7-H4 molecule may promote immune escape by inhibiting the cycle of T cells,
proliferation and cytokine secretion [120]. Clinical studies have confirmed that B7-H4 is a
target for cancer immunotherapy [121,122].

4. Extracellular Vesicles (EVs)

EVs like exosomes are key in cancer immunotherapy because of their unique compo-
sition profiles. Their components, like DNA, mRNA, microRNA, long noncoding RNA,
circular RNA and proteins, play a crucial role in regulating tumor growth and metas-
tasis [123]. EVs influence the phenotype and immune-regulation functions of targeted
cells by delivering their cargos to the targeted cells. Tumor-derived exosomes can induce
apoptosis of activated CD8+ T cells, suppress NK cell activity and inhibit immune cell
proliferation [124]. A growing body of evidence confirms that exosomes, by transporting
numerous pro-angiogenic biomolecules like vascular endothelial growth factors (VEGFs),
matrix metalloproteinases (MMPs) and microRNAs, may participate in cancer angiogenesis
and progression [125]. EVs carry bioactive molecules from the originating cells and interact
with immune cells, stromal cells and endothelial cells in the TME [126]. They can be con-
sidered as predictive biomarkers, drug carriers and therapeutic targets in hematological
malignancies [127–129].

5. Mechanisms of Cancer Immune Resistance

Tumor heterogeneity; tumor antigen and major histocompatibility complex (MHC)
modulation; immunosuppressive cell subsets and factors in the tumor microenvironment
(TME); anti-apoptotic pathways and T cell activation-induced cell death (AICD); and
checkpoint inhibitory ligands are associated with cancer immune resistance [130] (Figure 3).
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5.1. Tumor Heterogeneity

Intratumor heterogeneity is a key challenge in cancer medicine. It has been shown
that tumor contains diverse populations of subclones with a wide range of genetic and
epigenetic differences [131]. In a process called subclonal cooperativity, tumor may produce
signaling factors that increase the tumorigenicity and growth capacity of neighboring tumor
cells. These cells with acquired resistance mechanisms and self-renewing properties are
capable of escaping from immune surveillance and often survive treatment [132,133].

5.2. Tumor Antigen and Major Histocompatibility Complex (MHC) Modulation

MHC class I molecules bind peptides and then transport and display this antigenic
information to CD8 T cells [134]. A loss of MHC/HLA class I molecules is the main mecha-
nisms of tumor immune escape from T-cell recognition and destruction [135]. Carcinoma
cells lose their expression of MHC class I molecules and tumor antigens and have low
immunogenicity. By contrast, a loss of MHC class II molecules may promote immune
evasion by affecting the priming of APCs and CD4+ Th cells [136]. In patients with diffuse
large B-cell lymphomas (DLBCLs), the MHC class II genes (e.g., HLA-DRA) correlated
with better survival. It was confirmed that the loss of tumor immunosurveillance had
a negative effect on patient outcome in DLBCL. In MHC class II-negative cases, fewer
tumor-infiltrating CD8(+) T cells were detected [137,138]. Both CD4+ T and CD8+ T cells
are effective in tumor immunotherapy by causing directed immune attack against tumor
cells [139,140].

5.3. Immunosuppressive Cell Subsets and Factors in the Tumor Microenvironment (TME)

Cancer immunoediting occurs through three phases termed elimination, equilibrium
and escape, rendering a tumor less immunogenic and more capable of establishing an
immunosuppressive microenvironment [141]. As mechanisms of resistance to immunother-
apy, tumor immunogenicity and the immunosuppressive environment enable disease
progression [142]. The resistance mechanisms are complex and highly heterogeneous, and
the TME is a major location for resistance to occur [143]. Overcoming tumor-induced
immune suppression can increase the efficiency of immunotherapies through immune-
mediated tumor clearance [144].
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Tumor cell interactions with the TME are important in multidrug resistance (MDR). By
recruiting immune cells, TME-induced factors secreted by cancer cells and cancer-associated
fibroblasts (CAFs) create an inflammatory microenvironment. MDSCs and inflammatory
tumor-associated macrophages (TAMs) enhance chronic inflammation, which nurtures
tumor-initiating/cancer stem-like cells (CSCs) and induces both EMT and MDR, leading to
tumor relapses [145]. MDSCs, TAMs and CAFs via inflammatory cytokine and chemokine
secretion are involved in EMT and MDR. Furthermore, the cytokine content in the TME
may be caused by tumor cell differentiation and T-cell resistance [146]. Immune modula-
tory compounds, such as demethylating agents, mTOR inhibitors and low-dosed histone
deacetylase inhibitors, may decrease MDR by targeting the inflammatory process [145].
Also, by eliciting immune system cells and initiating acute inflammation that leads to cancer
destruction, immune-based therapies may modulate the tumor microenvironment [147].
The development of treatment resistance is associated with a hypoxic environment and
metabolic derangements in the TME [148].

Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcription factor that, in an oxygen-
free environment, upregulates genes involved in cancer progression [149,150]. Growing
evidence indicates that hypoxic cancer cells can adapt metabolically to HIF-1 inhibition,
which causes drug resistance [151]. It has been confirmed that drug resistance is caused by
an expansion of both stroma cells and cancer cells, which causes hypoxia due to HIF-1α
activation and, therefore, provides a novel target for tumor therapy [62,152].

Immunomodulatory drugs (IMiDs) like thalidomide, pomalidomide and lenalidomide
have anti-tumor activity in the TME [153]. Avadomide, a next-generation cereblon E3
ligase modulator (CELMoD), shows anti-tumor potential in the TME and promising clinical
efficacy in DLBCL. Moreover, lenalidomide in a combination therapy with rituximab is
promising for the treatment of relapsed/refractory (R/R) FL [154].

5.4. Anti-Apoptotic Pathways and T Cell Activation-Induced Cell Death (AICD)

Apoptosis is a form of programmed cell death that leads to the efficient removal of
damaged cells. Alterations in apoptosis mechanism involve Bcl-2 family proteins, cell
cycle and repair system dysregulation, inhibitors of apoptosis as inhibitory proteins (IAPs),
tumor suppressor (p53) regulation and cell progression pathway activation of NF-κB [155].
Apoptosis dysregulation is responsible for tumor development, while defects in the death
pathways may limit the efficacy of therapies and result in drug resistance [156]. In hema-
tological malignancies, aberrations of the intrinsic and extrinsic apoptotic pathways have
been identified to be associated with cancer progression and drug resistance [157]. Dys-
regulation of the B-cell leukemia/lymphoma-2 (BCL-2) family of proteins in the intrinsic
apoptotic pathway is observed in hematologic malignancies; therefore, targeting the apop-
totic pathways like the regulatory BCL-2 family in the intrinsic pathway is an important
therapeutic approach in these patients [158–160].

AICD of T cells is a process for regulating the immune system, where overactivated
harmful T cells are eliminated via Fas/FasL-mediated apoptosis [161]. AICD is caused by
the stimulation of activated T cells, which results in their apoptosis through the Fas/Fas
ligand (FasL) interaction that is predominantly involved in AICD of CAR-T cells [162–164].
It has been shown that the AICD mechanism is key to improve the anti-tumor effect of
CAR-T cells, whereas AICD resistance is associated with a reduced surface expression of
CD95L upon restimulation [162,165–167].

5.5. Checkpoint Inhibitory Ligands

Immune checkpoint blockade therapies have improved treatment for many types
of tumors. Despite the promising long-term responses, the majority of patients fail to
respond to drugs and show primary resistance [168]. CTLA-4 and PD-1 receptors have
a key role in regulating T cell responses [169]. Also, LAG-3, TIGIT, Tim-3 and VSTA are
immune checkpoint inhibitors that play an important role in regulating T-cell responses and
maintaining immune homeostasis [170]. LAG-3 and PD-1 molecules synergistically regulate
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T-cell function to promote tumoral immune escape [171]. Immune escape from PD-L1/PD-
1-targeted therapy includes the downregulation of the major histocompatibility complex
in cancer cells, the minimal activation of cancer-specific T cells, the poor infiltration of T
cells into tumors, the lack of strong cancer antigens or epitopes recognized by T cells, and
the presence of immunosuppressive factors and cells in the tumor microenvironment [172].
The “primary” activation of multiple oncogenic signaling and the “secondary” induction
by inflammatory factors such as IFN-γ may be caused by the high expression of PD-L1 in
the tumor microenvironment (TME) [84]. In cancers, strong chronic antigenic stimulation
via TCR leads T cells to a state of exhaustion through inhibitory immune checkpoint
molecules, such as PD-1 and CTLA-4 [173]. CTLA-4 serves as a dominant off-switch, but its
combination with anti-PD-1 blockade and multiple checkpoint receptors, including TIM-3
and TIGIT, showed superior patient outcomes [170]. TIGIT expression is upregulated in
Tregs and CD8+ cells. It was shown that using a dual therapy of anti-TIGIT and anti-PD-1
significantly improved survival compared to the control and monotherapy groups [174]. By
suppressing Teff cell functions, Tregs regulate immune homeostasis and may contribute to
cancer development and progression. Tregs mediate the mechanisms of acquired resistance
to immune checkpoints (ICIs) within the TME by upregulating apoptotic Treg-induced
immunosuppression and immunosuppressive molecules [140].

A high tumor mutational burden (TMB) plays an important role in anti-tumor immu-
nity, with an accompanying elevated neoantigen expression. It has been shown that poorly
immunogenic tumors with a low TMB are more resistant to treatment with checkpoint
inhibition [175].

Targets in immunotherapy and therapeutic strategies to overcome drug resistance are
presented in Table 1.

Table 1. Therapeutic strategies to overcome drug resistance.

Targets in
Immunotherapy Examples Drugs Mechanism of Action References

Immune checkpoint

• CTLA-4
• PD-1
• LAG-3
• TIM-3
• TIGIT

Ipilimumab,
Nivolumab, Pembrolizumab,

Avelumab,
Cytarabine,
Decitabine,
Darubicin,
MBG453,

Tebotelimab (MGD013)

Reverses T-cell exhaustion.
Enhances T-cell activation and

effector functions.
Broadens TCR repertoire.

[176]

CD and BCMA

• CD19
• CD20
• CD30
• CD33
• CD38
• CD47
• CD123
• CD138
• BCMA

Rituximab,
Blinatumomab,

Magrolimab (Hu5F9-G4),
Epcoritamab,

AMG330,
Vixtimotamab (AMV564),

Vibecotamab (XmAb14045),
Flontetuzumab,

AMG427,
Brentuximab vedotin

Belantamab

Activates effector cells.
Upregulates

proinflammatory cytokines.
Increases genomic instability.

Modulates metabolic response.

[176–179]

Signaling pathways

• PI3K/Akt/mTOR
• TGF-β
• STAT3
• MAPK

Rapalog,
Rhapontigenin,
Trastuzumab,
Dabrafenib,
Trametinib

Blocks signaling pathways.
Decreases inhibitory
cytokine production.

Enhances T-cell
effector function.

[60–62,73,74]

Immunosuppressive
TME

• MDSC
• Treg
• CAF
• TAM

Thalidomide,
Lenalidomide,
Pomalidomide,

Avadomide

Depletes suppressive cells.
Redirects cytotoxic effector

cells to the TME.
[145,148,153,154]
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6. EVs in the Tumor Microenvironment as Mediators of Cancer Therapy Resistance

EVs derived from immune cells and tumor cells exhibit unique composition profiles.
They can participate in cellular processes by suppressing or promoting cancer [180]. EVs
derived from both stromal and tumor cells play an important role in all stages of cancer
development [127]. They are mediators of cell–cell communication and may be related to
TME-dependent therapy resistance [181]. EVs can potentiate or oppose the development of
an aggressive TME, influencing tumor progression and clinical outcome. They are key me-
diators of immunoregulation in cancer. EVs may support or restrain immunosuppression of
lymphoid and myeloid cell populations in tumors by delivering a large number of signals to
recipient cells [182]. Cancer cells release exosomes into the circulation to counter anti-tumor
immunity systemically via T cells, but EVs secreted by nontumor cells in the TME can also
exert immunosuppressive effects [183]. Importantly, cancer-derived exosomes may transfer
functional PD-L1 and inhibit immune responses [184]. The potential of exosomes is huge in
the field of cancer immunotherapy. They may serve as predictive biomarkers, drug carriers
and therapeutic targets to stimulate an anti-cancer immune response [129,185].

Immunostimulatory and immunosuppressive effects of EVs is presented in Figure 4.
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7. Conclusions and Future Directions

Personalized immunotherapy is the most promising approach to cure cancer and
to induce a durable response in patients. CAR-T therapy has revolutionized cancer im-
munotherapy, especially in hematological cancers, by improving overall survival. Despite
progress in clinical investigations, there is still a need to focus on important questions
and resolve difficulties associated with current basic understanding and clinical responses.
The challenges facing cancer immunotherapy concern complex resistance mechanisms
in the development of effective treatment strategies, including the lack of confidence in
translating pre-clinical findings and recognizing the optimal combinations of immune-
based therapies for individual patients. Also, a very important issue is the deciphering of
the complex interactions between the immune system and cancer and the development
of improved treatment options [186]. Cancer cells employ several mechanisms to evade
immunosurveillance, which causes resistance to immunotherapy; therefore, it is very im-
portant for therapeutic approach to focus on the rational combinations of targeted therapies
with non-overlapping toxicities. Recent progress in the development of new therapeutics
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has improved anticancer responses. Studies exploring novel CAR-T products may improve
treatment efficacy and reduce toxicities [187]. Next-generation CAR-T-cells may overcome
current limitations and decrease unwanted side effects in targeting hematological malig-
nancies. Moreover, signaling pathway blocking could provide a new strategy for successful
CAR-T immunotherapy. Also critical in the development of new immunotherapeutic strate-
gies against Treg-mediated acquired resistance mechanisms are CDs as potential targets for
the depletion of Tregs. They not only serve as predictive indicators of therapeutic responses
to inflammation-associated diseases but also as biomarkers for diagnosis and follow-up.
Combination therapies targeting a single kinase component, including PI3K/Akt/mTOR
and MAPK inhibitors, have improved patient responses and clinical outcomes. Inhibition of
the PI3K/mTOR pathway is a promising therapeutic approach in patients with ALL [188].
Furthermore, targeting of TGF-β signaling modulators and downstream effectors can be a
very effective strategy. With an expanding therapeutic armamentarium, it is very important
to focus on the rational combinations of targeted therapies. The key in the selection of
therapeutic targets is the identification of tumor-promoting factors in the TME. Moreover,
targeting EMT and inflammatory pathways by means of immune modulatory compounds,
such as demethylating agents, mTOR inhibitors and low-dosed histone deacetylase in-
hibitors, may reverse MDR. Additional evidence is still needed to better characterize the
benefits of the use of CAR-T cells in patients with hematological malignancies. In the future,
CAR-T cell therapy may have the potential to be a mainstream therapeutic choice for the
elimination of tumors with superior safety and efficacy. Additionally, elucidating how tu-
mors escape from immune checkpoint receptor-targeted therapy is an important issue in the
development of new immune agents. Importantly, EVs can be utilized in immune therapy
for controlling cancer progression. Additionally, EVs have implications for diagnosis and
development of novel therapeutic strategies in hematological malignancies. Identifying
predictive biomarkers and designing rational combination therapy are priorities to reduce
drug resistance and improve long-term clinical efficacy in cancer immunotherapy.
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