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Simple Summary: Neoadjuvant chemotherapy is the standard treatment for locally advanced rectal
cancer. Preoperative chemoradiotherapy yields clinically significant tumor regression; while some
patients exhibit a minimal response, others exhibit a complete pathologic response. We developed
deep learning and machine learning models to predict chemoradiotherapy response across external
tests using multicenter data. The machine learning model, which used harmonized image features
extracted from 18F-FDG PET, showed higher performance and demonstrated reproducibility through
external tests compared to the deep learning models using 18F-FDG PET images. Our study highlights
the feasibility of predicting the chemoradiotherapy response of individual patients using non-invasive
and reliable image feature values.

Abstract: We developed machine and deep learning models to predict chemoradiotherapy in rectal
cancer using 18F-FDG PET images and harmonized image features extracted from 18F-FDG PET/CT
images. Patients diagnosed with pathologic T-stage III rectal cancer with a tumor size > 2 cm were
treated with neoadjuvant chemoradiotherapy. Patients with rectal cancer were divided into an internal
dataset (n = 116) and an external dataset obtained from a separate institution (n = 40), which were
used in the model. AUC was calculated to select image features associated with radiochemotherapy
response. In the external test, the machine-learning signature extracted from 18F-FDG PET image
features achieved the highest accuracy and AUC value of 0.875 and 0.896. The harmonized first-order
radiomics model had a higher efficiency with accuracy and an AUC of 0.771 than the second-order
model in the external test. The deep learning model using the balanced dataset showed an accuracy
of 0.867 in the internal test but an accuracy of 0.557 in the external test. Deep-learning models
using 18F-FDG PET images must be harmonized to demonstrate reproducibility with external data.
Harmonized 18F-FDG PET image features as an element of machine learning could help predict
chemoradiotherapy responses in external tests with reproducibility.

Keywords: harmonized radiomics; machine learning; deep learning; radiochemotherapy; 18F-FDG
PET
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1. Introduction

More than 100,000 individuals worldwide are diagnosed with rectal cancer annu-
ally [1]. Rectal cancer is generally treated with neoadjuvant chemoradiotherapy, and tumor
responses to therapy are diverse, with 54–75% of patients experiencing tumor downstag-
ing [2]. The reasons for these changes in treatment response are poorly understood, and
there is no exact method for predicting the treatment response [3]. Only 15–27% of pa-
tients show no residual viable tumors on pathological examination, pathological complete
response (pCR) to chemoradiotherapy, and surgery [4]. An accurate imaging biomarker
for predicting and evaluating chemotherapy could the early classification of patients into
different prognostic groups and personalized treatment approaches. Early detection of pa-
tients who might respond poorly to chemoradiotherapy can provide them the opportunity
to undergo surgery and receive enhanced treatments to maximize treatment response.

Medical imaging can be used to noninvasively evaluate therapeutic responses to
chemotherapy. Jang et al. developed an MRI-based deep learning model for predicting
chemotherapy response in rectal cancer and reported the area under receiver operating
characteristic curve (AUC) of 0.76 and an accuracy of 0.85. 18F-FDG PET/CT has also been
widely used to monitor treatment response in many types of malignancies, stages, and
diagnoses. 18F-FDG PET can help detect glucose metabolism and reveal tumor characteris-
tics. As the anatomical data obtained from CT in rectal cancer patients can help distinguish
between physiological and pathological intestinal absorption [5], 18F-FDG PET/CT is gener-
ally considered a standard tool for predicting the response to chemotherapy in rectal cancer.
The radiomics features of 18F-FDG PET/CT can also facilitate the prediction of chemoradio-
therapy. Taking this into consideration, researchers are increasingly exploring the potential
of incorporating radiomic features from 18F-FDG PET/CT scans into predictive models to
enhance the accuracy and reliability of forecasting responses to chemoradiotherapy.

Recently, the use of machine learning techniques for large and complex biological data
analysis has increased. Deep learning techniques are considered among the most powerful
tools and are frequently used in bioinformatics because they can allow the analysis of vast
amounts of data. Many radiomics studies utilize features extracted by manual method, and
these methods are significantly influenced by the knowledge and experience of individual
researchers [6]. Consequently, deep learning techniques for computing task-adaptive
feature representations by learning layers of complex features directly from medical images
are considered suitable tools for predicting prognosis. Deep learning techniques that
can automatically learn representative information from raw image data to decode the
radiation expression type of tumors can assist in disease diagnosis, prognostic evaluation,
and treatment sensitivity prediction [7]. The model performance of deeper hidden layers
for pattern recognition has recently begun to surpass that of classical methods in different
fields. One of the most popular deep neural networks is the Convolutional Neural Network
(CNN). Random forest (RF) technology, which includes an ensemble of decision trees and
naturally integrates feature selection and interaction during learning, is a popular choice in
personalized medicine. It is nonparametric, efficient, and has a high predictive accuracy
for many types of data. RF model is increasingly being adopted because of its advantages
in dealing with small sample sizes, high-dimensional feature spaces, and complex data
structures [8].

In oncology research, particularly when assessing rectal cancer responses to therapy,
the role of SUVmax and SUVmean values derived from 18F-FDG PET/CT scans has been
under critical evaluation, as illustrated by several independent studies. Two independent
studies showed that the SUVmax predicted chemotherapy with a specificity and overall ac-
curacy of only 35% and 44%, respectively [9,10]. SUVmean, dissimilarity, and contrast from
the neighborhood intensity-difference matrix (NGTDM contrast) were significantly and
independently associated with OS [11]. A decrease in metabolic tumor volume (MTV) and
total lesion glycolysis (TLG) values was suggested to be an indicator of a positive response
to chemotherapy [12]. Chemotherapy response predictions using 18F-FDG PET/CT are not
sufficiently accurate to distinguish patients showing treatment response from those who
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respond poorly to the treatment [13]. Several studies have reported that radiation features
were scanner or protocol-sensitive, highlighting the importance of harmonizing image
features to reduce multicenter variability before pooling data from multiple sites [14,15].

In the present study, we evaluated the use of machine learning to predict chemoradio-
therapy responses using radiomics harmonization and demonstrated the reproducibility
and repeatability of the findings through rigorous external testing. Our effort is not only to
address the limitations of the current methodologies but also to contribute to the develop-
ment of a more robust and universally applicable predictive model for chemoradiotherapy
responses in cancer treatment.

2. Materials and Methods
2.1. Patient Cohort

All patients were diagnosed with pathologic T-stage III rectal cancer, with tumor
growth into the outer lining of the bowel wall without breaching its integrity. Patients with
a tumor size > 2 cm were treated with neoadjuvant chemoradiotherapy before surgery. The
internal and external cohorts comprised 116 patients from internal institutions (Korea Insti-
tute of Radiological and Medical Sciences) and 40 patients from independent institutions
(Soonchunhyang University Bucheon Hospital). The internal cohort comprised 21 patients
diagnosed with pCR and 95 patients diagnosed with non-pCR. The external cohort con-
sisted of six patients diagnosed with pCR and 31 patients diagnosed with non-pCR. The
rectal cancer region was cropped from an 18F-FDG PET image (Figure 1).
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Figure 1. The corp process of rectal cancer region from 18F-FDG PET image.

2.2. Image Feature Extraction

We utilized LIFEx (Local Image Features Extraction, version 4.90) software to calculate
image features from 18F-FDG PET/CT images of rectal cancer patients. In total, 55 image
features were extracted. The region of interest (ROI) was marked manually with an
SUV threshold of 2.0 (Figure 2). Tumor lesions were identified in the area of 18F-FDG
uptake, which was pathologically increased and was in contrast to the CT images. To
predict chemotherapy response in rectal cancer, first- and second-order images were used
separately to compare intensity-based and GLCM-based image characteristics. The AUC
was calculated to select the image features from the first- and second-order features using
R (version 4.2.2) software (R Foundation for Statistical Computing, Vienna, Austria).
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Figure 2. Radiomics extracted from 18F-FDG PET/CT.

2.3. Harmonization Methodology

Harmonization of the image features from the internal and external 18F-FDG PET/CT
datasets was performed. Both of training set and test set were harmonized in separate
manner. The harmonization (ComBat) method was used with an online application (https:
//forlhac.shinyapps.io/Shiny_ComBat/, accessed on 28 November 2023). ComBat is a
batch-matching technology initially proposed for gene expression microarrays [16] and has
been widely used in the field of imaging. The ComBat model is given by

yij = α + γi + δiεij

where j indicates the specific measurement of image feature y, i indicates the setting of
the scanner, protocol effect, or even observer effect (called the site effect), α represents the
average value of the image features denoted as y, γi signifies additive batch effect influence
on measurement, δi represents multiplicative batch effect, and εij is an error term. Batch i
represents the experimental settings employed for y measurement, including the possible
scanner effect. Site effects γi and δi can be estimated using conditional posterior means and
subsequently corrected using

yij
ComBat =

yij − α̂ − γ̂i

δ̂i
+ α̂

where α̂, γ̂i and δ̂i are estimators of α, γi and δi. yij
ComBat is the converted yij measured

value devoid of the site i effect.

2.4. Deep Learning and Machine Learning

The CNN structure consisted of input, convolution, batch normalization, ReLU, max
pooling, linear, dropout, and output layers. The CNN parameters comprised the optimizer,
learning rate, and epoch; the values were set to Adam, 0.0002, and 200, respectively. Two
convolutional layers are used. The CNN structure was constructed using two-dimensional
input slices taken from each patient. The chemotherapy prediction performance of the RF
model was internally and externally evaluated using the scikit-learn library (version 1.2.0)
in Python (version 3.10.11).

Augmentation techniques were employed to resolve the data imbalance between pCR
and non-pCR. The “RandomRotation” function of PyTorch livery in Python were used to
randomly rotate input images by a certain angle to increase the diversity of the training
dataset. The “RandomResizedCrop” function of PyTorch livery in Python is employed
to randomly select a portion of the input image and subsequently resize it, serving the
purpose of augmenting the training dataset and enhancing its variety. The Synthetic
minority oversampling technique was implemented on the training dataset for machine
learning to mitigate data imbalance.

https://forlhac.shinyapps.io/Shiny_ComBat/
https://forlhac.shinyapps.io/Shiny_ComBat/
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After splitting the internal dataset at a 7:3 ratio, internal test were performed for both
models through evaluating AUC, accuracy, precision, and sensitivity. External test were
proceed using independent institution dataset. Confusion matrix-based evaluation metrics
including accuracy, sensitivity and precision were estimated and the threshold probability
was adjusted to the value that maximizes Youden’s index.

3. Results
3.1. Patients Cohort

18F-FDG PET/CT images from 116 internal and 40 external datasets were used for
model estimation. The average ages of the internal and external datasets were 61.85 years
and 59.88, respectively. The internal cohort comprised 75 males (64.66%) and 41 females
(35.34%). The external cohort comprised 27 males (67.5%) and 13 females (32.5%). A
summary of the demographic characteristics and pathological TNM stages is presented
in Table 1. The patient cohort included patients who developed lymph node- or distant
organ-metastases.

Table 1. Characteristics of the study cohort.

Characteristics Internal Dataset
(n = 116)

External Dataset
(n = 40)

Chemoradiotherapy response (%)
pCR 21 (18.1) 6 (15)

non-pCR 95 (81.9) 34 (85)

Age (%)
<65 69 (59.48) 23 (57.5)
≥65 47 (40.52) 17 (42.5)

Mean age (y) 61.85 59.88

Sex (%)
Male 75 (64.66) 27 (67.5)

Female 41 (35.34) 13 (32.5)

Clinical T-stage, n (%)
T3 116 (100) 40

Clinical N stage (%)
N0 19 (16.38) 5 (12.5)
N1 31 (26.72) 8 (20)

N1a 2 (1.72)
N1b 13 (11.21) 1 (2.5)
N2 37 (31.9) 6 (15)

N2a 13 (11.21) 12 (30)
N2b 1 (0.86) 8 (20)

Clinical M stage (%)
M0 106 (91.38) 32 (80)
M1 6 (5.17)

M1a 3 (2.59) 8 (50)
M1b 1 (0.86)

Clinical stage (%)
IIA 5 (12.5)
IIB 18 (15.52)
IIC
IIIA 42 (36.21) 21 (52.5)
IIIB 46 (39.66) 6 (15)
IIIC 8 (20)
IVA 10 (8.62)

pCR: pathological complete response.
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3.2. Evaluation of Deep Learning Model

The CNN model for rectal cancer chemoradiotherapy prediction was developed using
18F-FDG PET images. The number of pCR data points from the internal and external data
increased through augmentation to 84 and 24, respectively. To equalize the amount of pCR
and non-pCR data, the pCR data from the internal and external cohorts were decreased
by random sampling. The deep learning model showed a performance, with an accuracy
of 0.867 and 0.789 in the internal test (Table 2). However, in the external test, the deep
learning signature showed an accuracy of 0.557 and 0.355 (Table 3). The deep learning
models showed higher performance in internal test then external test.

Table 2. Internal test of CNN model using 18F-FDG PET images.

Number of Data Efficiency Evaluation

Data Set pCR Non-pCR Accuracy Precision Sensitivity AUC
(95% CI)

Imbalanced 21 21 0.867 0.871 0.871 0.903
(0.856–0.949)

Balanced 84 95 0.789 0.843 0.677 0.835
(0.804–0.866)

pCR: pathological complete response; AUC: area under receiver operating characteristic curve; CI: Confidence interval.

Table 3. External test of CNN model using 18F-FDG PET images.

Number of Data Efficiency Evaluation

Data Set pCR Non-pCR Accuracy Precision Sensitivity AUC
(95% CI)

Imbalanced 6 6 0.557 0.542 0.495 0.498
(0.412–0.583)

Balanced 24 25 0.355 0.241 0.475 0.443
(0.378–0.509)

pCR: pathological complete response; AUC: area under receiver operating characteristic curve; CI: Confidence
interval.

3.3. Image Feature Extraction and Harmonization

A total of 55 image featuers were quantitatively calculated from 18F-FDG PET and
CT images. The image features were separated into first-order features, including conven-
tional indices, shapes, and histogram-based intensity values (n = 23). The image texture
features were assigned as second-order features, including a Gray-level co-occurrence ma-
trix (GLCM), neighborhood gray-level difference matrix (NGLDM), Gray-level run-length
matrix (GLRLM), and Gray-level zone length matrix (GLZLM) (n = 22) (Figure 2). AUC was
calculated to determine image features capable of distinguishing between chemotherapy
and non-PCR cases. Subsequently, image features from the internal dataset were selected
and used for machine learning. First-order features extracted from 18F-FDG PET and
CT with AUC over 0.65 and 0.55 were used for machine learning, respectively (Table 4).
Second-order features extracted from 18F-FDG PET and CT with AUC over 0.7 and 0.6 were
used for machine learning, respectively (Table 5). Image feature values from internal and
external institutions were harmonized to reduce multicenter variations. GLZLM GLNU,
which had the largest change in the distribution of values before and after harmonization,
was visualized (Figure 3).
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Table 4. Extraction of first-order image features by AUC cut-off value.

First-Order Image Feature
18F-FDG PET AUC CT AUC

SHAPE Sphericity 0.715 Uniformity 0.663
SUVQ1 0.707 Entropy log10 0.659

SUVmean 0.694 Entropy log2 0.659
SUVQ3 0.692 SHAPE Compacity 0.618
SUVQ2 0.69 SHAPE Volume 0.604

Uniformity 0.681 SUVstd 0.6
Entropy log10 0.677 SUVmax 0.593
Entropy log2 0.677 SUVQ3 0.589

SUVstd 0.667 Kurtosis 0.582
SUVmin 0.65 ExcessKurtosis 0.582

Volume 0.663
Sphericity 0.579
Skewness 0.578

TLG 0.563
Abbreviations: SUVQ, Standardized Uptake Value Quotient; SUV, Standardized Uptake Value; SUVstd, Stan-
dardized Uptake Value Standard Deviation; SUVmin, Standardized Uptake Value Minimum; SHAPE, Sphericity,
Histogram Analysis, and Parametric Evaluation; SUVmax, Standardized Uptake Value Maximum; TLG, Total
Lesion Glycolysis.

Table 5. Extraction of second-order image features by AUC cut-off value.

Second-Order Image Feature
18F-FDG PET AUC CT AUC

GLZLM LZLGE 0.766 NGLDM Contrast 0.704
GLZLM LZE 0.765 GLZLM ZP 0.698

GLRLM GLNU 0.763 GLRLM LRE 0.69
GLRLM SRE 0.756 GLRLM RP 0.69
GLRLM RP 0.755 GLRLM SRE 0.689

GLRLM LRE 0.753 GLZLM LZLGE 0.689
NGLDM Contrast 0.74 GLCM Homogeneity 0.689

GLZLM ZP 0.74 GLZLM LZE 0.685
GLZLM LZHGE 0.74 GLZLM LZHGE 0.683

GLCM Homogeneity 0.734 GLCM Energy 0.683
NGLDM Busyness 0.732 GLCM Entropy log10 0.667

GLRLM LRLGE 0.731 GLCM Entropy log2 0.667
GLCM Dissimilarity 0.71 GLCM Dissimilarity 0.661

GLCM Contrast 0.702 GLRLM GLNU 0.647
GLRLM LGRE 0.701 GLRLM LRHGE 0.633

NGLDM Busyness 0.628
GLRLM SRHGE 0.617
GLCM Contrast 0.613
GLRLM LRLGE 0.613

Abbreviations: GLZLM, Gray-Level Zone Length Matrix; LZLGE, Long Zone Low Gray-level Emphasis; LZE,
Low Gray-level Zone Emphasis; GLRLM, Gray-Level Run Length Matrix; SRE, Short Run Emphasis; RP, Run
Percentage; LRE, Gray-Level Run Length Matrix; NGLDM, Neighborhood Gray-Level Dependence Matrix; ZP,
Zone Percentage; LZHGE, Long-Zone High-Grey level Emphasis; GLCM, Gray-Level Co-occurrence Matrix,
LRLGE, Long Run Low Gray-level Emphasis; LGRE, Low Gray-level Run Emphasis.

3.4. Evaluation of Machine Learning Model

The extracted primary and secondary features were used as variables for the RF model,
and each model was evaluated using internal and external tests. The RF model using
harmonized first-order features showed an accuracy and AUC of 0.771, which is higher
than before harmonization in the external test. The RF model using secondary features
exhibited an accuracy and AUC of 0.675 and 0.603 in the external test after harmonization,
lower than those without harmonization. The first-order features showed higher accuracy
and AUC for the external datasets than the second-order features. In the external test
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set, the 18F-FDG PET image feature as a machine learning signature achieved the highest
accuracy with an AUC value of 0.875 and 0.896 (95% confidence interval 0.562–1) (Table 6).
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Figure 3. Distribution of GLZLM GLNU value before and after harmonization: (a) Distribution of
GLZLM GLNU extracted from all T-stage patients before harmonization; (b) Distribution of GLZLM
GLNU max extracted from all T-stage patients after harmonization.

Table 6. Internal and external test of RF model.

Image Feature Value

Without Harmonization Without Harmonization With Harmonization

Internal Test External Test External Test

CT PET PET/CT CT PET PET/CT CT PET PET/CT

First order

Accuracy 0.54 0.62 0.56 0.55 0.7 0.525 0.6 0.646 0.771
Precision 0.524 0.575 0.615 0.227 0.2 0.19 0.222 0.769 0.882

Sensitivity 0.88 0.92 0.32 0.833 0.333 0.667 0.667 0.417 0.625
AUC 0.54 0.62 0.56 0.667 0.549 0.583 0.627 0.646 0.771

95% CI for
AUC - - - 0.412–

0.921
0.291–
0.807

0.325–
0.842

0.37–
0.885

0.469–
0.962

0.429–
0.934

Second order

Accuracy 0.52 0.64 0.7 0.425 0.525 0.7 0.65 0.583 0.675
Precision 0.516 0.63 0.727 0.185 0.19 0.25 0.25 0.7 0.632

Sensitivity 0.64 0.68 0.64 0.833 0.667 0.5 0.667 0.292 0.5
AUC 0.52 0.64 0.7 0.593 0.583 0.618 0.657 0.583 0.603

95% CI for
AUC - - - 0.334–

0.852
0.325–
0.842

0.36–
0.876

0.402–
0.912

0.562–
1

0.344–
0.862

All

Accuracy 0.68 0.76 0.7 0.65 0.675 0.775 0.425 0.875 0.725
Precision 0.765 0.81 0.639 0.214 0.267 0.333 0.185 0.952 0.333

Sensitivity 0.52 0.68 0.92 0.5 0.667 0.5 0.833 0.833 0.833
AUC 0.68 0.76 0.7 0.588 0.672 0.662 0.593 0.896 0.77

95% CI for
AUC - - - 0.329–

0.847
0.418–
0.925 0.556–1 0.334–

0.852
0.562–

1 0.536–1

AUC: area under receiver operating characteristic curve; CI: Confidence interval.

4. Discussion

The performance of the machine learning models in predicting chemoradiotherapy
response using imaging features extracted from 18F-FDG PET images was estimated using
an external test. Conducting multicenter studies is one of the main objectives of clinical
applications. However, medical images acquired from different institutions may introduce
biases due to variations in imaging devices, data acquisition methods, and protocols [17,18].
Because radiomics is sensitive, variations in feature values may occur even in cases where
the same feature is extracted from multiple organs. Large-scale radiomic data analysis
is required to verify the reproducibility of radiomics, and radiomic features extracted
from images acquired from different centers must be integrated. In this study, radiomics
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harmonization was performed to reduce batch effects. Our results indicated that the
harmonization of image features extracted from multiple datasets is essential as a predictor.

In several studies related to cancers, the RF model has shown a high potential in
predicting clinical outcomes [19–22]. The RF model demonstrated reproducibility and
repeatability in external tests when utilizing the features extracted from 18F-FDG PET
images. Because the RF model generates predictions by randomly selecting a decision
tree, it mitigates the risk of overfitting. As it traverses the decision tree, it learns the
image features that best encapsulate the discriminatory factors for distinguishing tumor
characteristics. Moreover, it is expected to yield superior outcomes because it employs
an optimal cut-off value for discriminating between pCR and non-pCR patients based
on image features. These attributes of the RF model appear to have further enhanced its
predictive accuracy and AUC in the context of chemoradiotherapy prognosis.

Medical imaging offers vital insights into the progress of patients with rectal cancer,
and AI holds promise for developing quantitative treatment decision support tools. Some
studies have shown that tumor metabolic changes on 18F-FDG PET were more predictive
than tumor morphological modifications on CT [23–25]. In our study, image features
extracted from 18F-FDG PET images showed higher machine learning performance than
those extracted from CT images. The imaging features of CT in the external tests showed
an accuracy and AUC of 0.425 and 0.593, whereas those extracted from 18F-FDG PET
showed an accuracy and AUC of 0.875 and 0.896. Our study indicate that the radiomics of
18F-FDG PET have a more complementary effect then CT in predicting the pCR of rectal
cancer. 18F-FDG PET imaging is crucial for monitoring alterations in tumor metabolic
activity, playing a vital role in prognostic predictions for patients undergoing concurrent
chemoradiotherapy. Although CT imaging provides comprehensive details pertaining to
the tumor’s size and shape, excelling in anatomical delineation, it falls short in effectively
predicting tumor responses to chemoradiotherapy. This discrepancy highlights a potential
limitation in its prognostic utility for this specific therapeutic context. It has been observed
that the integration of radiomic features extracted from both 18F-FDG PET and CT into
predictive models can lead to a decrement in performance, suggesting a paradoxical
reduction in the model’s efficacy despite the amalgamation of data from both imaging
techniques. This underscores the need for careful consideration when combining features
from different modalities to enhance the accuracy of treatment response predictions.

The first and second selected features for AUC values encompassed those previously
identified as having prognostic significance in other investigations. The significance of
SUVmax, SUVmean, and Uniformity, which are image feature values, has been demon-
strated in previous studies. The secondary features based on GLRLM, NGLDM, and GLRM
were incorporated as important variables in the radiochemotherapy prediction model.
These feature values have demonstrated their predictive utility in various cancers. When
the chemoradiotherapy response was predicted using harmonized first-order features, it
showed a higher performance than second-order features. The first-order features were
derived from histograms, whereas the second-order features were based on the GLCM. As
the first-order values exhibited significant alterations following harmonization, the impact
of harmonization is noteworthy. Conversely, the second-order values displayed negligi-
ble changes after harmonization. Consequently, the model utilizing first-order features
exhibited superior performance in predicting rectal cancer chemotherapy outcomes.

There are several 18F-FDG PET/CT predictive radiomics for pCR to chemotherapy,
including visual response, maximum standardized uptake value (SUVmax), percentage
SUVmax reduction, TLG, and MTV [26–29]. Lovinfosse et al. revealed that SUVmean,
dissimilarity, and contrast from contrast NGTDM were significantly and independently
associated with OS in patients with rectal cancer. Jean-Emmanuel et al. predicted a complete
response using a deep neural network after rectal chemoradiotherapy with 80% accuracy in
a multicenter cohort using radiomics extracted from CT. Xiaolu M et al. The RF model for
the degree of differentiation, T-stage, and N-stage were obtained using radiomics from MRI
(AUC, 0.746; 95% CI, 0.622–0.872; sensitivity, 79.3%; and specificity, 72.2%). Giannini et al.
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evaluated a logistic regression model using six texture features (five from PET and one
from T2w MRI) to determine the chemotherapy outcomes (AUC = 0.86; sensitivity = 86%,
and specificity = 83%).

We estimated the performance of the deep learning model in predicting the outcomes
of neoadjuvant responses using multicenter 18F-FDG PET images. However, the model per-
formance proved insignificant in external tests conducted with datasets from independent
institutions. Deep learning demonstrated subpar performance in external tests owing to
the omission of dataset harmonization, which failed to account for potential biases between
the internal and external datasets. In the case of machine learning, the difference between
the internal and external datasets was drastically reduced through the harmonization of
the image feature values shown in the ROI; thus, reproducibility as a predictor of machine
learning was confirmed. Batch effects can be mitigated by preprocessing the images em-
ployed in deep learning, involving techniques such as slope distortion correction, bias
slope distortion correction, bias field correction, and intensity normalization, which help
standardize the data [30,31]. Reducing batch effects through harmonization at the image
level is expected to show high performance in sufficiently predicting chemotherapy, even
in external tests.

Our study has some limitations. Deep learning exhibited a lower performance in
external tests than in internal tests. This outcome may be attributed to the absence of
harmonization between internal and external datasets. Because the CNN model makes
predictions using the image itself, it is necessary to harmonize the image. The number of
patients within the presently registered external data may be relatively limited, leading
to suboptimal performance in external tests. Deep learning techniques in the realm of
medical image analysis are challenged by their black-box characteristics, which pose issues
for interpretability. Additionally, given the extensive discussion in this article about how
chemotherapy and radiotherapy can significantly increase the risk of infertility for women
wishing to conceive in the future, we propose a more proactive approach. Women should
be given greater autonomy over their reproductive timelines, particularly through the
strategic use of oocyte vitrification prior to undergoing such medical interventions [32].

5. Conclusions

Our research underscores the critical significance of image harmonization in multi-
center studies for accurate chemotherapy response prediction in pancreatic cancer while
also highlighting the potential of noninvasive radiomics-based machine learning mod-
els in predicting neoadjuvant chemoradiotherapy response in rectal cancer. A machine
learning model predicting radiochemotherapy outcomes for pancreatic cancer using har-
monized 18F-FDG PET imaging features was confirmed to be reproducible and repeatable
in external testing using multicenter data. A deep model using 18F-FDG PET images
without the harmonization process performed poorly in predicting neoadjuvant chemora-
diotherapy response, demonstrating the importance of image harmonization in multicenter
studies. We confirmed the possibility of using a machine learning model to predict the
chemoradiotherapy response of rectal cancer before treatment using radiomics, which can
be obtained noninvasively.
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