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Simple Summary: For patients with colorectal cancer with liver metastases, it is important to
determine the genetic mutations (e.g., KRAS mutations) of the liver metastases. Around 35–45% of
patients with colorectal cancer liver metastases (CRLM) have a KRAS mutation, and genetic mutations
are used in treatment planning and prognostication. The aim of this study was to assess if KRAS
mutations could be identified on CT scans using radiomics. In the discovery cohort of 255 patients,
KRAS mutations could be identified with a good accuracy. In the external validation cohort consisting
of 129 patients, the radiomics model performed poorly. These results indicate that radiomics might
be used to determine genetic mutations such as KRAS, but foremost emphasize the importance of the
external validation of radiomics models. External validation is crucial for the assessment of clinical
applicability and should be mandatory in all future studies in the field of radiomics.

Abstract: For patients with colorectal cancer liver metastases (CRLM), the genetic mutation status
is important in treatment selection and prognostication for survival outcomes. This study aims to
investigate the relationship between radiomics imaging features and the genetic mutation status
(KRAS mutation versus no mutation) in a large multicenter dataset of patients with CRLM and
validate these findings in an external dataset. Patients with initially unresectable CRLM treated
with systemic therapy of the randomized controlled CAIRO5 trial (NCT02162563) were included.
All CRLM were semi-automatically segmented in pre-treatment CT scans and radiomics features
were calculated from these segmentations. Additionally, data from the Netherlands Cancer Insti-
tute (NKI) were used for external validation. A total of 255 patients from the CAIRO5 trial were
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included. Random Forest, Gradient Boosting, Gradient Boosting + LightGBM, and Ensemble machine-
learning classifiers showed AUC scores of 0.77 (95%CI 0.62–0.92), 0.77 (95%CI 0.64–0.90), 0.72 (95%CI
0.57–0.87), and 0.86 (95%CI 0.76–0.95) in the internal test set. Validation of the models on the external
dataset with 129 patients resulted in AUC scores of 0.47–0.56. Machine-learning models incorporating
CT imaging features could identify the genetic mutation status in patients with CRLM with a good
accuracy in the internal test set. However, in the external validation set, the models performed poorly.
External validation of machine-learning models is crucial for the assessment of clinical applicability
and should be mandatory in all future studies in the field of radiomics.

Keywords: colorectal cancer; liver metastases; radiomics; CT scan; genetic mutation; KRAS mutation

1. Introduction

Colorectal cancer (CRC) is the second-leading cause of cancer-related deaths world-
wide [1] and almost half of these patients develop colorectal cancer liver metastases
(CRLM) [2,3]. Over the past few decades, substantial advances have occurred in per-
sonalized treatment, selecting the optimal treatment based on individual patient and tumor
characteristics. The addition of targeted agents to chemotherapy increased response rates
to around 60% [4–8]. Targeted agents selectively target the molecular pathways of cancer
cells, such as the epidermal growth factor receptor (EGFR) pathway that regulates functions
related to cell proliferation, growth, and apoptosis [9]. Overexpression of this pathway
leads to a more aggressive disease course and poor prognosis in patients with metastasized
CRC; therefore, anti-EGFR agents have emerged as a treatment option [7,8]. The genetic
mutation status has been shown to be a promising biomarker for patients with CRLM [10].
Approximately 35–45% of patients with CRLM have a KRAS mutation, which is associated
with a poorer prognosis than non-mutated (i.e., wild-type) CRLM [11]. A mutation of
KRAS has been shown to lead to a poor response to anti-EGFR-targeted agents [12–14].
Pre-treatment determination of the genetic mutations status is therefore an important step
in the personalized treatment strategy of patients with CRLM [15]. Nonetheless, the current
methods of tumor genomic profiling require invasive methods, such as biopsies. Therefore,
it is not feasible to determine the mutation status per individual CRLM. Nowadays, the
standard care of patients with CRLM involves non-invasive medical imaging, such as com-
puted tomography (CT), at diagnosis and follow-up. This large number of medical images
may potentially be used to find non-invasive biomarkers using advanced imaging analytics,
such as radiomics [16]. Radiomics is an advanced method to calculate numerous imaging
features from medical images that cannot be quantified by the human eye [16,17]. These
imaging features can be used in predictive models using machine-learning classifiers [16].
Research in radiomics has evolved exponentially and is increasingly used to predict clinical
outcomes in patients with gastrointestinal cancer, including CRLM [18–20]. Radiomics is
also applied to identify genetic mutations, which is called radiogenomics [17,21]. More
broadly, radiogenomics aims to examine the relationship between imaging features and
changes in gene expression. A review by Badic et al. reported that genetic mutations, such
as KRAS and microsatellite instability, could be identified using radiomics models in pa-
tients with CRC in multiple studies [22]. Likewise, Shi et al. were able to classify the genetic
mutation status (KRAS/BRAF/NRAS mutation versus wild-type) of patients with CRLM
by making use of a neural network based on CT-based radiomics features [23]. Specifically
for patients with mutation status heterogeneity between CRLM [24,25], the mutation status
determination via the radiogenomics of individual CRLM could be of additional clinical
value. The positive findings of previous studies suggest a relationship between the tumor
genotype and its imaging features in metastatic CRC. However, other research also em-
phasized the methodological shortcomings of studies applying radiogenomics in patients
with CRC, using small datasets and lacking external validation [23,26]. This study aims to
investigate the relationship between radiomics imaging features and the genetic mutation
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status (KRAS versus wild-type) in a large dataset of patients with CRLM and validate these
findings in an external dataset.

2. Materials and Methods
2.1. Study Population

The study population consisted of patients registered between 2014 and 2019 in
the multicenter randomized clinical trial of the Dutch Colorectal Cancer Group (DCCG),
CAIRO5 (NCT02162563) [27]. In this trial, patients with initially unresectable liver-only
CRLM were randomized between different systemic therapies based on the primary tumor
site and genetic mutation status (KRAS/NRAS/BRAF mutation vs. wild-type) [27]. All
patients signed a written consent form, also allowing side-studies. In the current study,
only patients with KRAS-mutated or wild-type CRLM were included. Patients from the
Netherlands Cancer Institute (NKI) were included as an external validation cohort. This
cohort comprised a routine retrospective cohort of patients with CRLM. These patients all
underwent biopsy with subsequent next-generation sequencing between 2013 and 2020.
Baseline contrast-enhanced CT images were collected with a maximum time difference
between the biopsy date and scan date of 90 days.

2.2. Data Collection
2.2.1. Genetic Mutation Analysis

Tissue DNA mutation analyses for KRAS (exon 2, 3, and 4) mutations were performed
in CCKL-accredited laboratories of participating hospitals following national pathologist
guidelines. Tissue mutation analyses were performed mostly on DNA isolated from
the primary tumor since tissue from metastases was rarely available (90% versus 10%,
respectively).

2.2.2. Imaging Data

All CT scans were performed in one of the 66 centers responsible for trial inclusion
using imaging protocols of the local hospitals. The current study only included patients
with contrast-enhanced abdominal CT scans in the portal venous phase. Acquisition
parameters of CT scans are summarized in Supplementary Materials S1.

2.3. Radiomics Analysis

This study utilized the Radiomics Quality Score (Supplementary Materials S2) [17].

2.3.1. Tumor Segmentation

All CRLM were semi-automatically segmented in the pre-treatment CT scans to
determine the volume of interest (VOI) using IntelliSpace Portal 9.0® (Philips, Best, The
Netherlands), by one of three trained members of the research team (NW, MZ, DvdM). All
segmentations performed by the research team were verified and if needed, adjusted by
an abdominal radiologist (JHvW, IN, SM, JvdB). All segmented CRLM per patient were
combined into one segmentation as one VOI.

2.3.2. Feature Extraction and Feature Selection

Radiomics imaging features were calculated from all segmented tumors combined
into one VOI per patient using the open-source Pyradiomics package (v3.0.1) [28]. These
features were extracted from the original VOIs in the CT scans and as filtered VOIs on
which a wavelet filter was applied to suppress possible noise in the image. All feature
extraction settings can be found in Supplementary Materials S3. In order to transform
features to a similar scale, all feature values were standardized. Subsequently, the random
forest feature selection method was applied in the training set to define the top predictive
features based on relative importance. Using validation within the training set, an optimal
importance cut-off point of 0.6 was determined. All features with a relative importance
above the cut-off were included as input for the classification models.
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2.3.3. Data Pre-Processing and Modeling

Model training and testing were performed on the SAS® Viya Analytical platform.
The CAIRO5 patients were divided into training and test sets with an 80:20 ratio. The sets
were divided using stratification to ensure the similar distribution of the genetic mutation
status in the two sets. Hyperparameter tuning was performed on the training set using
5-fold grid-search cross validation (Supplementary Materials S4). Three machine-learning
classification algorithms were used: Random Forest (RF), Gradient Boosting (GB), and
Gradient Boosting + LightGBM (GBM). In addition, the three models were joined into
an Ensemble classifier, which was created using a voting averaging method. Figure 1
summarizes all steps of the radiomics workflow.
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Figure 1. Illustration of the radiomics workflow. Abbreviations: AUC-ROC, area under the receiver
operating characteristic curve; CRLM, colorectal liver metastases; CT, computed tomography; VOI,
volume of interest.

(1) Patient diagnosed with CRLM. (2) Segmentation of the CRLM to determine the
VOI on a CT scan. (3) Radiomics feature extraction from the VOI: shape features, first-
order features, and texture features (1 texture before systemic therapy; 2 texture after
systemic therapy). (4) Random forest feature selection to determine top predictive features.
(5) Development of machine-learning models to determine KRAS status, compared with
AUC-ROC.

2.4. External Validation

Baseline CT scans in the portal venous phase of patients with CRLM from the NKI
were collected. All CRLM were segmented by one of the members of our research team,
verified, and if needed, adjusted by one abdominal radiologist (JHvW, IN, SM, JvdB) using
using IntelliSpace Portal 9.0® (Philips, Best, The Netherlands)in the same manner as the
CAIRO5 cohort. Similar data pre-processing and modeling were applied. In addition,
ComBat harmonization was applied to the extracted features of the external validation
cohort to reduce the center effect.
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2.5. Statistics

The discriminative performance of the machine-learning models was assessed using
the receiver operating curve (ROC), supported by the area under the receiver operating
curve (AUC), accuracy, sensitivity, and specificity measures. The optimal cut-off value was
determined by taking the point with the greatest difference between the sensitivity and
1—specificity values in the ROC curve (the Youden index). The 95% confidence intervals
(CI) of the AUC scores were determined using the Delong test to give an indication of their
robustness. The calibration was evaluated using the locally estimated scatterplot smoothing
(LOESS) calibration curve and the Brier score, demonstrating the agreement between the
observed and predicted probabilities. Baseline characteristics of the discovery cohort and
external validation cohort were compared. The relation between the baseline variables
and genetic mutation status was assessed using univariable linear regression models.
Categorical variables were reported as frequencies and percentages and compared with
Chi-square test or Fisher exact test, as appropriate. Continuous variables were displayed
as median with interquartile range (IQR) and compared with Mann–Whitney U-test or
t-test based on the distribution of data. Tests were considered statistically significant with a
two-sided p-value < 0.05. Statistical analyses were performed using SAS® Studio (version
5.2, SAS® Viya®.03.05, SAS Institute Inc., Cary, NC, USA).

3. Results
3.1. Study Population

In total, 255 of 368 eligible patients from the CAIRO5 trial were included in the
discovery cohort of this study (Figure 2). The 80:20 train/test ratio resulted in a training
cohort of 204 patients and a test cohort of 51 patients. Of the 167 eligible patients for
external validation, 129 were included (Figure 3).
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The median number of CRLM per patient within the discovery cohort was 12 versus
5 in the external validation cohort (p < 0.0001) and the median slice thickness within
the discovery cohort was 5.0 mm versus 1.0 mm in the external validation cohort
(Supplementary Materials S1). All other baseline characteristics of the discovery and ex-
ternal validation cohort were similar (Table 1). Age (p = 0.21), sex (p = 0.93), and number
of liver metastases (p = 0.61) were not significantly associated with the KRAS mutational
status in the discovery cohort.

Table 1. Baseline patient characteristics.

Baseline Characteristics Discovery Cohort
(n = 255)

External Validation
Set (n = 129) p-Value

Age (years) 62 (55–70) 62 (53–69) 0.607

Sex 0.068

Male 170 (66.7) 73 (56.6)

Female 85 (33.3) 56 (43.4)

KRAS mutational status 0.149

Mutation 136 (53.3) 58 (45.0)

Wild-type 119 (46.7) 71 (55.0)

Number of liver metastases 12 (7–23) 5 (2–11) <0.0001
Note—values are shown as median (interquartile range) or number of participants (percentage).

3.2. Feature Selection and Modeling

In total, 851 radiomics features were extracted. Using random forest feature se-
lection, 10 features were selected as the input variables for the classification models
(Supplement S5). The optimal model parameters were found using cross-validated hyper-
parameter tuning (Supplement S4).

3.3. Performance of the Models
3.3.1. Discrimination Accuracy

In the test set, the RF, GB, GBM, and Ensemble models reached AUCs of 0.77 (95%CI
0.62–0.93), 0.77 (95%CI 0.64–0.90), 0.72 (95%CI 0.57–0.87), and 0.86 (95%CI 0.76–0.95) with
an accuracy of 0.80, 0.73, 0.71, and 0.77, respectively (Figure 4). In the external validation
cohort, the RF, GB, GBM, and Ensemble models reached AUCs of 0.54 (95%CI 0.44–0.64),
0.52 (95%CI 0.42–0.62), 0.56 (95%CI 0.46–0.67), and 0.47 (95%CI 0.37–0.56), respectively
(Figure 5). An overview of all the evaluation metrics is shown in Table 2.
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Table 2. Model performance in discriminating KRAS mutant versus wild-type mutation status.

Machine-Learning Classifier Cohort AUC (95% CI) Sensitivity Specificity Accuracy

Random Forest
Train 0.97 (0.95–0.99) 0.82 0.95 0.89
Test 0.77 (0.62–0.93) 0.85 0.75 0.80
External validation 0.54 (0.44–0.64) 0.44 0.54 0.50

Gradient Boosting
Train 0.96 (0.94–1.00) 0.95 0.98 0.98
Test 0.77 (0.64–0.90) 0.67 0.79 0.73
External validation 0.52 (0.42–0.62) 0.46 0.57 0.52

Gradient Boosting (LightGBM)
Train 0.98 (0.97–1.00) 0.98 0.99 0.98
Test 0.72 (0.57–0.87) 0.75 0.67 0.71
External validation 0.56 (0.46–0.67) 0.28 0.59 0.42

Ensemble
Train 0.97 (0.94–1.00) 0.97 0.93 0.95
Test 0.86 (0.76–0.95) 0.93 0.58 0.77
External validation 0.47 (0.37–0.56) 0.30 0.74 0.50
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3.3.2. Calibration

In the test set, the RF, GB, GBM, and Ensemble models reached Brier scores of 0.22,
0.21, 0.24, and 0.15, respectively (Figure 6). In the external validation cohort, the RF, GB,
GBM, and Ensemble models reached Brier scores of 0.28, 0.41, 0.41, and 0.44, respectively
(Figure 7).

Cancers 2023, 15, 5648 8 of 13 
 

 

Table 2. Model performance in discriminating KRAS mutant versus wild-type mutation status. 

Machine-Learning Classifier Cohort AUC (95% CI) Sensitivity Specificity Accuracy 

Random Forest 
Train 0.97 (0.95–0.99) 0.82 0.95 0.89 
Test 0.77 (0.62–0.93) 0.85 0.75 0.80 
External validation 0.54 (0.44–0.64) 0.44 0.54 0.50 

Gradient Boosting 
Train 0.96 (0.94–1.00) 0.95 0.98 0.98 
Test 0.77 (0.64–0.90) 0.67 0.79 0.73 
External validation 0.52 (0.42–0.62) 0.46 0.57 0.52 

Gradient Boosting (LightGBM) 
Train 0.98 (0.97–1.00) 0.98 0.99 0.98 
Test 0.72 (0.57–0.87) 0.75 0.67 0.71 
External validation 0.56 (0.46–0.67) 0.28 0.59 0.42 

Ensemble 
Train 0.97 (0.94–1.00) 0.97 0.93 0.95 
Test 0.86 (0.76–0.95) 0.93 0.58 0.77 
External validation 0.47 (0.37–0.56) 0.30 0.74 0.50 

3.3.2. Calibration 
In the test set, the RF, GB, GBM, and Ensemble models reached Brier scores of 0.22, 

0.21, 0.24, and 0.15, respectively (Figure 6). In the external validation cohort, the RF, GB, 
GBM, and Ensemble models reached Brier scores of 0.28, 0.41, 0.41, and 0.44, respectively 
(Figure 7). 

 
Figure 6. LOESS calibration curves and Brier scores of the three machine-learning models in the 
internal test set. Abbreviations: LOESS, locally estimated scatterplot smoothing. 
Figure 6. LOESS calibration curves and Brier scores of the three machine-learning models in the
internal test set. Abbreviations: LOESS, locally estimated scatterplot smoothing.

Cancers 2023, 15, 5648 9 of 13 
 

 

 
Figure 7. LOESS calibration curves and Brier scores of the three machine-learning models in the 
external validation set. Abbreviations: LOESS, locally estimated scatterplot smoothing. 

4. Discussion 
This study demonstrates that the genetic mutation status (KRAS mutation versus no 

mutation) of patients with CRLM could be identified with a good accuracy in the discov-
ery cohort, using machine-learning models incorporating pre-treatment CT-based imag-
ing features. However, the machine-learning models showed poor AUC scores in the ex-
ternal validation cohort, indicating no relationship between the genetic mutation status 
and radiomics imaging features. 

If radiomics could prove to be predictive of the mutation status on a lesion level, it 
could facilitate personalized cancer treatment on a lesion level in the future. Brudvik et al. 
have reported that RAS mutations are associated with a higher positive margin resection 
rate [29]. Thus, for RAS-mutated CRLM, a more careful intraoperative assessment of the 
resection margin is recommended [29]. 

In previous studies, genetically driven physiological functions related to venous in-
vasion in liver cancer were correlated with imaging features, suggesting that biological or 
morphological changes following genetic mutations are detected on medical imaging with 
radiomics [30]. But following the results in the external validation cohort of this study, the 
question remains if there is any relationship between radiomics and genetic mutations in 
patients with CRLM. 

The models’ accuracy in this study’s test set was higher than a similar study, in which 
an AUC of 0.74 was reached in predicting the RAS/BRAF versus wild-type mutation sta-
tus in patients with CRLM based on radiomics features [23]. Two other studies predicting 
the genetic mutation status in patients with colorectal cancer achieved comparable AUC 
scores of 0.82 and 0.83 [31,32]. However, all of these studies were conducted using smaller 
datasets and more importantly, the models were not externally validated [23,31] and 
therefore at risk of overfitting. 

External validation of machine-learning models is crucial for the assessment of clini-
cal applicability in daily clinical practice. However, it is a major challenge to develop mod-
els that also perform successfully in unknown external datasets [33,34]. Hence, machine-
learning models should be trained on data that are as realistic and robust as possible. The 
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4. Discussion

This study demonstrates that the genetic mutation status (KRAS mutation versus no
mutation) of patients with CRLM could be identified with a good accuracy in the discovery
cohort, using machine-learning models incorporating pre-treatment CT-based imaging
features. However, the machine-learning models showed poor AUC scores in the external
validation cohort, indicating no relationship between the genetic mutation status and
radiomics imaging features.

If radiomics could prove to be predictive of the mutation status on a lesion level, it
could facilitate personalized cancer treatment on a lesion level in the future. Brudvik et al.
have reported that RAS mutations are associated with a higher positive margin resection
rate [29]. Thus, for RAS-mutated CRLM, a more careful intraoperative assessment of the
resection margin is recommended [29].

In previous studies, genetically driven physiological functions related to venous
invasion in liver cancer were correlated with imaging features, suggesting that biological
or morphological changes following genetic mutations are detected on medical imaging
with radiomics [30]. But following the results in the external validation cohort of this study,
the question remains if there is any relationship between radiomics and genetic mutations
in patients with CRLM.

The models’ accuracy in this study’s test set was higher than a similar study, in which
an AUC of 0.74 was reached in predicting the RAS/BRAF versus wild-type mutation status
in patients with CRLM based on radiomics features [23]. Two other studies predicting the
genetic mutation status in patients with colorectal cancer achieved comparable AUC scores
of 0.82 and 0.83 [31,32]. However, all of these studies were conducted using smaller datasets
and more importantly, the models were not externally validated [23,31] and therefore at
risk of overfitting.

External validation of machine-learning models is crucial for the assessment of clinical
applicability in daily clinical practice. However, it is a major challenge to develop models
that also perform successfully in unknown external datasets [33,34]. Hence, machine-
learning models should be trained on data that are as realistic and robust as possible. The
variety in CT acquisition parameters could be considered a strength concerning external
validity, as it is a good representation of different CT scans in daily practice since the CT
scans were acquired from 66 hospitals. However, the developed models still performed
poorly in the external validation set. This could imply that the selection of patients used
for model development had a large influence on the generalizability of the models, as the
population consisted of selected patients with initially unresectable CRLM and a median
number of 12 metastases. Additionally, a difference in slice thickness was observed between
the discovery cohort and external validation cohort.

In addition to patient selection, tumor segmentation also has a considerable influence
on model performance, as this segmentation determines which voxels are analyzed and
thus can influence the extracted feature values [17]. In this study, the CRLM were vali-
dated by one expert radiologist, which could have introduced interobserver bias [35], and
therefore the stability of the radiomics features between different segmentations was not
investigated. The inability to reject instable features may have affected the generalizability
of the models [17]. The use of fully automatic segmentation models in the future would be
valuable in increasing reproducibility and constructing robust models.

Another limitation is that the models were constructed based on imaging features
calculated from the segmentation of all the CRLM combined. As a result, it was assumed
that the mutation status was uniform amongst all the CRLM in one patient and intertu-
mor heterogeneity was not taken into account. Two studies have shown intertumoral
heterogeneity in 2/97 (2.1%) and 11/94 (11.7%) of patients with multiple CRLM, respec-
tively [24,25]. Only the first study, however, used highly sensitive mutation analyses.
Finally, it would be interesting to investigate if radiomics models can distinguish between
RAS and BRAF mutations or even between specific KRAS mutation variants. Research
has shown that patients with CRLM with a KRAS A146-mutated tumor have a higher
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tumor burden, associated with worse clinical outcomes, compared with patients with other
KRAS mutation variants [36]. Due to high imbalance ratios in terms of both RAS/BRAF
mutations and specific KRAS mutation variants in the current study, these analyses could
not be performed without a high risk of bias.

In an in-depth analysis to explain the poor performance in the external validation
cohort, it was firstly observed that the correlation between the individual features and
the outcome was weak. Moreover, the correlation coefficient between the internal train,
internal test, and external validation set varied significantly. The most predictive features in
the internal test were not predictive in the external validation set. Secondly, the distribution
of the KRAS mutation and wild-type was distributed similarly between the internal and
external dataset. Both were around half of the patient population, which is an adequate
representation of the distribution in the daily patient population. Hence, the misclassified
samples were not under-represented in the training data.

We advocate for more standardized and robust radiomics research, as the lack of gener-
alizability has to be addressed before a conclusion can be drawn about the potential clinical
value of radiomics. External validation is crucial in testing the generalizability of radiomics
models, which many previous studies have lacked. Our study has shown that despite
promising internal results, the radiomics models showed an inadequate performance in
the external validation cohort. In an attempt to build radiomics models that perform well
across different, unseen patient cohorts, it is important to have a standardized approach in
their development. This could include multiple patient cohorts in the development phase,
and also external validation across multiple patient cohorts.

5. Conclusions

In conclusion, machine-learning models incorporating pre-treatment CT imaging
features could identify the genetic mutation status (KRAS mutation and no mutation) in
patients with CRLM with a good accuracy in the test set. However, in the external validation
set, the models performed poorly. This study demonstrates the importance of external
validation, which should be mandatory in all future studies in this field. Automation and
standardization are equally necessary to further explore the potential of radiomics.
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