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Simple Summary: Pancreatic cancer is an insidious disease, often diagnosed late in its course when
curative treatments are moot, with a 5-year median overall survival of ~12%. While other malignan-
cies have recently shown a response to immunotherapy, targeting the immune system in pancreatic
cancer has historically not been successful. Resistance to immunotherapy in pancreatic cancer is
believed to be partly due to the immune-suppressive tumor microenvironment. The microbiome,
comprised of trillions of microorganisms living in a pathobiont and symbiotic relationship with
its host, has recently been demonstrated to modulate the efficacy of immunotherapy in several
human cancers. This review focuses on the known interactions of the microbiome and its potential to
mitigate pathways for immunotherapy resistance in pancreatic cancer, a deadly disease with limited
treatment options.

Abstract: Pancreatic ductal adenocarcinoma cancer (PDAC) is projected to become the second
leading cause of cancer-related death in the United States by 2030. Patients are often diagnosed
with advanced disease, which explains the dismal 5-year median overall survival rate of ~12%.
Immunotherapy has been successful in improving outcomes in the past decade for a variety of
malignancies, including gastrointestinal cancers. However, PDAC is historically an immunologically
“cold” tumor, one with an immunosuppressive environment and with restricted entry of immune
cells that have limited the success of immunotherapy in these tumors. The microbiome, the intricate
community of microorganisms present on and within humans, has been shown to contribute to many
cancers, including PDAC. Recently, its role in tumor immunology and response to immunotherapy
has generated much interest. Herein, the current state of the interaction of the microbiome and
immunotherapy in PDAC is discussed with a focus on needed areas of study in order to harness the
immune system to combat pancreatic cancer.

Keywords: pancreatic cancer; pancreatic ductal adenocarcinoma; microbiome; microbiota; immunotherapy

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the most common malignancy of the
pancreas as it accounts for >90% of all pancreatic tumors. It is currently the third leading
cause of cancer-related death in the United States but is predicted to overtake colorectal
cancer as early as 2030 to become the second leading cause [1–3]. While a discrete inciting
event has not been identified and most cases are spontaneous, risk factors include advanced
age, tobacco smoking, chronic pancreatitis, diabetes mellitus, obesity, ethnicity, and family
history. While curative surgical resection is the only possibility for cure, the use of ancillary
treatment in the preoperative, and postoperative setting maximizes the possibility of
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long-term survival. However, PDAC is notorious for a tumor microenvironment (TME) that
is composed of immune cells, fibroblasts, extracellular matrix, and endothelial cells. While
each component has been shown to play a role in the immunosuppressive environment
in PDAC, a detailed discussion is outside of the scope of this manuscript, with excellent
reviews having already been published on this topic [4–6]. This cellular network has been
shown to create an immunosuppressive environment that limits the host response of tumor
detection and destruction [7]. It would therefore be natural to investigate ways to modulate
the cellular responses in the TME for beneficial effect. However, clinical trials aimed at
altering the TME to allow immune cell activation have been disappointing [8,9]. Regardless,
harnessing the host immune system for cancer treatment is an extremely promising field
that has already led to many advances. How pancreatic cancer fits into this area is still
yet to be determined, but the identification of novel factors that alter the response to
immunotherapy in PDAC is still desperately needed.

The ability of PDAC to create an immunosuppressive TME has been linked to in-
teractions between the host microbiota and the innate and adaptive immune cells [10].
The microbiota, the collection of microorganisms including bacteria, viruses, fungi, and
archaea that live on and within every human, has been shown to play an essential role in
physiologic homeostasis. Carcinogenesis has been shown to be influenced by the direct
impact of bacterial toxins/metabolites on cancer and immune cells, regulation of the local
and systemic immune response, and alterations in metabolism [11]. In PDAC, patients with
long-term survival were found to have a higher alpha-diversity in the tumor microbiome
than short-term survivors [12]. Fecal microbiota transplant from these long-term survivors
into mice bearing PDAC tumors led to changes in the tumor microbiota, reduced tumor
growth, and the ability of immune cells to invade the TME compared to fecal microbiota
transplant from short-term survivors. These studies suggest that the TME cross-talks with
the gut microbiome and influences the host immune response to the tumor. Multi-cohort
studies have also provided evidence for a potential “microbial signature” associated with
PDAC [13,14]. These source microbiotas were both oral and intestinal (fecal), with prior
studies demonstrating the impact of the fecal and oral microbiomes not only on pancreatic
carcinogenesis but also on immune modulation in PDAC [15–17]. Exploiting the influence
of the host microbiota over the immune landscape has become a potential avenue for the
creation of novel therapeutics and may improve the efficacy of existing immunotherapies
in the treatment of PDAC.

Despite extensive research on the molecular pathogenesis of pancreatic ductal adeno-
carcinoma, exciting discoveries identifying which cellular pathways are altered in PDAC
development, progression, and metastasis, and identification of patterns in the microbiome
profiles of patients with PDAC, there has been limited success clinically, and only marginal
improvement in the morbidity and mortality of the disease. Failure to improve survival in
patients with PDAC is thought to be related to a limited understanding of the relationship
between the PDAC TME, the gut microbiome, and the immune system. Herein, we provide
a general overview of what is known regarding the influence of the microbiome on immune
function in PDAC and discuss the potentials and pitfalls in improving PDAC response to
immunotherapies through modulation of the microbiome.

2. The Prospect of Immunotherapy in Pancreatic Cancer Treatment

Immunotherapy can be classified into four main categories: cytokines, vaccines, cellular
therapies, and antibodies (among which immune checkpoint inhibitors are included) [18,19].
In general, the primary goal of immunotherapy is to activate the immune system to facilitate
cancer surveillance and killing, which is an active area of laboratory research in PDAC
(Table 1). Cytokine therapies were one of the earliest forms of immunotherapy used in the
treatment of malignancies, with interleukin-2 (IL-2) and interferon alpha (IFN-α) serving
as the hallmarks of this treatment modality. Cytokine treatments, such as these, used
contemporary immunology knowledge of the time with the aim to activate the immune
system to target and kill cancer cells. Such treatment is not specific and resulted in off-target



Cancers 2023, 15, 5708 3 of 18

effects resulting in systemic inflammatory activation and patient morbidity. For example,
treatment with IL-2 or IFN-α serves to increase T-cell and NK-cell expansion and activation,
and both are FDA-approved for melanoma. A modest survival benefit was incurred,
but the treatment attrition was high because of side effects (10–37%) [20,21]. Given its
poor tolerance and lack of effectiveness in PDAC, this is not an approved therapy for this
malignancy. With advancing technology and knowledge, more targeted approaches that
engage the immune system, as described below, have subsequently been developed.

Table 1. Selected preclinical studies of immunotherapy in PDAC.

Author Immunotherapy Category Result

Zhao [22] ICI Enhanced immunotherapy response after IL2-inducible T-cell
kinase inhibition.

Hung [23] CAR-T Protease-activated receptor 1 CAR-T cells enhanced PDAC xenograft
killing and decreased matrix metalloproteinase 1 levels in the TME.

Xu [24] ICI
BiTE Conversion of immunosuppressive Tregs to immune-enhancing Tregs.

Beelen [25] ICI Increased NK-cell-induced PDAC organoid cell death with anti-PD-L1 or
anti-HER2 therapy.

Qiang [26] Hu-mAb TGF-β blockade in orthotopic PDAC xenografts enhances sensitivity
to chemotherapy.

Koh [27] Immunostimulatory Ex vivo activated NK cells inhibit PDAC xenograft growth in combination
with gemcitabine.

Li [28] CAR-T CAR-T cells targeting glypican-1 resulted in PDAC xenograft regression
and increased T-cell signaling.

Peng [29] ICI
Vaccine

ICI reverses T-cell dysfunction and enhances neoantigen vaccine-induced
T-cell responses and PDAC xenograft regression.

Mirji [30] ICI Enhanced immune activation and PDAC xenograft response to ICI with
the microbial metabolite trimethylamine N-oxide.

Pushalkar [10] ICI Depletion of microbiota increases PD-1 expression and efficacy of
anti-PD-1 ICI.

Winograd [31] ICI ICI resistance can be overcome with the induction of T-cell immunity.

Luu [32] CAR-T Microbial-derived short-chain fatty acids enhance antitumor immunity
against PDAC xenografts.

Immune checkpoint inhibitor (ICI); chimeric antigen receptor-modified T cells (CAR-T cells); pancreatic ductal ade-
nocarcinoma (PDAC); tumor microenvironment (TME); bispecific T-cell engager (BiTE); Humanized Monoclonal
Antibody (Hu-mAb).

Therapeutic vaccines function by enhancing the activation of tumor-specific B or T
cells as well as upregulating tumor antigen presentation. Sipuleucel-T is an autologous
vaccine that is FDA-approved for castrate-resistant prostate cancer [33]. The Bacillus
Calmette–Guérin (BCG) vaccine is a live, attenuated form of Mycobacterium bovis. While
it was initially utilized for immunization against tuberculosis, it is commonly used in the
treatment of superficial bladder cancer through immune activation [34,35]. However, in
pancreatic cancer, several vaccine clinical trials have been attempted without success, while
others are still in the early phase of testing [36]. These vaccines can target tumor-associated
or specific antigens, each of which poses different challenges [37]. Tumor-associated anti-
gens have the potential to non-discriminately target host cells, while tumor-specific anti-
gens are dependent upon a high mutational burden for effectiveness that is not commonly
present in PDAC [38]. Furthermore, the intratumoral heterogeneity poses a challenge to
PDAC vaccine development in which tumor-associated antigen targeting would be useful.
Nevertheless, messenger RNA (mRNA) vaccines show promise in pancreatic cancer as
a personalized therapy by encoding customized proteins based on the genetic profile of
an individual’s tumors, specifically mutant Kras [36,39]. Additionally, a recent phase I
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trial evaluated the efficacy of personalized RNA neoantigen vaccines. Using surgically
resected specimens, the investigators synthesized mRNA neoantigen vaccines in real time.
Patients were subsequently treated with their personalized vaccine, targeting up to 20 major
histocompatibility complex class I (MHC-I) and class II (MHC-II) restricted neoantigens
after the administration of anti-PD-L1 immunotherapy (atezolizumab) but before systemic
chemotherapy. This resulted in a robust expansion of neoantigen-specific T cells in 8 out
of 16 patients. Those with vaccine-expanded T cells had a longer recurrence-free survival
compared to those who did not have T-cell expansion [40]. This combinatorial treatment
demonstrates the potential to delay PDAC recurrence, a common problem in patients who
undergo potentially curative resection. Notably, the microbiota has been demonstrated to
alter the MHC-II expression of intestinal epithelial cells and is responsible for discordant
graft-versus-host disease in patients undergoing stem cell transplantation [41]. This raises
the possibility that the microbiota may be able to alter MHC expression in PDAC patients,
potentially providing vaccine targets.

Adoptive cell therapies are composed of T cells or NK cells which are either autolo-
gous or allogenic and specifically engineered to target specific proteins with a chimeric
antigen receptor and T-cell receptors to recognize a peptide/MHC complex designed to
ultimately kill cancer cells [37]. Several chimeric antigen receptor (CAR) T-cell therapies
are approved for various hematological malignancies [42]. Tisagenlecleucel was the first of
its kind and was approved by the FDA in 2017 for the treatment of pediatric and young
adult acute lymphocytic leukemia. Unfortunately, limitations in homing, proliferation,
and survival of transferred adoptive cells have limited its utility in solid tumors [43]. A
possible way to circumvent this is the use of CRISPR/Cas9 technology for gene editing to
increase the expression of transgenic receptors and deletion of inhibition signals. Several
tumor-associated antigen adoptive cell therapies have failed due to their decreased speci-
ficity and increased toxicity. However, neoantigen epitope-specific CAR-T-cell targets are
being tested and include mesothelin and KRAS (G12V mutation), which may show future
promise and decreased toxicity.

Immune checkpoint inhibitors (ICIs) function by blockade of cell–cell interactions be-
tween host immune cells and target cells that serve to prevent immunologic activation [44].
While this is meant to be a tolerogenic process to prevent activation and killing of host cells,
cancer has adapted features to likewise engage in these checkpoint inhibitory processes,
render immune detection and activation of cancer cells inert, and thus functionally avoid
detection by the immune system. With the identification of the cytotoxic T-lymphocyte
associated protein 4 (CTLA4), programmed cell death protein-1 (PD-1), and PD-1’s ligand
(programmed cell death ligand 1; PD-L1), the possibility of targeted immune therapy be-
came a reality [44]. This important field was recognized with the Nobel Prize in Physiology
or Medicine in 2018 for the “discovery of cancer therapy by inhibition of negative immune
regulation” [45]. This notoriety came partly from several phase 3 clinical trials of ICIs that
demonstrated durable treatment responses with prolonged recurrence-free survival (RFS)
and overall survival (OS), even in the metastatic setting. For example, melanoma and lung
cancer were shown to be sensitive to CTLA-4 and PD-1/PD-L1 blockade with improve-
ments in RFS and OS [46–49]. Several gastrointestinal malignancies have also been shown
to be responsive to the inhibition of these pathways, including hepatocellular cancer [50],
gastric cancer, and esophageal cancer [51,52]. While it is natural to apply these various
immunotherapies to PDAC treatment, unfortunately, none of these immunotherapy classes
have proven to be successful in clinical trials to date, but studies are ongoing (Table 2).
Additionally, several monoclonal antibodies (mAbs) have been studied as a therapeutic
target for pancreatic cancer independent of immune checkpoint inhibition [53]. In recent
years, there has been an increase in the number of mAbs that are FDA-approved for cancer.
Monoclonal antibody therapy can be tailored based on the antibody format (full chain,
fragment, variable heavy or light chains) which dictates specificity, half-life, and tissue
penetration [54]. Besides direct pathway inhibition (as seen with anti-PD-1/PD-L1 therapy),
antibodies can also be conjugated to drugs or radionucleotides for payload delivery directly
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to a tumor [55,56]. The most recent and notable example of antibody use to treat PDAC
is the use of olaparib, a PARP inhibitor that prevents the repair of single-strand DNA
breaks and leads to the accumulation of double-strand DNA breaks and cell death, in
patients with metastatic PDAC and a germline mutation of the BRCA gene, which normally
encodes proteins responsible for homologous recombination of double-stranded DNA
breaks [57]. The use of this antibody therapy resulted in a prolonged progression-free
survival in patients treated with olaparib compared to control (HR 0.53, 95% confidence
interval 0.35–0.82, p = 0.004). To date, this mAb therapy has been the exception, rather
than the rule, for PDAC treatment. Understanding the resistance mechanisms of PDAC in
response to these various immunotherapies is therefore imperative to improve treatment
options for patients with this deadly disease.

Table 2. Active PDAC immunotherapy trials in the United States and Europe.

Study Title Malignancy Immunotherapy
Category Phase ClinicalTrials.gov or

EudraCT Study ID

Immunotherapy and Irreversible
Electroporation in the Treatment of Advanced
Pancreatic Adenocarcinoma

PDAC ICI II NCT03080974

GVAX Pancreas Vaccine (With CY) in
Combination with Nivolumab and SBRT for
Patients with Borderline Resectable
Pancreatic Cancer

PDAC ICI
Vaccine II NCT03161379

SD- 101, Nivolumab, and Radiation Therapy
in Treating Patients with Chemotherapy
Refractory Metastatic Pancreatic Cancer

mPDAC ICI I NCT04050085

Pilot Study With CY, Pembrolizumab, GVAX,
and IMC-CS4 (LY3022855) in Patients with
Borderline Resectable Adenocarcinoma of
the Pancreas

PDAC ICI
Vaccine I NCT03153410

Vaccine Therapy and Sargramostim in
Treating Patients with Pancreas Cancer That
Cannot Be Removed by Surgery

PDAC
Pancreatic ACC Vaccine I NCT00669734

Epacadostat, Pembrolizumab, and CRS-207,
With or Without CY/GVAX Pancreas in
Patients with Metastatic Pancreas Cancer

mPDAC ICI
Vaccine II NCT03006302

Testing the Combination of Anetumab
Ravtansine with Either Nivolumab,
Nivolumab and Ipilimumab, or Gemcitabine
and Nivolumab in Advanced
Pancreatic Cancer

PDAC ICI I/II NCT03816358

Study of Pembrolizumab with or without
Defactinib following Chemotherapy as a
Neoadjuvant and Adjuvant Treatment for
Resectable Pancreatic Ductal
Adenocarcinoma

PDAC ICI II NCT03727880

VX15/2503 and Immunotherapy in
Resectable Pancreatic and Colon Cancer

CRC
PDAC ICI I NCT03373188



Cancers 2023, 15, 5708 6 of 18

Table 2. Cont.

Study Title Malignancy Immunotherapy
Category Phase ClinicalTrials.gov or

EudraCT Study ID

Neoadjuvant CAN-2409 in Combination with
Chemoradiation or SBRT for Borderline
Resectable Pancreatic Adenocarcinoma

PDAC Viral
immunotherapy II NCT02446093

Pancreatic Tumor Cell Vaccine (GVAX), Low
Dose Cyclophosphamide, Fractionated SBRT,
and FOLFIRINOX Chemotherapy in Patients
with Resected Adenocarcinoma of the
Pancreas

PDAC Vaccine I NCT01595321

Study of CRS-207, Nivolumab, and
Ipilimumab with or without GVAX Pancreas
Vaccine (With CY) in Patients with Pancreatic
Cancer

PDAC ICI
Vaccine II NCT03190265

A study of ELI-002 in Subjects with KRAS
Mutated Pancreatic Ductal Adenocarcinoma
(PDAC) and Other Solid Tumors

PDAC
CRC

NSCLC
Ovarian cancer

Cholangiocarcinoma
Gallbladder
carcinoma

Immunotherapy
targeting KRAS

mutants
I NCT04853017

CAR T Cell Immunotherapy for Pancreatic
Cancer PDAC CAR-T I NCT03323944

Study of Autologous T-cells in Patients with
Metastatic Pancreatic Cancer mPDAC CAR-T I NCT03638193

Th-1 Dendritic Cell Immunotherapy Plus
Standard Chemotherapy for Pancreatic
Adenocarcinoma (DECIST)

PDAC Vaccine I NCT04157127

Nivolumab and Ipilimumab and Radiation
Therapy in MSS and MSI High Colorectal and
Pancreatic Cancer

CRC
PDAC ICI II NCT03104439

Plerixafor and Cemiplimab in Metastatic
Pancreatic Cancer mPDAC ICI II NCT04177810

An Open Label, Dose Escalation Followed by
Dose Expansion, Safety and Tolerability Trial
of CAN04, a Fully Humanized Monoclonal
Antibody Against IL1RAP, in Subjects with
Solid Malignant Tumors

NSCLC
PDAC Hu-mAb I 2017-001111-36

A Phase Ib/II, Open-Label, Multicenter,
Randomized Umbrella Study Evaluating the
Efficacy and Safety of Multiple
Immunotheraby-Based Treatment
Combinations in Patients with Metastastic
Pancreatic Adenocarcinoma
(Morpheus-Pancreatic Cancer)

mPDAC ICI
Cytokine Inhibitor Ib/II 2016-004126-42

Safety and Efficacy of IMM-101 Combined
with Stereotactic Radiotherapy in Patients
with Limited MEtastatic PANcreatic Cancer
(MEPANC-1)

mPDAC Immune
Stimulatory II 2020-003945-13
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Table 2. Cont.

Study Title Malignancy Immunotherapy
Category Phase ClinicalTrials.gov or

EudraCT Study ID

First-in-Human Study of ICT01 in Patients
with Advanced Cancer (EVICTION)

PDAC
Various other solid

tumors

Hu-mAb
Immune

Stimulatory
ICI

I/II NCT04243499
2019-003847-31

Trial Of Hypofractionated Radiotherapy in
Combination with MEDI4736 and
Tremelimumab for Patients with Metastatic
Melanoma and Lung, Breast and Pancreatic
Cancers

PDAC
NSCLC

Melanoma
ICI I NCT02639026

Radiation Therapy in Combination with
Durvalumab for People with Pancreatic
Cancer

PDAC ICI I/II NCT03245541

Pancreatic ductal adenocarcinoma (PDAC); immune checkpoint inhibitor (ICI); metastatic pancreatic ductal
adenocarcinoma (mPDAC); colorectal cancer (CRC); non-small-cell lung carcinoma (NSCLC); acinar cell carcinoma
(ACC); chimeric antigen receptor-modified T cells (CAR-T cells); humanized monoclonal antibody (Hu-mAb).

Although data support a survival advantage in patients with increased intratumoral
immune infiltration in PDAC and that chemotherapeutic regimens can induce beneficial
immunologic changes in the PDAC tumor microenvironment (TME) [58,59], achieving
antitumor immune cell infiltration for tumor control/treatment has remained elusive.
Specifically, the PDAC TME comprises a variety of cells that create an immunosuppres-
sive environment as described previously [60]. Some of these cells, such as pancreatic
stellate cells, function to sequester and inhibit infiltration of T lymphocytes [61]. The spatial
relationship of the immune infiltration may also prevent response to treatment, such as
neoadjuvant chemoradiation [62]. Additionally, the PDAC TME functions as a physical
barrier through its carcinoma-associated fibroblasts, endothelial cells, and hyaluronic acid
deposition that is thought to inhibit the penetration of systemic therapies. Several trials
have aimed to alter the stromal composition of the PDAC TME in an effort to improve
therapy delivery [63,64], with disappointing results [8,9,65]. Identifying unique host fac-
tors that can modulate immune infiltration and activation in PDAC may lie in the host
microbiome, which has demonstrated an impact on immunotherapeutic efficacy in several
cancers [66–68].

3. Overview of Microbiome–PDAC Research

Considerable progress has been made in our knowledge of the influence of the mi-
crobiome on pancreatic carcinogenesis since the initial studies demonstrating associations
between the fecal and oral microbiome and pancreatic cancer [17,69,70]. Subsequently,
preclinical data have demonstrated that the presence of an intact microbiome can ac-
celerate pancreatic carcinogenesis in xenograft and genetic mouse models of pancreatic
cancer [71,72]. In these studies, both antibiotic depletion of intestinal bacteria and germ-free
mice born and raised in an environment void of microbes were utilized. Immune profiling
of these tumors demonstrated reduced immune infiltration in mice harboring an intact mi-
crobiome. Specifically, Pushalkar et al. provided evidence that microbiota ablation resulted
in a decrease in myeloid-derived suppressor cells (MDSCs) with a concomitant increase in
M1-polarized (antitumor) macrophage differentiation which subsequently promoted Th1
differentiation of CD4+ lymphocytes and CD8+ lymphocyte activation [10]. Members of
our group reported a similar reduction in immune cell infiltration but utilized a Nod/SCID
mouse model, lacking a competent immune system [71]. This study suggests that the
microbiome can modulate the antitumor function of both the adaptive and innate immune
systems. In a follow-up study, the anti-PDAC activity of natural killer (NK) cells was specif-
ically noted to be altered by the status of the host microbiome, with an intact microbiome
reducing NK-cell infiltration and activation in PDAC xenografts [73]. These studies provide
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evidence of a biologic interaction of the microbiome with pancreatic carcinogenesis, later
supported by human correlative studies.

As an extension to these preclinical studies, several groundbreaking human studies
have yielded important insight into the role of the microbiome in PDAC, solidifying this
important area of research. As previously mentioned, the intratumoral microbiome was
characterized in patients deemed “long-term survivors” (LTSs) and “short-term survivors”
(STSs) [12]. Patients in the LTS cohort had increased microbial diversity compared to STSs,
and their tumors demonstrated a more “immune-activated” environment with increased
CD3 and CD8 cell infiltration and granzyme B(+) cells, a marker of activation. Furthermore,
this immune profile in the LTS patients was correlated with the presence of the genera
Saccharopolyspora, Pseudoxanthomonas, and Streptomyces in the LTS PDAC tumors, suggesting
that bacteria from these genera may facilitate immune cell recruitment and activation.
Finally, a recent study characterized the fecal microbiome of 57 Spanish patients with
PDAC, 50 healthy controls, and 29 patients with chronic pancreatitis in a discovery phase
and 76 German PDAC patients in a validation phase to assess the ability to diagnose
PDAC [14]. Based on a 27-species panel, the accuracy of diagnosing PDAC, independent of
stage, was 84%, and with the addition of CA19-9 as either normal or elevated, the accuracy
of diagnosis increased to 94%. This provides hope for early detection techniques in high-risk
individuals but also affirmation for microbiome-focused clinical trials in pancreatic cancer.
While many immunotherapy trials in PDAC have not proven clearly effective to date,
identifying and modulating novel factors that may limit or enhance the effectiveness of
immunotherapy are important areas of investigation (Figure 1).
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Systemic chemotherapy has been the backbone for the treatment of PDAC since the
discovery of 5-fluorouracil (5-FU) and its associated survival benefit when used in the
treatment of this disease [74–77]. Since then, a variety of regimens and treatment schedules
have been investigated in both the potentially curative and the palliative settings [75,78–80].
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Despite changes in the chemotherapeutic strategy over the years, what has not changed,
at least significantly, is the survival of PDAC patients treated with conventional systemic
chemotherapy. It is for this reason that alternatives, such as immunotherapy, have been
sought to improve the recurrence-free and overall survival rates of patients with PDAC [81].
In fact, many trials currently attempt to address that issue (Table 2). There are many reasons
that may explain the low response rates of PDAC to systemic chemotherapy. Recently,
the influence of the microbiome has become of interest [82,83] and may even provide
insight or future direction to improve the responsiveness of PDAC to immunotherapy.
As previously noted, a compositional difference in the intratumoral microbiota has been
shown in long-term vs short-term survivors of PDAC after surgery and adjuvant systemic
chemotherapy [12]. Whether this is merely an association or reason for the improved
long-term response is unclear. However, ample evidence exists for bacterial-mediated
alteration of chemotherapy efficacy through a variety of mechanisms [84,85]. One notable
mechanism is the metabolism or inactivation of drugs. In fact, a recent study demonstrated
that bacteria can metabolize gemcitabine, a common backbone of chemotherapy for PDAC,
based on the length of their cytidine deaminase enzyme isoform [86]. Metabolism and
inactivation of chemotherapy are not the only potential deleterious actions on chemother-
apy. Activation of a once inactive compound can be problematic as well from a toxicity
standpoint. For example, bacteria have been shown to reactivate irinotecan, a component
of the folinic acid, fluorouracil, irinotecan, and oxaliplatin (FOLFIRINOX) regimen used in
PDAC, in the intestine after hepatic metabolism and biliary excretion [87]. This leads to the
reactivation of the inactive compound in the gut which can have the dose-limiting adverse
effect of colitis and associated diarrhea. How the microbiome modulates chemotherapeutic
efficacy is an understudied area, and trials that include traditional systemic chemotherapy
with immunotherapy (Table 2) will need to eventually account for the influence of the
microbiota on individual and combined components of each treatment regimen.

5. Overcoming Challenges in PDAC Immunotherapy with the Microbiome

It is well documented that the PDAC TME is an immune-privileged location that
possesses immunosuppressive properties [6,88]. If microbiome manipulation is to be
used to regulate this environment, several candidate areas will need to be targeted for
investigation (Figure 2). While it is unknown whether targeting the pancreatic or gut
microbiota will yield the most promising results, the subsequent discussion assumes the
gut microbiome is manipulated through the presented modalities (Figure 2). While the
pancreatic microbiota has been modulated experimentally through oral gavage [10], these
manipulations were performed with supra-physiologic amounts of bacteria that likely do
not have physiologic relevance but do demonstrate a proof of concept. From a therapeutic
standpoint, the introduction of beneficial bacteria is an easier task than the elimination of
specific deleterious bacteria, but this simplistic view does not account for the community
structure of the microbiome and bacteria–bacteria interactions. Furthermore, there is no
direct way to manipulate the intrapancreatic microbiota at present, although bacteriophage
therapy to target specific culprit species is an active area of investigation.

Given this, the inhibition of immune-suppressive cells may be central to this interven-
tion given the stronghold that these cells have on PDAC regulation, and this is the first
area of discussion. Typical immune-suppressive cells in the TME include myeloid-derived
suppressor cells (MDSCs), macrophages (specifically M2 polarized macrophages), and
regulatory T cells (Tregs) [89,90]. Prior data demonstrate that the gut microbiome can
promote MDSC accumulation in the liver and promotion of cholangiocarcinoma, an upper
gastrointestinal malignancy with similarities to PDAC [91]. In this study by Zhang and
colleagues, inflammatory disruption of the gut barrier allowed the translocation of bacteria
to the liver, which induced CXCL1 expression in hepatocytes via a toll-like receptor-4
(TLR-4)-dependent manner and the accumulation of polymorphonuclear myeloid-derived
suppressor cells. Treatment with antibiotics (neomycin) reversed these effects and inhibited
tumor growth. Pushalkar and colleagues additionally demonstrated that the microbiome
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can promote pancreatic carcinogenesis by inducing immunosuppressive properties of
the adaptive and innate immune systems, also through activation of toll pathways [10].
Finally, much effort has recently been devoted to the effect of microbial-derived metabo-
lites/byproducts on immune cell modulation. Tumor-associated macrophages (TAMs)
are a critical component of the PDAC immune microenvironment. Their polarization
into M1 versus M2 macrophages dictates the antitumor properties that they possess, with
M2 TAMs commonly associated with PDAC and immune suppression [92,93]. The aryl
hydrocarbon receptor (AhR) binds indoles, products of tryptophan metabolism by bacteria
and suppressors of immune inflammation. Upon binding, the AhR is translocated into the
nucleus where downstream regulation of immune cells, including macrophages, occurs.
Hezaveh and colleagues demonstrated that dietary tryptophan is metabolized by the gut
microbiota into indole compounds that subsequently activate TAM AhR to inhibit the
activation and antitumor function of CD8 T cells, as evidenced by decreased interferon
gamma expression [94]. The state of the TAM AhR dictated the immunologic profile of
the PDAC microenvironment, and inhibition of the AhR promoted inflammation within
PDAC tumors and, notably, response to anti-PD-L1 treatment. In this manner not only
could dietary manipulation alter the impact of the microbiome on the PDAC immune
environment, but AhR inhibition may be an avenue for limiting the immune-suppressive
environment of PDAC tumors.
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Second, activation of the antitumor immune compartment will be an important com-
ponent of harnessing the microbiome to improve the response of PDAC to immunotherapy.
It has been shown that distinct microbiota members are associated with treatment response
to immunotherapy in melanoma and that fecal transplantation can promote response to
such therapy [95,96]. This activation is thought to be mediated by immune cell activation.
For example, Uribe-Herranz and colleagues reported that the efficacy of adoptive T-cell
therapy is dependent on the state of the microbiome, with antibiotic elimination of spe-
cific bacterial classes leading to an increase in CD8-alpha dendritic cells that supported
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the adoptively transferred antitumor T cells in an IL-12-dependent manner [97]. Further
evidence for the importance of dendritic cells (DCs) and microbiome-associated immune
cell activation was provided by Tanoue et al. when it was demonstrated that a consortium
of 11 human-derived fecal bacteria was able to induce the antitumor phenotype in CD8 T
cells in the intestine via interferon gamma (IFNg) production [98]. This was dependent on
CD103+ DCs and major histocompatibility (MHC) 1a molecules. Notably, a recent study by
Mirji and colleagues identified the bacterial metabolite trimethylamine N-oxide (TMAO) as
a potent modulator of antitumor immunity specifically in PDAC [30]. The mechanism was
through the activation of type-I interferon gamma pathways which activated antitumor
macrophages and effector T cells in the tumor microenvironment. Supplementation of mice
bearing PDAC xenografts with TMAO or dietary choline (a TMAO precursor) resulted in
smaller xenografts. Additionally, co-treatment with TMAO and an ICI resulted in a syner-
gistic tumor reduction in tumor burden compared to that recorded for any one treatment
alone. This represents an opportunity not only to activate antitumor immunity in the host,
but also to activate antitumor immunity from within the intestines, which could have a
great systemic impact.

A third area of research that must be targeted to potentially enhance the responsiveness
of PDAC to immunotherapy in a microbiome-mediated fashion is through the regulation of
immune cell trafficking. The intratumoral microbiome has been demonstrated to regulate
CD8 T-cell infiltration in melanoma patients, which has a direct impact on survival [99].
While melanoma is an immunogenic cancer, given the dense, fibrotic nature of PDAC
tumors, this presents a challenge in these patients. However, the pancreatic TME indeed
comprises immune cells, demonstrating the ability for infiltration. Members of our group
have demonstrated that the state of the microbiome and microbe-derived products are
able to influence the infiltration and activation of antitumor NK cells in PDAC tumors
in vivo [73]. Additionally, using a computational pipeline to evaluate single-cell sequencing
from two PDAC cohorts, bacteria were identified that paired with host cells in PDAC but
not non-malignant tissue [100]. This pairing was associated with not only the activation of
immune signaling pathways but also cell motility. The interaction of the tumor-associated
microbiome may therefore be capable of modulating immune cell trafficking and provides
an entry point for pharmaceutical targeting. Finally, in a murine pancreatitis model,
fecal transplantation from chronic pancreatitis mice into healthy donor mice exacerbated
pancreatic fibrosis, CD4 T-cell infiltration, and macrophage infiltration, potentiators of
immune suppression, although macrophage polarization was not reported. These examples
demonstrate a potential bidirectional influence of the microbiome for pro- and antitumor
immune infiltration into the pancreas. The modulation of immune infiltration into PDAC
that can subsequently be activated through microbiome manipulation is thus a very enticing
concept for improving responsiveness to immunotherapy.

Finally, and common for PDAC, is the role of cancer-associated fibroblasts (CAFs)
and whether their role can be manipulated via the microbiome to increase responsiveness
to immunotherapy. Cancer-associated fibroblasts impart the desmoplastic structure to
PDAC and are thought to pose a barrier to immune infiltration and drug delivery. While
prior clinical trials proved to be unsuccessful in remodeling the PDAC TME to improve
drug delivery and response [9], there is still much interest in this field. Interestingly,
PDAC fibroblasts produce homotrimeric collagen as opposed to normal heterotrimeric
collagen. This homotrimeric collagen promotes tumorigenic signaling and chemotherapy
resistance and is associated with the order Bacteroidales within the TME. The deletion
of the homotrimers increases T-cell infiltration and the responsiveness to anti-PD-1 im-
munotherapy [101]. Data are otherwise limited in this realm, and additional investigations
are required to determine if the microbiome can elicit TME remodeling that will enhance
immunotherapy effectiveness.
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6. Conclusions

In order to advance our knowledge of the microbiome and its interaction with im-
munotherapy for PDAC, clinical trials are critical. To that end, there are active trials to test
the efficacy of immunotherapy and microbiome manipulation in pancreatic cancer (Table 3).
While trials with associative endpoints of microbiome analysis have been performed or
are underway as it relates to immunotherapy [81,102,103], it is readily apparent that trials
testing actual microbiome modulation and its effect on immunotherapy are sparse. Given
prior studies delineating the role of the microbiome in immunotherapy efficacy as well as
adverse events [96,104,105], such trials may yield important information for the relative
insensitivity of PDAC to immunotherapy, but more are desperately needed. Additionally,
the impact of nutrition on immunotherapy efficacy [106–108], as well as on microbiome
diversity and composition [109–111], is well known, and investigators have taken this into
account with recent trial designs to address the relationship between the three. Further-
more, various methods of exercise are known to alter microbiome diversity [112,113]. It
can thus be hypothesized that such an intervention (nutrition or exercise) can alter im-
munotherapy response through microbiota modulation, and exciting data already exist
for this [114,115]. There is a need for the design of trials that serve to determine the role
of exercise and/or nutrition in modulating the microbiome and subsequent response to
immunotherapy (Figure 1).

Table 3. Active microbiome-focused PDAC immunotherapy trials.

Study Title Malignancy Immunotherapy
Category Phase ClinicalTrials.gov

Study ID

Modulation of the Gut Microbiome
with Pembrolizumab Following
Chemotherapy in Resectable
Pancreatic Cancer

PDAC ICI II NCT05462496

ARGONAUT: Development and
Analysis of a Blood and Stool
Sample Bank for Cancer Patients,
Enabling the Systemic Study of the
Effect of Gut Microbiomes on
Response to Treatment

PDAC
CRC

Triple Negative
Breast Cancer

NSCLC

ICI Prospective Cohort
Study NCT04638751

The Mechanism of Enhancing the
Antitumor Effects of CAR-T on PC
by Gut Microbiota Regulation

PDAC CAR-T Case Control NCT04203459 (China)

Feasibility Study of Microbial
Ecosystem Therapeutics (MET-4) to
Evaluate Effects of Fecal
Microbiome in Patients on
ImmunOtherapy (MET4-IO)

Solid Tumors ICI II/III NCT03686202
(Canada)

Gut Microbiome Modulation to
Enable Efficacy of Checkpoint-based
Immunotherapy in Pancreatic
Adenocarcinoma

PDAC ICI IV NCT03891979 *

Pancreatic ductal adenocarcinoma (PDAC); immune checkpoint inhibitor (ICI); colorectal cancer (CRC); non-
small-cell lung carcinoma (NSCLC); chimeric antigen receptor-modified T cells (CAR-T cells); trials are based in
the United States unless otherwise specified. * Withdrawn.

The frustratingly low survival of patients diagnosed with PDAC is mirrored by the
continued difficulty in finding durable treatment regimens. While progress has been made,
notably with the emerging data on the microbiome and PDAC progression, an increased
understanding of the mechanisms that regulate the immune TME of PDAC is needed.
Through clinical trials and a deeper understanding of microbial interactions with tumor
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signaling, the microbiome may prove to be the missing link for harnessing the power of
immunotherapy in pancreatic cancer.
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