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Simple Summary: Alcohol-related Liver Disease (ALD) is the leading cause of chronic liver disorders
and the first cause of hepatocellular carcinoma in developed countries. Unfortunately, few and poorly
efficient therapeutic options are available. Deciphering the molecular mechanisms underlying the
development of these diseases is therefore of major interest. MicroRNAs (miRNAs) represent key
regulators of gene expression by promoting mRNA decay and/or translation inhibition. Due to their
ability to control the expression of many genes involved in metabolism, fibrosis, inflammation, and
hepatic carcinogenesis, miRNAs represent potential therapeutic targets. Herein, we discuss the role
of miRNAs in the different stages of ALD and their role in the onset of HCC, as well as the potential
therapeutic options that could be envisaged.

Abstract: Alcohol-related Liver Disease (ALD) is the primary cause of chronic liver disorders and
hepatocellular carcinoma (HCC) development in developed countries and thus represents a major
public health concern. Unfortunately, few therapeutic options are available for ALD and HCC, except
liver transplantation or tumor resection for HCC. Deciphering the molecular mechanisms underlying
the development of these diseases is therefore of major importance to identify early biomarkers and
to design efficient therapeutic options. Increasing evidence indicate that epigenetic alterations play a
central role in the development of ALD and HCC. Among them, microRNA importantly contribute
to the development of this disease by controlling the expression of several genes involved in hepatic
metabolism, inflammation, fibrosis, and carcinogenesis at the post-transcriptional level. In this review,
we discuss the current knowledge about miRNAs’ functions in the different stages of ALD and their
role in the progression toward carcinogenesis. We highlight that each stage of ALD is associated with
deregulated miRNAs involved in hepatic carcinogenesis, and thus represent HCC-priming miRNAs.
By using in silico approaches, we have uncovered new miRNAs potentially involved in HCC. Finally,
we discuss the therapeutic potential of targeting miRNAs for the treatment of these diseases.

Keywords: microRNAs; alcohol-related liver disease; hepatocellular carcinoma; miRNAs-based
therapeutics

1. Introduction

Fatty Liver Diseases encompasses a spectrum of liver alterations associated with viral
infection (e.g., hepatitis C), obesity, type 2 diabetes (Non-Alcoholic Fatty Liver Disease), and
chronic/abusive alcohol consumption (Alcoholic Liver Disease) [1–3]. FLD starts with the
development of hepatic steatosis, where hepatocytes accumulate lipids (i.e., triglycerides and
cholesterol esters) [4,5]. With time, this step promotes chronic inflammation (steatohepatitis),
which together with other defects (e.g., lipotoxicity, oxidative stress, endoplasmic reticulum
(ER) stress, mitochondrial dysfunctions) trigger hepatocyte death [6,7]. In this context, fibrosis
can develop and progress towards cirrhosis [8,9], a major cause of mortality and a high-risk
condition for hepatocarcinogenesis [10]. Moreover, acute hepatitis (AH) can occur in patients
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with ALD, which is associated with severe liver failure and a high short-term mortality [11].
Hepatocellular carcinoma (HCC) represents the seventh most common cancer worldwide
and the fourth most common cause of cancer mortality in both genders (https://gco.iarc.fr/
accessed on 3 October 2023). Because ALD is one of the most prevalent causes of chronic
liver disease in developed countries, it is currently estimated that one-third of HCC devel-
ops in the context of alcoholic cirrhosis worldwide, with a strong heterogeneity between
countries [12–15]. Moreover, the incidence of HCC is expected to dramatically increase in the
future given the high prevalence of ALD in developed countries and the rapid worldwide in-
crease in other risk factors, such as obesity/diabetes, which synergize with alcohol [16–18]. The
prevalence of alcohol-associated cirrhosis was estimated at 0.3% in general populations [19].
Therefore, ALD is a major public health concern and a growing economic burden. Unfortu-
nately, few therapeutic options are available for AH, such as corticoids, but this approach
is strongly limited by the development of resistance [20–22]. HCC is also a poorly curable
cancer, highly resistant to conventional chemotherapy and radiotherapy. To date, the most
efficient treatment for advanced fibrosis, cirrhosis, and HCC remains liver transplantation [23].
Deciphering the molecular mechanisms underlying ALD and HCC development is therefore
urgently needed to design new and effective therapeutic approaches.

Trans-acting factors controlling the fate of mRNAs (degradation, translation), such as
microRNAs, are of high interest, due to their capacity to control the expression of a wide
range of genes involved in various physiological and pathological processes (e.g., lipid,
glucose metabolism, inflammation, fibrosis, and cancer-related processes). Accordingly,
alteration of miRNA expression or activity contributes to the development of several
diseases [24–27]. Although intense efforts have been devoted to characterizing miRNA
functions in the context of NAFLD [28,29], a limited amount of knowledge is available
for ALD and ALD-associated HCC. The purpose of this review is to discuss the role of
microRNAs in the different stages of ALD and how they contribute to the progression
toward HCC (HCC priming events). Finally, we discuss the different strategies that could
be employed to target miRNAs in ALD and ALD-related HCC.

2. MicroRNAs

MicroRNAs are small endogenous non-coding RNAs of 16–22 nucleotides, control-
ling gene expression at the post-transcriptional level by recognizing complementary se-
quences within the 3′ Untranslated Region (UTR) of targeted mRNAs and promoting either
mRNA decay and/or translation inhibition [30,31]. Since their discovery in 1993 (lin4 in
C-Elegans) [32], more than 38,589 miRNAs (miRBase) have been identified in different
organisms (i.e., plants, animals, viruses), among which many have been associated to a
wide range of physiological and pathological processes [24–27].

MiRNA biogenesis encompasses several steps, starting with the transcription of a
primary miRNA transcript (pri-miRNA) from intronic or intergenic regions by the RNA
polymerase II/III [33]. The pri-miRNA is processed in 3′ and 5′ strands by the microproces-
sor complex comprising the ribonuclease III enzyme, Drosha, and the RNA-Binding Protein
(RBP) DiGeorge Syndrome Critical Region 8 (DGCR8), thereby generating a precursor
miRNA (pre-miRNA). The pre-miRNA is exported from the nucleus to the cytosol by the
Exportin5/RanGTP. In the cytosol, the pre-miRNA is processed by the RNase III endonucle-
ase Dicer, which removes the terminal loop of the pri-miRNA thereby producing a mature
miRNA duplex, composed of a guide strand and a complementary passenger strand [34].
According to the canonical model, the passenger strand is degraded, while the guide strand
is maintained and is incorporated into the RNA-Induced Silencing Complex (RISC) to settle
at the complementary sequences in the 3′UTRs of their target’s mRNAs. However, this
dogmatic view is currently challenged by several physiological/pathological situations
where the passenger strand is conserved and also exerts important regulatory functions.

MiRNA-dependent regulation is a complex regulator process as evidenced by their
capacity to control the expression of a wide range of transcripts. Conversely, one mRNA
can be regulated by several miRNAs [30,35]. Moreover, our understanding of miRNAs-
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dependent regulation is challenged by the interplay between miRNAs, long non-coding
RNA (lncRNAs), and RNA Binding Proteins (RBPs), which importantly control the ex-
pression, but also the bioavailability and activity of miRNAs [34]. While most studies are
focusing on miRNAs with a deregulated expression pattern, increasing evidence indicates
that the expression does not always correlate with the activity of miRNAs. Deciphering this
interplay is therefore important to identify the most relevant and active miRNAs involved
in pathological contexts and thus to design efficient therapeutic approaches.

This review summarizes the role of miRNAs in the different steps of ALD and discuss
how these alterations promote hepatic carcinogenesis (Figure 1).
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Figure 1. Spectrum of Alcohol-related Liver Disease with deregulated microRNAs at each stage and
cited in this review and detailed in Table 1. Percentages represent the rate of patients moving from
one stage to another [36]. MicroRNAs in red have increased expression and microRNAs in blue have
decreased expression. Created by Biorender.com.

Table 1. Summary of deregulated miRNAs in ALD and cited in this review.

MiRs Expression Function Target Model Cell Types Refs.
Alcohol-Related Steatosis

MiR-203 Down Decrease lipid
accumulation Lipin1 AML12 Hepatocyte [37]

MiR-483-5p Down Steatosis cell
proliferation PPARα Human Mice

HepaRG Hepatocyte [38]

MiR-22 Up Steatosis
FGFR1
FGF21

IL6/JAK/STAT
Human Mice Hepatocyte [39–41]

MiR-378b Up Lipid accumulation CAMKK2 Mice
Human Hepatocyte Hepatocyte [42]

MiR-200c Up Modulation of lipid
homeostasis Hnf1 Homeobox B Mice Liver [43]

MiR-217 Up Inflammation
Steatosis Sirtuin-1

Mice
RAW 264.7

Kupffer cells

Hepatocyte
Macrophage
Kupffer cells

[44,45]

MiR-155 Up

Promote liver steatosis
Liver injury

Inflammation
Fibrosis

Snail1 Smad2
STAT3 PPARα TLR

inhibitor PPARγ
TNFα

Human Mice
Raw 264.7 Hepa 1-6

Kupffer cells
Hepatocyte

Hepatic stellate cells
[46–50]
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Table 1. Cont.

MiRs Expression Function Target Model Cell Types Refs.
Alcoholic Steatohepatitis

MiR-122 Down Protection against
steatosis fibrosis

HiF1α
TNFrsf13C

Human Mice
RAW 264.7 Huh7

Hepatocyte
Kupffer cells

Extracellular vesicles
[51–54]

MiR-192 Down Exosome induction Rab27a Rab35
STX7 STX16 Human Hepatocyte

Extracellular vesicles [53,55]

MiR-27b Down Inflammation LPS Mice
RAW 264.7 Macrophage [56]

MiR-214 Down (mice)
Up (human)

Liver fibrogenesis
Induce oxidative stress

Gluthatione
reductase

Human Mice
Rat

Bel7402 BRL
Hepatocyte [40,57,58]

MiR-199a-3p Down n.a n.a Mice n.a [57]

MiR-182 Down Inflammation
Apoptosis

Mcp-1 Ccl20 Cxcl5
Cxcl1 Bcl2

Mice
Human Liver [40,57]

MiR-183 Down Inflammatory n.a Mice n.a [57]
MiR-200a Down Disease severity Gli2 Mice n.a [57,59,60]
MiR-322 Down n.a n.a Mice n.a [57]

MiR-181b-3p Down Inflammatory Importin α5 Mice
Rat Kupffer cells [61,62]

MiR-219a-5p Down Oxidative stress P66shc Rat
AML-12 Hepatocyte [63]

MiR-199 Down Inflammation Hif1α Rat Kupffer cells [64]

MiR-129-5p Down Hepatic fibrosis
Lipid metabolism NEAT1 Human Mice

AML-12 Hepatocyte [65]

MiR-540 Up Hepatic steatosis
Oxidative stress PPARα ACOX1 Mice n.a [66]

MiR-6801 Up Hepatic steatosis
Oxidative stress PPARα ACOX1 Human n.a [66]

MiR-155 Up
Promote liver steatosis

Liver injury
Inflammation fibrosis

Snail1 Smad2
STAT3 PPARα TLR

inhibitor PPARγ
TNFα

Human Mice
Raw 264.7 Hepa 1-6

Kupffer cells
Hepatocyte

Hepatic stellate cells
[46–50]

MiR-320 Up Inflammatory n.a Mice n.a [57]
MiR-486 Up Inflammatory n.a Mice n.a [57]
MiR-705 Up Inflammatory n.a Mice n.a [57]

MiR-1224 Up Inflammatory
Tumor suppressor n.a Mice

Human Liver [40,57]

MiR-212 Up Gut leakiness ZO-1 Mice Gut epithelial cells [67,68]

MiR-223 Up Inflammation
Liver injury IL-6 p47phox NFκB Human

Mice
Neutrophils
Kupffer cells [69–71]

MiR-146a Up Anti-inflammatory TLR Human
Mice

Monocyte
Kupffer cells [72]

MiR-132 Up Inflammation
Fibrosis

αSMA
Collagen fibers

Caspase 3
extracellular

vesicles

Human
Mice

Kupffer cells
Hepatic stellate cells [73,74]

MiR-181b-5p Up Oxidative stress
Inflammation PIAS1 Rat Hepatocyte [75]

MiR-27a Up Fibrosis monocyte
differentiation

ERK Sprouty 2
Nr1d2
CD206

HumanHuh7.5 cells
Monocytes

Kuppfer cells
Monocytes

Extracellular vesicles
[76–78]

MiR-34a Up

Fibrosis
Cellular senescence
Mallory–Denk cell

formation

Smad3
SIRT1

Human
Mice

Kuppfer cells
Hepatocyte

Hepatic stellate cells
Mallory–Denk cells

[79–83]



Cancers 2023, 15, 5557 5 of 42

Table 1. Cont.

MiRs Expression Function Target Model Cell Types Refs.

MiR-21 Up

Regulate hepatic cell
survival,

transformation, and
remodel liver
regeneration

VHL
Fas ligand (TNF

superfamily,
member 6) (FASLG)

and death
receptor 5 (DR5)

Rat
Human

Mice

Hepatic stellate cells
Kuppfer cells
Hepatocyte

[40,84–86]

Let-7f Up
Potential biomarkers

Potential mediators of
intercellular crossovers

n.a Mice Extracellular vesicles [87]

MiR-29a Up
Potential biomarkers

Potential mediators of
intercellular crossovers

n.a Mice Extracellular vesicles [87]

MiR-340 Up
Potential biomarkers

Potential mediators of
intercellular crossovers

n.a Mice Extracellular vesicles [87]

MiR-205 Down Inflammation Importinα5 Mice Kupffer cells [88]

MiR-29b Down Inflammation STAT3 Mice
RAW264.7 Kupffer cells [89]

MiR-217 Up Inflammation
Steatosis Sirtuin-1

Mice
RAW 264.7

Kupffer cells

Hepatocyte
Macrophage
Kupffer cells

[44,45]

Cirrhosis

MiR-150 Up
Down

Antifibrotic
Tumor suppressor

αSMA
Col1A1 Human Hepatic stellate cells [40,90]

MiR-148a-3p Down Fibrosis ERBB3 Rat Hepatic stellate cells [91]

Let-7 Down Fibrosis
Inflammatory

Lin28
TLR7

Mice
Human Hepatic stellate cells [92,93]

MiR-19b Down HSCs activation
Pri-miR-17-92

TGFβRII
MeCP2

Rat
LX2

HepG2
Hepatic stellate cells [94]

MiR-652 Down n.a n.a Human n.a [95,96]
MiR-16 Down n.a n.a Human Exosome [97]

MiR-451 Down Tumor suppressor n.a Human Liver [40]
MiR-17 Down Tumor suppressor n.a Human Liver [40]

MiR-1825 Down Tumor suppressor n.a Human Liver [40]
MiR-940 Down Tumor suppressor n.a Human Liver [40]
MiR-455 Down Tumor suppressor n.a Human Liver [40]

MiR-19b-1 Down Tumor suppressor n.a Human Liver [40]
MiR-1228 Down OncomiR n.a Human Liver [40]
MiR-215 Down OncomiR n.a Human Liver [40]
MiR-19a Down OncomiR n.a Human Liver [40]

MiR-17-92 Up Fibrogenesis n.a n.a Hepatic stellate cells [94]
MiR-486-5p Up n.a n.a Human n.a [95,96]
MiR-92a-3p Up n.a n.a Human n.a [95,96]

MiR-571 Up n.a CREBBP Human Hepatic stellate cells [95,96,98]
MiR-513-3p Up n.a n.a Human n.a [95,96]
MiR-1273f Up OncomiR n.a Human Liver [40]
MiR-3679 Up OncomiR n.a Human Liver [40]
MiR-382 Up OncomiR n.a Human Liver [40]

MiR-125b-1 Up Tumor suppressor n.a Human Liver [40]
MiR-1225 Up Tumor suppressor n.a Human Liver [40]
MiR-1207 Up Tumor suppressor n.a Human Liver [40]

MiR-135a-1 Up Tumor suppressor n.a Human Liver [40]
MiR-125a Up Tumor suppressor n.a Human Liver [40]

MiR-22 Down

Steatosis
Tumor suppressor

Deregulated pathways
in HCC

FGFR1
FGF21

IL6/JAK/STAT
Human Mice Hepatocyte [39–41]
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Table 1. Cont.

MiRs Expression Function Target Model Cell Types Refs.

MiR-122 Down Protection against
steatosis fibrosis

HiF1α
TNFrsf13C

Human Mice
RAW 264.7 Huh7

Hepatocyte
Kupffer cells

Extracellular vesicles
[51–54]

MiR-155 Up
Promote liver steatosis

Liver injury
Inflammation fibrosis

Snail1 Smad2
STAT3 PPARα TLR

inhibitor PPARγ
TNFα

Human Mice
Raw 264.7 Hepa 1-6

Kupffer cells
Hepatocyte

Hepatic stellate cells
[46–50]

MiR-1224 Up Inflammatory
Tumor suppressor n.a Mice

Human n.a [40,57]

MiR-132 Up Inflammation
Fibrosis

αSMA
Collagen fibers

Caspase 3
extracellular

vesicles

Human
Mice

Kupffer cells
Hepatic stellate cells [73,74]

MiR-34a Up

Fibrosis
Cellular senescence
Mallory–Denk cell

formation

Smad3
SIRT1

Human
Mice

Kuppfer cells
Hepatocyte

Hepatic stellate cells
Mallory–Denk cells

[79–83]

MiR-21 Up

Regulate hepatic cell
survival,

transformation, and
remodel liver
regeneration

VHL
Fas ligand (TNF

superfamily,
member 6) (FASLG)

and death
receptor 5 (DR5)

Rat
Human

Mice

Hepatic stellate cells
Kuppfer cells
Hepatocyte

[40,84–86]

Alcoholic Hepatitis
MiR-422a Down n.a n.a Human n.a [40]

MiR-30b-5p Up Associated mortality n.a Human Extracellular vesicles [99]
MiR-20a-5p Up Associated mortality n.a Human Extracellular vesicles [99]
MiR-26b-5p Up Associated mortality n.a Human Extracellular vesicles [99]

MiR-148a Down
Anti-inflammatory

Deregulated pathways
in HCC

TXNIP
Epigenetics

TGFβ
PI3K/AKT

Human
Mice Hepatocyte [41,100]

MiR-30e Down Inflammation
UCP2
ATP

H2O2

Mice n.a [101]

MiR-483-3p Down Mallory–Denk cell
formation BRCA1 Human Mallory–Denk cells [82]

MiR-146a-5p Up Associated mortality n.a Human Extracellular vesicles [99]
MiR-30a Up Autophagy Beclin-1 Human Exosome [53,102]

MiR-291b Up Inflammation Tollip Human
Rat Kupffer cells [103]

MiR-150-5p Up Cell death CISH Human Liver [104]

MiR-217 Up Inflammation
Steatosis Sirtuin-1

Mice
RAW 264.7

Kupffer cells

Hepatocyte
Macrophage
Kupffer cells

[44,45]

MiR-122 Up Protection against
steatosis fibrosis

HiF1α
TNFrsf13C

Human Mice
RAW 264.7 Huh7

Hepatocyte
Kupffer cells

Extracellular vesicles
[51–54]

MiR-192 Up Exosome induction Rab27a Rab35 STX7
STX16 Human Hepatocyte

Extracellular vesicles [53,55]

MiR-214 Up Liver fibrogenesis
Induce oxidative stress

Gluthatione
reductase

Human Mice
Rat

Bel7402 BRL
Hepatocyte [40,57,58]

MiR-182 Up Inflammation
Apoptosis

Mcp-1 Ccl20 Cxcl5
Cxcl1 Bcl2

Mice
Human Liver [40,57]

MiR-155 Up
Promote liver steatosis

Liver injury
Inflammation fibrosis

Snail1 Smad2
STAT3 PPARα TLR

inhibitor PPARγ
TNFα

Human Mice
Raw 264.7 Hepa 1-6

Kupffer cells
Hepatocyte

Hepatic stellate cells
[46–50]
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Table 1. Cont.

MiRs Expression Function Target Model Cell Types Refs.

MiR-34a Up

Fibrosis
Cellular senescence
Mallory–Denk cells

formation

Smad3
SIRT1

Human
Mice

Kuppfer cells
Hepatocyte

Hepatic stellate cells
Mallory–Denk cells

[79–83]

MiR-21 Up

Regulates hepatic cell
survival,

transformation, and
remodeling Liver

regeneration

VHL
Fas ligand (TNF

superfamily,
member 6) (FASLG)

and death
receptor 5 (DR5)

Rat
Human

Mice

Hepatic stellate cells
Kuppfer cells
Hepatocyte

[40,84–86]

Let-7 Up Fibrosis
Inflammatory

Lin28
TLR7

Mice
Human Hepatic stellate cells [92,93]

Hepatocellular carcinoma

MiR-100 Down Deregulated pathways
in HCC IGF signaling Human Liver [41]

MiR-101 Down Deregulated pathways
in HCC

Epigenetics
TGFβ

PI3K/AKT
TP53/Cell cycle

Human Liver [41]

MiR-10a Down Deregulated pathways
in HCC

MAPK
Wnt/βCat Human Liver [41]

MiR-125b Down Deregulated pathways
in HCC

TP53/Cell cycle
IL6/JAK/STAT
IGF signaling

Human Liver [41]

MiR-15a Down Deregulated pathways
in HCC TGFβ Human Liver [41]

MiR-199a Down Deregulated pathways
in HCC TGFβ Human Liver [41]

MiR-422b Down Deregulated pathways
in HCC Human Liver [41]

MiR-99a Down Deregulated pathways
in HCC IGF signaling Human Liver [41]

MiR-139-5p Down Deregulated pathways
in HCC Human Liver [41]

MiR-106a Up Deregulated pathways
in HCC Epigenetics Human Liver [41]

MiR-106b Up Deregulated pathways
in HCC

Epigenetics
TGFβ Human Liver [41]

MiR-15b Up Deregulated pathways
in HCC TP53/Cell cycle Human Liver [41]

MiR-191 Up Deregulated pathways
in HCC

Wnt/βCat
NFκB

TP53/Cell cycle
Human Liver [41]

MiR-210 Up Deregulated pathways
in HCC n.a Human Liver [41]

MiR-221 Up Deregulated pathways
in HCC

PI3K/AKT
TP53/Cell cycle Human Liver [41]

MiR-222 Up Deregulated pathways
in HCC

Wnt/βCat
PI3K/AKT Human Liver [41]

MiR-224 Up Deregulated pathways
in HCC

PI3K/AKT
TP53/Cell cycle
IL6/JAK/STAT

Human Liver [41]

MiR-25 Up Deregulated pathways
in HCC Wnt/βCat Human Liver [41]

MiR-331 Up Deregulated pathways
in HCC n.a Human Liver [41]

MiR-532-3p Up
Promotes HCC cells
migration, invasion,

and proliferation

Protein tyrosine
phosphatase

receptor type T
(PTPRT)

HCC specimens
Hep3B HepG2

SMMC-7721 Huh7
MHCC-97 H

Hepatocyte [105]
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Table 1. Cont.

MiRs Expression Function Target Model Cell Types Refs.

MiR-532-5p Down
Promotes cell

proliferation and
metastasis

Chemokine (C-X-C
motif) ligand 2
(CXCL2), X-ray

Repair Cross
Complementing 5

(XRCC5)

HEL7702 HEL7404
HCCLM3

SMMC7721 HepG2
PG5 MHCC97H

Huh7

Hepatocyte [106,107]

MiR-22-3p Up Promotes HCC cells’
stemness and metastasis

Ten-eleven-
translocation 2

(TET2)

HCC specimens
Xenograft on

BALB/C nude mice
HCCLM3

Cancer stem cells [108]

MiR-126 Down
Suppresses cell

proliferation, invasion
and migration

Epithelial Growth
Factor Receptor

(EGFR)

HCC specimens
Hep3B MHCC97H

Huh7 HCCLM3

Hepatocyte
Cancer stem cells [109]

MiR-26a Down n.a n.a HCC specimens n.a [110]

MiR-22 Down

Steatosis
Tumor suppressor

Deregulated pathways
in HCC

FGFR1
FGF21

IL6/JAK/STAT
Human Mice Hepatocyte [39–41]

MiR-122 Down Protection against
steatosis fibrosis

HiF1α
TNFrsf13C

Human Mice
RAW 264.7 Huh7

Hepatocyte
Kupffer cells

Extracellular vesicles
[51–54]

MiR-21 Up

Regulate hepatic cell
survival,

transformation, and
remodel liver
regeneration

VHL
Fas ligand (TNF

superfamily,
member 6) (FASLG)
and death receptor

5 (DR5)

Rat
Human

Mice

Hepatic stellate cells
Kuppfer cells
Hepatocyte

[40,84–86]

MiR-148a Down
Anti-inflammatory

Deregulated pathways
in HCC

TXNIP
Epigenetics

TGFβ
PI3K/AKT

Human
Mice Hepatocyte [41,100]

3. MicroRNAs in Alcohol-Induced Steatosis

ALD starts with the accumulation of lipids (i.e., triglycerides) in hepatocytes (steatosis).
This effect is associated with the metabolism of alcohol in hepatocytes and the impact of
ethanol on adipocytes [39]. The metabolic pathways governing alcohol-induced steatosis
(e.g., AMPK, PPARα, SREBP-1) are finely tuned by miRNAs, which directly and indirectly
control the expression of key enzymes of lipid metabolism. While some miRNAs contribute
to hepatic steatosis, others are deregulated as a compensatory mechanism to overcome
the excess of lipid storage. Targeting pro-lipogenic miRNAs or, in contrast, restoring
the expression of “protective/gate keeper” miRNAs are therefore of high interest for
therapeutic purposes (Figure 2 and Table 1). The main metabolic processes involved in
alcohol-induced steatosis under miRNA dependency are discussed below.

3.1. Ethanol Metabolism

The liver metabolizes 90–95% of blood ethanol by the concerted action of several metab-
olizing enzymes. First, alcohol is metabolized into acetaldehyde by three pathways involv-
ing the cytosolic alcohol dehydrogenase (ADH), peroxisomal catalase, or microsomal cy-
tochrome P450 2E1 (CYP2E1). Acetaldehyde is then detoxified into acetate by the mitochon-
drial aldehyde dehydrogenase 2 (ALDH2) in an NAD+/NADH-dependent manner [111].
In the case of chronic and excessive alcohol consumption, the ethanol-inducible CYP2E1
pathway feeds the oxidative phosphorylation, thereby enhancing oxidative stress in hep-
atocytes [112]. Acetaldehyde exerts pleiotropic effects to promote fat accumulation in
hepatocytes (Figure 2). First, acetaldehyde reduces peroxisome proliferator-activated re-
ceptor α (PPARα) activity, thereby decreasing β-oxidation. Second, acetaldehyde reduces
AMP-activated protein kinase (AMPK) activity, and thus increases the activity of acetyl-coA
carboxylase (ACC) [113]. Finally, acetaldehyde increases the expression of the transcription
factor sterol regulatory element binding protein 1 (SREBP-1), which controls the expression
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of several lipogenic enzymes (e.g., fatty acid synthase, FASN). Several miRNAs have been
involved in the regulation of ADH, CYP2E1, or ALDH and thus are important regulators
of alcohol-induced hepatic steatosis. For instance, miR-214-3p and miR-552 directly regu-
late CYP2E1 expression, as evidenced in hepatic cancer cells (HepG2) [114]. Interestingly,
miR-552 inhibits the transcription of CYPE21, through its capacity to bind to the promoter
region and prevents the binding of SMARCE1 (SWI/SNF-Related, Matrix-Associated,
Actin-Dependent Regulator Of Chromatin, Subfamily E, Member 1) and RNA polymerase
II [115]. This later illustrates well the importance of “non-canonical” mechanisms of
miRNA-dependent gene expression regulation.
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3.2. FGF21 and AMPKα Signaling

An increase in miR-22 expression has been observed in fatty livers from mice fed a
Lieber–DeCarli (LDC) diet and from patients with a history of alcohol consumption [39].
MiR-22 directly inhibits FGF21 expression, inhibiting PPARα and PGC1α binding in its
regulatory region, as well as its FGFR1 receptor in hepatocytes, thereby reducing AMPKα

activity and increasing hepatic lipogenesis [39]. The activity of AMPK is also indirectly
reduced by alcohol-induced miR-378b in human hepatocytes and in ethanol-fed mice [42].
Indeed, miR-378b directly targets the Ca2+/calmodulin-dependent protein kinase kinase 2
(CaMKK2), a positive regulator of AMPK [42].
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3.3. PPARα/γ Signaling

Peroxisome proliferator-activated receptors (PPARs) play an important role in hep-
atic steatosis. While PPARα promotes β-oxidation and inhibits triglyceride biosynthesis,
PPARγ activity is, in contrast, upregulated following ethanol exposure, thus activating
SREBP-1c and its downstream target genes involved in lipogenesis (e.g., FASN, DGAT1,
DGAT2) [116]. PPARα is downregulated by acetaldehyde during alcohol consumption [113].
MiR-155, which is induced in the liver of alcohol-fed mice, importantly contributes to hep-
atic steatosis by directly inhibiting PPARα expression [47]. Interestingly, some miRNAs
may control PPARα indirectly, as suggested for miR-203, which is downregulated in the
liver of mice fed a Gao-Binge alcoholic diet (an alcohol-enriched diet coupled with a single
binge ethanol administration). MiR-203 directly upregulates LPIN1 (Lipin-1), a transcrip-
tional co-activator of PPARα [37]. Paradoxically, miR-483-5p, a direct regulator of PPARα
is downregulated in alcohol-fed mice (Lieber–DeCarli diet), thus suggesting a protective
mechanism aiming at lowering intracellular lipid content [38]. Finally, although PPARγ
expression is highly regulated by miRNAs in the liver [117], there is currently no evidence
of this link in the context of ALD.

3.4. SREBP Signaling

SREBP is a major transcription factor transactivating lipogenesis-related genes
(e.g., FASN, ACACA) [118], and its regulation by microRNAs has been extensively docu-
mented in the context of NAFLD [119,120]. As described above, the downregulation of
miR-203 expression in the liver of mice fed an alcoholic diet [37], is directly responsible
for the upregulation of Lipin-1 [37], which can promote β-oxidation and inhibit SREBP-1
signaling. In addition, Lipin-1 acts as a Mg2+-dependent phosphatidate phosphatase
(PAP) enzyme involved in phospholipid and triacylglycerol (TAG) biosynthesis depending
on its localization [121,122]. Alcohol-induced miR-217 and mir-200c overexpression also
contribute to the activation of SREBP by downregulating the expression of SIRT1 and
HNF1B in hepatocytes [43,44,123,124]. Finally, other factors involved in the maturation
of SREBP-1 [125], such as early growth response-1 (EGR1), which is activated by alcohol
consumption, are regulated by miRNAs [126–128]. However, this regulation remains poorly
known in the context of ALD [129].

3.5. Lipolysis in the Adipose Tissue

Ethanol induces hepatic steatosis indirectly by promoting lipolysis in the adipose
tissue, thereby releasing free fatty acids (FFAs), which are imported by the liver by specific
transporters (e.g., CD36) [130]. The regulation of CD36 by miRNAs in the context of
ALD is currently unknown but several miRNAs have been uncovered in other hepatic
diseases (Non-Alcoholic Fatty Liver Disease), such as miR-29a [131], miR-20a-5p [132],
or miR-26a [133]. Furthermore, alcohol-induced hepatic steatosis has been associated
with the release of FGF21 (Fibroblast Growth Factor 21) in the plasma. FGF21 triggers a
systemic elevation of catecholamine by the sympathetic nervous system, which binds to
the β-adrenergic receptor on adipocytes, raising intracellular cAMP and activating lipolytic
enzymes [134].

3.6. Alcohol-Related Steatosis as a Priming Event for Hepatocarcinogenesis?

Several deregulated miRNAs in alcohol-induced hepatic steatosis have previously
been associated with HCC development, thus suggesting that these early alterations pave
the way for hepatic carcinogenesis. Indeed, downregulation of the miR-200 family promotes
cancer progression and development [135]. The downregulation of miR-483-5p activates
NOTCH3 signaling [38], a pro-tumorigenic pathway involved in HCC and associated with
a poor prognosis [136]. Other miRNAs such as miR-203 or miR-22 are downregulated
with steatosis and exert tumor-suppressive functions. Indeed, miR-203 inhibits hepatic
cancer cells proliferation and metastasis [137], and miR-22 directly inhibits cyclin A2
expression [138].
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4. MicroRNAs in Alcoholic Steatohepatitis (ASH)

The chronic accumulation of lipids, together with other damages (e.g., oxidative
stress, mitochondrial dysfunction, altered liver–gut axis) promotes a chronic and low-
grade inflammation mediated by the innate immune system [139,140], which is commonly
referred as Alcoholic Steatohepatitis (ASH). This step is also promoted by the high num-
ber of free radicals generated by the metabolism of ethanol, which triggers oxidative
stress with lipid peroxidation, and important cellular damages [141]. Lipid peroxidation
derivates, such as malondialehyde (MDA) and 4-hydroxy-2-nonenal (HNE), stimulate
collagen production by HSCs. In HSCs, acetaldehyde modifies collagen carboxyl-terminal
pro-peptide, thus affecting its capacity to exert a negative feedback control on collagen
synthesis [142]. Acetaldehyde and MDA form hybrid adducts with proteins, known as
malondialdehyde-acetaldehyde (MAA) adducts [143], which are recognized by Kupffer,
endothelial, and stellate cells via scavenger receptors (e.g., CD36) and promote the pro-
duction of pro-inflammatory cytokines (e.g., Il-1β, TNFα) and chemokines (e.g., MCP-1,
MIP-2) [144]. MiRNAs play an important role in ASH by controlling several inflammatory
pathways/processes. While some deregulated miRNAs favor ASH, others display anti-
inflammatory properties. The development of ASH is therefore dependent on a disbalance
between the detrimental and beneficial miRNAs. The most important pathways/processes
underlying ASH and regulated by miRNAs are discussed below.

4.1. Altered Gut–Liver Axis Toll-like Receptor Signaling

By shifting the gut microbial composition towards pathogenic species (e.g., Bacteroides
spp. Stomatococcus) [145], alcohol makes the intestinal epithelium more permeable to
endotoxins and lipopolysaccharides (LPSs), which quickly reach the liver through the portal
vein [146]. LPSs trigger inflammatory pathways (e.g., MyD88, NFκB signaling), through
the activation of Toll-like receptors (TLRs) (eg., TLR4) expressed at the surface of Kupffer
cells but also HSCs [147], and thus induce the expression of pro-inflammatory cytokines
(e.g., TNFα, MCP-1) [148,149] and fibrogenic factors (e.g., TGFβ1) [150,151] (Figure 3).
MiRNAs regulate the gut–liver axis, as evidenced for miR-212 in intestinal epithelial
cells of alcohol-fed mice. Indeed, alcohol, through the action of acetaldehyde, increases
inducible nitric oxide synthase (iNOS) signaling, leading to the overexpression of miR-212
in intestinal epithelial cells. MiR-212 inhibits the translation of Zonula occludens-1 (ZO-1),
a major component of tight junctions involved in intestinal barrier permeability [67,68].
Alcohol- and gut-derived LPSs also trigger the overexpression of miR-217 in Kupffer cells
and Raw 264.7 cells (mouse macrophages), which in turn directly inhibits the expression
of sirtuin-1 (SIRT1). This effect promotes NFκB and nuclear factor of activated T-cells c4
(NFATc4) activities, and thus the expression of pro-inflammatory cytokines (i.e., TNFα
and Il-6) [45]. MiR-155, which is upregulated with chronic alcohol consumption, inhibits
negative regulators of TLR4 signaling (e.g., IRAK-M, SHIP1 and SOCS1), and thus promotes
the Myd88/NFκB pathway and the increased level of TNFα [152]. MiR-181b-3p, which
targets importin α5, is downregulated by alcohol and this effect promotes the expression
of pro-inflammatory cytokines in Kupffer cells from ethanol-fed rats [61,62]. Finally, other
miRNAs exerting anti-inflammatory properties have been reported in ASH, such as miR-
146a, which decreases TLR signaling [72]. This miRNA is upregulated in ASH and thus may
represent part of a defense/compensatory mechanism aiming at lowering overactivated
pro-inflammatory signaling [153]. Potentiating the effect of anti-inflammatory miRNAs
or, in contrast, inhibiting “inflammamiRs”, represent potential therapeutic approaches
to consider.
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Figure 3. Effect of alcohol consumption on steatohepatitis. Ethanol acts on different cell types
(i.e., hepatocytes, Kupffer cells, neutrophils, hepatic stellate cells) in the liver, on intestinal permeabil-
ity, and on different microRNAs. Black arrows: activation of the pathways. Blue arrows: pathway
inhibition. NFκB: nuclear factor kappa B; iNOS: nitric oxidative synthase; ZO-1: Zonula occludens 1;
LPS: lipopolysaccharide; CYP2E1: cytochrome P450 2E1; GRHL2: granyhead-like transcription
factor 2; Hif1α: hypoxia-inductible factor 1-alpha; SREBP-1: sterol regulatory element binding pro-
tein 1; AMPK: AMP-activated protein kinase; PPARα: peroxisome proliferator-activated receptor
α; ALR: Augmenter of Liver Regeneration; ROS: reactive oxygen species; MDA: malondialehyde;
HNE: 4-hydroxy-2-nonenal; MAA: malondialdehyde-acetaldehyde; TLR4: Toll-like receptor 4; MCP1:
monocyte chemotactic protein 1; IL-1: Interleukin-1; IL-6: Interleukin-6; TGFβ: transforming factor
β; TNFR: tumor necrosis factor receptor; MyD88: myeloid differentiation response gene 88; MAPK:
mitogen-activated protein kinase; PPARγ: peroxisome proliferator-activated receptor γ; NFATc4:
nuclear factor of activated T-cells c4; TNFα: tumor necrosis factor α. Created with Biorender.com.

4.2. PPARα/γ Signaling

The PPARα signaling importantly contributes to hepatic inflammation by inhibiting
the NFκB pathway and the expression of associated pro-inflammatory cytokines [154]. In
contrast, PPARγ promotes hepatic steatosis and reduces inflammation [155,156]. Therefore,
miRNAs targeting PPARα or PPARγ are likely contributing to the development of ASH. In
the liver of mice fed an LDC diet as well as in mouse primary hepatocytes, a decrease in ALR
(Augmenter of Liver Regeneration) protein was observed and promoted hepatic steatosis
and oxidative stress. This effect is mediated by the induction of miR-540 expression, which
directly inhibits Acox1 and Pparα expression. Although miR-540 is poorly conserved and not
expressed in humans, miR-6801 has been identified as its functional equivalent. However,
functional studies are still required to characterize the role of this miRNA in ASH [66]. MiR-
122, which represents the most abundant miRNA in the liver (70% of the hepatic miRnome
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in adult mouse and 52% in human), also plays an important role in ASH development, as
evidenced in miR-122 KO mice, which sequentially develop hepatic steatosis, inflammation,
and hepatocellular carcinoma (HCC) [157]. Alcohol consumption induces an increase in the
transcription factor granyhead-like transcription factor 2 (GRHL2) in murine hepatocytes,
which inhibits the transcription of miR-122. In turn, miR-122 directly inhibits the expression
of Hif1α, a factor that induces liver damage and increases the expression of PPARγ, a major
component of lipogenesis [52]. Alcohol also decreases miR-192 expression in human
hepatocytes [55]. This inhibition increases the expression of several targets of miR-192,
including Rab27a, Rab35, syntaxin7 (STX7), and syntaxin16 (STX16), which are involved
in extracellular vesicles [55]. MiR-155 is also an important miRNA involved in ASH, as
evidenced by miR-155 KO mice, which are protected from alcohol-induced fat accumulation
and inflammation. This effect has been associated with an increase in PPARα and a decrease
in MCP-1 [48]. Together with miR-132, an increase in miR-155 expression was observed
in LDC-fed mice (Figure 3) [73]. MiR-155 directly decreases PPARα in hepatocytes, thus
promoting hepatic steatosis [48,49] (Figure 3). In Kupffer cells, miR-155, which is activated
by the NFκB pathway, induces TNFα production [46,158] and also inhibits the expression
of PPARγ [47], an inhibitor of the NFκB pathway [159].

4.3. NFκB Signaling

NFκB signaling is a major pathway promoting the expression of pro-inflammatory
cytokines (e.g., TNFα, IL-1β) and mediators (e.g., COX-2). In the liver, NFκB is activated
by different stimuli, such as LPSs, through the TLR/MyD88 pathway, or pro-inflammatory
cytokines, such as TNFα or IL1-β [160]. The post-transcriptional regulation of NFκB
signaling has been extensively documented in several disorders, including chronic liver
diseases and HCC [161]. However, very few studies have depicted this regulation in
the context of alcohol. Some miRs have been shown to inhibit NFκB signaling, such as
miR-27b [56] and miR-223 [69], which are respectively down- and upregulated in the liver
of LDC-fed mice [57]. MiR-205, which is downregulated in ALD, represses the NFκB
pathway in ethanol-fed mouse Kupffer cells [88]. MiR-205 inhibits directly importinα5, a
protein involved in nuclear transfer of the NFκB signaling pathway [162]. In macrophages
(RAW 264.7 and Kupffer cells from alcohol-fed mice), the NFκB pathway activated by
chronic alcohol exposure and LPS stimulation induces the expression of miR-155, which
in turn increases TNFα production by increasing the stability of its mRNA [46]. MiR-217,
which is upregulated in Kupffer cells from alcohol-fed mice, inhibits sirtuin1, an inhibitor
of the NFκB pathway [45]. Finally, ethanol and LPS will also induce circ_1639 expression, a
circular RNA activating the NFκB pathway and TNF Receptor Superfamily Member 13C
(TNFrsf13C) gene expression by inhibiting miR-122 expression in macrophages (RAW 264.7
and Kupffer cells from alcohol-fed mice) [51].

4.4. Il-6/STAT3 Signaling

The IL-6/STAT3 pathway is a major component of chronic liver diseases and HCC
development by controlling the innate immune response [163] but also the expression of
mitogenic/survival factors in hepatocytes (e.g., MYC), thereby promoting hepatic carcino-
genesis [164]. In the context of alcohol, the activation of the Il-6/STAT3 pathway in mono-
cytes and other myeloid lineage cells, importantly promotes hepatic inflammation [165].
This pathway is tightly regulated by miRNAs [166] and conversely, IL-6 transactivates the
expression of various miRNAs involved in liver diseases and HCC (e.g., miR-21) [84]. For
instance, miR-223, which is upregulated in the serum and neutrophils of alcohol-fed mice,
directly inhibits IL-6 and p47phox expression, thereby attenuating ROS production and
liver damage [70,71]. The STAT3 pathway is also regulated by miRNAs. MiR-29b, which
is downregulated in macrophages (RAW264.7 and Kupffer cells from ethanol-fed mice),
directly inhibits STAT3 [89].
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4.5. Oxidative Stress

Oxidative stress importantly promotes hepatic inflammation during alcohol consump-
tion [167]. MiR-214, which is upregulated in the liver of ethanol-treated rats and in a human
hepatoma cell treated with ethanol, promotes oxidative stress by directly inhibiting the
expression of glutathione reductase (GSR) and cytochrome P450 oxido-reductase (POR) [58].
Likewise, miR-34a is upregulated during ASH [79] and directly decreases the expression
of SIRT1 [80,81], which plays a key role in protecting cells from oxidative stress [168].
In rats fed an LDC diet, miR-181b-5p expression is increased and directly targets PIAS1
(protein inhibitor of activated STAT1), a negative regulator of PRMT1 (protein arginine
methyltransferase 1), which promotes oxidative stress and inflammatory response [75].
Finally, miR-219a-5p, which reduces ROS production by targeting the p66shc pathway, is
downregulated in rats fed an LDC diet and in AML12 treated with ethanol [63].

4.6. Other Pathways

Other miRs, which are impacted by alcohol consumption, contribute to the develop-
ment of steatohepatitis, through poorly characterized mechanisms. Some anti-inflammatory
miRNAs are downregulated in the presence of alcohol, such as miR-199 [63], which di-
rectly reduces ethanol-induced expression of hypoxia-inducible factor 1-alpha (HiF-1α),
thereby decreasing monocyte chemoattractant protein-1 (MCP-1) release from Kupffer cells [64].
MiR-27a, which is upregulated by alcohol in monocytes from healthy subjects, promotes
IL-10 secretion by directly targeting the ERK inhibitor Sprouty2 [76].

A decrease in miR-129-5p expression was observed in the serum of ASH patients and
in alcohol-treated AML12 and ASH mice. This miR may suppress liver fibrosis by directly
regulating the non-coding RNA long nuclear paraspeckle assembly transcript 1 (NEAT1)
and suppressor of cytokine signaling 2 (SOCS2) [65]. This study underlines the importance
of the interplay between miRNAs and lncRNAs in the development of ALD.

TGFβ-induced downregulation of miR-200a [57] has been associated with the severity
of the disease by regulating the hedgehog pathway [60,169]. Indeed, miR-200a directly
inhibits GLI family zinc finger 2 (Gli2), thus inhibiting the hedgehog pathway [59].

In the liver of mice fed an LDC diet, miR-27b, miR-214, miR-199a-3p, miR-182,
miR-183, miR-200a, and miR-322 are downregulated, while miR-320, miR-486, miR-705,
and miR-1224 are upregulated. However, the role of these miRNAs in ASH is still un-
known [57], due to the lack of functional analyses. Finally, other miRNAs, detected in
circulating extracellular vesicles of ASH mice, such as let-7f, miR-29a, and miR-340, have not
been characterized yet, but may represent potent mediators of intercellular communication
in the liver [87] and/or potential biomarkers of ASH.

4.7. ASH as a Priming Event of Hepatocarcinogenesis

ASH-related miRNAs are potentially paving the way for hepatic carcinogenesis by
controlling key oncogenic processes. Some miRNAs, which are downregulated in ASH
are well-known tumor suppressors, such as miR-122 [157], miR-200a [170], or miR-322, an
inhibitor of galectin-3 [171]. In contrast, some miRNAs induced in ASH display potent
oncogenic functions, such as miR-21, a well-established oncomiR [84], or other miRs
involved in hepatic cancer cells proliferation (e.g., miR-155, miR-219a-5p, or let-7f) or
invasion (e.g., miR-182) [172]. Together, these findings indicate that altered miRNAs
in ASH may also prime the liver for carcinogenesis. Interestingly, this priming term is
mostly used in the context of Non-Alcoholic Steatohepatitis (NASH), which is a major
risk factor for HCC [173]. Targeting these priming alterations may represent an important
chemopreventive approach to inhibit the progression of the disease toward HCC. However,
such an approach might be limited by the early detection of ASH in patients, which is not
associated with severe clinical signs.
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5. MicroRNAs in Alcohol-Associated Cirrhosis

Continued alcohol consumption leads to the progression from steatohepatitis to alco-
holic cirrhosis, which is characterized by hepatocyte damages and necrosis, replacement of
liver parenchyma by fibrotic tissue, the appearance of regenerative nodules, portal hyper-
tension, and a severe loss of hepatic functions [174]. Fibrogenesis is the main condition for
the development of liver cirrhosis and thus activation of HSCs represent a key process in
the development of cirrhosis [175]. HSCs are activated by cytokines released by several
hepatic cell types (i.e., hepatocytes, Kupffer cells, endothelial cells) and are responsible for
the activation of various signaling pathways (e.g., TGF-β1, PDGFα, LPS/TLR4, IL-6) [176].
TGF-β1 triggers HSCs trans-differentiation into myofibroblasts, which secrete important
extracellular matrix components (e.g., COL1A1, αSMA, fibronectin) [177,178]. In parallel,
IL-1β and TNF-α activate the NFκB pathway in HSCs, thereby ensuring their proliferation
and survival [179]. The LPSs coming from the intestinal microbiota activates the TLR4
pathway [180], which in turn triggers HSC activation (e.g., upregulation of TGF-β1) but also
the activation of Kupffer cells [150,181]. Activation of TLRs by LPSs activates the NADPH
oxidase 1 (NOX1) complex, inducing the activation and proliferation of HSCs [182,183].
The role of miRNAs in the control of the different processes/pathways associated with
hepatic fibrosis/cirrhosis is discussed below.

5.1. HSCs Activation

MiR-34a is upregulated in the liver of heavy drinker, as well as in the liver of LDC-fed
mice [79]. MiR-34a promotes the proliferation, migration, and invasion of HSC and finally
fibrosis by enhancing TGF-β1 [184] in ethanol-fed mice; it also inhibits HSC senescence,
thereby fostering hepatic fibrosis [79]. Similar findings have been obtained in vitro on cul-
tured hepatocytes treated with LPSs [79]. However, the direct mRNA targets of this miRNA
were not clearly identified in this study. MiR-155 is another “fibromiR”, as evidenced by
miR-155 KO mice, which are protected from alcohol-induced steatosis, inflammation, and
fibrosis [48]. This effect is due to the ability of this miRNA to directly inhibit PPARγ, an
anti-fibrotic protein, but also several other genes involved in fibrogenesis such as SMAD2/5,
SNAIL1, or STAT3 [48]. In agreement, an increase in miR-155 expression has been docu-
mented in cirrhotic livers of alcoholic patients [48]. MiR-132, which is highly expressed
in cirrhotic patients, is also an important promoter of hepatic fibrosis, as evidenced by
an anti-miR-132 approach in a mouse model of fibrosis (CCL4-treated mice). Herein, the
inhibition of miR-132 is associated with a decrease in pro-inflammatory and pro-fibrotic
markers (e.g., COL1A1, αSMA, MCP1) and a decrease in caspase-3 activity in mice [74].
In contrast, miR-150 is downregulated in the serum and HSCs of rats and human patients
with advanced ALD and act as an anti-fibrotic miRNA by reducing HSC activation (by
inhibiting αSMA and Col1A1 expression) [90].

In 2017, Satishchandran et al. showed an increase in grainyhead-like transcription
factor 2 (GRHL2), an inhibitor of miR-122 expression, in cirrhotic patients and in the
livers of alcohol-fed mice. Restoring miR-122 expression significantly reduces alcohol
and CCL4-induced liver fibrosis [52]. The expression of miR-148a-3p is also decreased in
rat models of alcoholic fibrosis. This miR directly targets the receptor tyrosine-protein
kinase (ERBB3), and prevents apoptosis of HSCs by inhibiting BAX and the cleavage of
caspase-3 [91]. Alcohol-induced downregulation of let-7 promotes Lin28 upregulation,
which promotes HSCs activation [92]. Furthermore, alcohol exposure decreases miR-19b
expression, an inhibitor of HSCs activation and proliferation [94]. MiR-19b directly targets
TGFβRII and Methyl-CPG binding protein 2 (MeCP2), a critical epigenetic mediator of
HSCs transdifferentiation [94]. Interestingly, the decrease in miR-19b expression is also
coupled with an increase in pri-miR17-92 in HSCs. However, the role of pri-miR17-92
remains to be characterized [94] (Figure 4).

Similarly, other miRs deserve to be further characterized in the context of alcohol-
related liver fibrosis, such as miR-181b [185], which promotes hepatic stellate cell prolifera-
tion, or miR-223 [69,70] and miR-214 [58], which are increased in ASH.
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Figure 4. Expression and effects of different deregulated microRNAs inducing hepatic fibrosis
in alcoholic cirrhosis. Black and red arrows: activation of the pathways. Blue arrows: pathway
inhibition. LPS: lipopolysaccharide; TGFR: transforming factor receptor; TNFR: tumor necrosis
factor receptor; ILR: Interleukin receptor; TLR4: Toll-like receptor 4; ERBB3: receptor tyrosine-protein
kinase; MyD88: myeloid differentiation response gene 88; NFκB: nuclear factor kappa B; ROS: reactive
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α; IL-1: Interleukin-1; TGFβ: transforming factor β; NOX1: NADPH oxidase 1; HSCs: Hepatic stellate
cells. Created with Biorender.com.

5.2. Hepatocyte Proliferation

Cirrhosis is defined by the appearance of regenerative nodules. This effect is me-
diated by the pro-inflammatory environment, and hepatocyte death and growth factors
(HGFs), which trigger various signaling pathways responsible for hepatocyte proliferation
(i.e., MAPK, c-fos, c-jun) [186]. During this step, hepatocytes coalesce into clusters, also
known as nodules, which are surrounded by fibrotic tissue. These nodules can accumu-
late different mutations (e.g., p53, p21, c-myc, c-fos) and thus progress toward dysplastic
nodules, thereby increasing the risk of hepatic carcinogenesis. This step requires an in-
terplay between the different cell types of the liver. Among them, Kupffer cells secrete
IL-6, which triggers the JAK/STAT3 signaling pathway in hepatocytes and promotes the
transcription of cell cycle-related genes (e.g., c-fos, c-jun or c-myc) [187]. In addition, HSCs
secrete hepatocyte growth factor (HGF), which initiates liver regeneration [188]. Finally,
other pathways have been involved in hepatocyte cell proliferation and cirrhosis, including
growth hormone (GH), insulin-like growth factors (IGF1 and IGF2), the PI3K/AKT path-
way, somatostatin (SST), and MAPK signaling [186]. The impact of miRs on regenerative

Biorender.com


Cancers 2023, 15, 5557 17 of 42

nodules in alcoholic cirrhosis remains poorly understood. Some miRNAs are known to
importantly regulate these pathways but outside the scope of alcoholic cirrhosis, such
as miR-29b, which suppresses the STAT3 pathway in ASH [89]; miR-100, which inhibits
the IGF signaling in HCC [189,190]; and miR-101, which downregulates the PI3K/AKT
pathway in HCC [191–194].

5.3. Other miRNAs with Poorly Characterized Functions

Several miRNAs are deregulated during hepatic regeneration and thus may contribute
to the development of cirrhosis. For instance, miR-21 is induced during liver regeneration
in a model of partial hepatectomy [85]. This effect is enhanced in alcohol-fed rats but the
precise role of miR-21 in liver regeneration is still unclear [85].

Other studies have uncovered several miRs deregulated in the serum of patients with
alcohol-related cirrhosis, including the induction of miR-486-5p, miR-92a-3p, miR-571, and
miR-513-3p, and a decrease in miR-652 [95,96], as well as a decrease in miR-16 expression
in exosomes [97]. Further studies are still required to characterize their roles and functions
in alcoholic cirrhosis. Although the access to patient biopsies or sera represents an asset
for the characterization of the disease, the lack of suitable in vivo models strongly limits
our understanding of these miRNAs in cirrhosis. Indeed, the LDC diet with injections of
LPSs [94] or CCL4 [52] allow for the development of steatosis, inflammation, and fibrosis,
but does not allow the development of cirrhosis. In 2011, Yip-Schneider et al. developed
a model of cirrhosis in rats fed with alcohol for 18 months. These animals showed liver
damage and the appearance of regenerative nodules [195].

5.4. MiRNAs Fostering HCC Development

Hepatic cirrhosis represents an important risk factor for hepatocarcinogenesis, due to
the accumulation of mutations in hepatocytes [196]. However, this transition is not only a
matter of genetic damage since several miRNAs are deregulated at this step and play a role
in cancer-related processes. The miR-17-92 cluster, which is upregulated in cirrhosis, is a
well-characterized oncomiR due to its capacity to inhibit the expression of cAMP Respon-
sive Element Binding Protein Like 2 (CREBL2), Proline Rich and Gla Domain 1 (PRRG1),
and Netrin 4 (NTN4) [197,198]. MiR-132 is also overexpressed in cirrhosis and in HCC, and
correlates with a higher tumor grade and stage and a poor clinical outcome [74]. Alteration
of the let-7/Lin28 axis has also been demonstrated during the development of HCC [92].
Let-7 is a tumor suppressor, which inhibits the Wnt/β-catenin signaling pathway, thus pre-
venting the self-renewal of HCC stem cells [199]. Another example is miR-148a-3p, which
is downregulated in cirrhosis, and inhibits ERBB3, a proto-oncogene [200]. Others have a
protective role, such as miR-486-5p, whose expression is increased in patient sera and exerts
tumor suppressive functions [201]. In 2020, Felgendreff et al. highlighted 50 miRs whose
expression changed between tumor-free cirrhosis and hepatocellular-associated cirrhosis in
alcoholic patients [202]. Around forty miRs were identified in the livers of cirrhotic patients
as compared to healthy patients (Figure 5A); among them, some have previously been asso-
ciated with tumor-promoting functions, while others inhibit HCC development (Figure 5B).
In this context, it is likely that the progression toward HCC is determined by an imbalance
between pro- and anti-tumorigenic alterations. Deciphering the mechanisms responsible
for this disequilibrium may offer novel therapeutic perspectives. Of note, most deregulated
miRNAs of this study have not been associated with HCC yet (Figure 5C), and thus may
represent new oncomiRs or miR-suppressors, such as miR-3622a, which is strongly induced
in HCC (Figure 5D). Finally, a comparative analysis of miRNAs deregulated in alcohol-
induced cirrhosis and NASH-induced cirrhosis revealed very few similarities (Figure 5E).
These findings suggest a distinct miRNA-specific signature promoting HCC development
in these two different contexts.
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Figure 5. (A) A transcriptomic dataset (GSE59492 from Gene Expression Omnibus Database)
was used to analyze deregulated miRNAs between control and alcohol-related cirrhotic livers
(B) A literature-based screening was used to classify them in oncomiRs or tumor suppressor miR-
NAs (miRsupressors). (C) Among deregulated miRNAs, some have unknown functions in HCC.
(D) Overexpression of some of these microRNAs, such as miR-3622a, can be observed in HCC tumors
(data retrieved from miRTV database in July 2023). (E) The same transcriptomic dataset (GSE59492)
was used to compare deregulated miRNAs in alcohol-related cirrhosis with NASH related cirrhosis.
Only two miRNAs (miR-4725 and miR-150) are commonly upregulated in both conditions, and one
miRNA is commonly downregulated (miR-3162).
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6. MicroRNAs in Alcoholic Hepatitis (AH)

Alcoholic hepatitis (AH) represents an acute and severe hepatic inflammation [50]
characterized by a wide range of pathological features, including hepatocyte degenera-
tion and ballooning, a ductular reaction, cholestasis, neutrophil infiltration, the secretion
of pro-inflammatory cytokines (e.g., TNF-α, IL-1β, IL-6, and IL-8), alteration of the gut
permeability (translocation of LPS to the liver [203]), and the accumulation of protein ag-
gregates called Mallory–Denk bodies in hepatocytes [129,204]. In 90% of cases, AH occurs
in the context of hepatic cirrhosis but can also occur from earlier stages such as ASH [205].
Patients suffering from AH display several clinical symptoms including jaundice, hepatic
encephalitis, and bleeding from the gastrointestinal tract [36]. Unfortunately, AH is associ-
ated with a high mortality rate (40% within 6 months of onset of clinical syndromes) [206],
due to a severe hepatic insufficiency, a limited number of therapeutic options, and the
resistance to corticoids [20]. To date, only liver transplantation can provide a cure to
patients [207]. Deciphering the molecular bases of AH is therefore of major interest to
develop new and efficient therapeutic options and/or to alleviate the resistance to current
treatments (corticoids).

6.1. Hippo/Yes-Associated Protein (YAP) Pathway Ductular Reaction

AH is characterized by an impaired liver regeneration, which is tightly associated with
an inhibition of the Hippo signaling in hepatocytes [208]. In AH patients, this effect has been
attributed to a decrease in Macrophage stimulating 1 (MST1) expression, which triggers
the trans-differentiation of hepatocytes into cholangiocytes, thereby increasing the ductular
reaction [208]. Although the role of miRNAs in the regulation of the Hippo/YAP pathway
has been highlighted in the context of HCC (e.g., miR-15b, miR-130, miR-21-3p) [209],
this link has not been investigated yet in AH. Interestingly, the ductular reaction further
enhances hepatic inflammation by increasing the expression of miR-182 in biliary cells [40].
Interestingly, the overexpression of miR-182 correlates with the ductular reaction, the
disease severity, and a high mortality [40].

6.2. TLR and NFκB Signaling

Overexpression of Let-7 was also observed in alcohol-fed mice and in patients with
AH. Let-7 is also secreted (e.g., let-7b) and binds to TLR-7, thus activating the MyD88/NFκB
pathway and triggering an important inflammatory response [93]. MiR-182 is also increased
in AH patients and mouse models (e.g., ethanol intake, CCL4, and ethanol + CCL4 model),
and promotes inflammation (Mcp-1, Ccl20, Cxcl5, Cxcl1) and anti-apoptotic (Bcl2) genes [40].
Alcohol exposure leads also to a decrease in miR-148a by decreasing Forkhead box protein
O1 (FoxO1). MiR-148a directly targets and inhibits thioredoxin-interacting protein (TXNIP),
a protein activating the NOD-like receptor family, pyrin domain containing 3 (NLRP3)
inflammasome, and caspase-1-induced pyropoptosis [100]. During AH, miR-30e expression
is also downregulated and this effect correlates with an increase in Uncoupling protein-2
(UCP2), but also inflammation, and a decrease in ATP and H2O2 levels [101]. MiR-21, which
is upregulated in HSCs during AH, importantly promotes the NFκB pathway by directly
targeting the 3′ UTR of Von Hippel–Lindau (VHL) [86]. In 2015, Yin et al. demonstrated
that miR-217 is increased in alcoholic hepatitis [45], in mouse livers, macrophages, and
Kupffer cells exposed to ethanol and LPSs. MiR-217 directly inhibits SIRT-1, an inhibitor of
NFκB and nuclear factor of activated T-cells 4 (NFATc4) activity [45].

6.3. Circulating microRNAs

Secreted miRNAs importantly contribute to intercellular crosstalk [210,211] and the
regulation of several physiological and pathological processes [212,213], including inflam-
mation [153]. Moreover, circulating miRNAs can be detected in body fluids and thus may
represent novel non-invasive biomarkers for a wide range of human diseases [214]. In
the presence of alcohol, primary human monocytes secrete extracellular vesicles (EVs),
which promote anti-inflammatory macrophages M2-polarization. This effect is mediated by
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miR-27a, which is contained within these EVs and targets CD206 [77]. Finally, an increased
number of EVs with a high level of miR-27a and miR-181 was also detected in the plasma
of patients with AH [77]. Both miRs were found to be upregulated in EVs derived from
mouse hepatocytes mimicking alcoholic hepatitis. When transfected into HSCs, mir-27a
and miR-181 repressed nuclear receptor subfamily 1 group D member 2 (Nr1d2), a marker
of quiescent HSCs [78].

Other secreted miRs, such as let-7 by hepatocytes, trigger a major inflammatory re-
sponse by binding to TLR-7 and activating the MyD88/NFκB pathway when alcohol is
consumed [93]. Interestingly, several other miRs, inhibiting hepatic inflammation and
fibrosis are upregulated in the sera and exosomes of AH patients [53], including miR-122
and miR-30a [102]. MiR-291b, which is upregulated in the sera and exosomes of AH pa-
tients, inhibits the expression of Toll-interacting protein (Tollip), a negative regulator of
the MyD88-dependent signaling in rat Kupffer cells [103]. Further studies are required to
determine whether these alterations are causative of AH or simply a consecutive defense
response against severe inflammation. Indeed, potentiating the effect of protective miR-
NAs may represent an efficient strategy to resolve severe inflammation. Moreover, these
circulating miRNAs may also represent efficient biomarkers from liquid biopsies, unless
they are unspecific to AH, as compared to other hepatic/inflammatory diseases.

Finally, several other circulating miRNAs have been found increased in the plasma
of AH patients and correlate with poor prognosis, such as miR-30b-5p, miR-20a-5p,
miR-146a-5p, and miR-26b-5p [99] or miR-155 [50]. Similarly, the analysis of EVs from the
serum of alcohol-fed mice and AH patients, revealed an increase in miR-122, miR-192, and
miR-30a [53]. However, these studies remain strongly descriptive and intense efforts are
still required to understand the functions of these miRNAs.

6.4. Other miRNAs

The expression of miRs will also affect other mechanisms during AH. An increase in
miR-34a and a downregulation of miR-483-3p could explain the various mechanisms of
Mallory–Denk body formation and inhibition of cell regeneration. Because miR-483-3p
inhibits breast cancer 1 (BRCA1) expression, its overexpression may impair cell cycle pro-
gression [82]. Other miRs also act on cell death, such as miR-150-5p, which is overexpressed
in the livers of AH patients and inhibits the E3 ligase cytokine-inductible SH2-containing
protein (CISH), thereby increasing the expression of Fas-associated protein with death
domain (FADD). The increase of FADD activates caspase-3 and enhances apoptosis [104].

In another study, an increase of 111 miRNAs, including miR-182, miR-21, and miR-214,
and a decrease of 66 miRNAs (including miR-422a) has been observed in the liver of
AH patients [40]. Among them, miR-182 expression correlates with the ductular reaction
and a poor clinical outcome in patients [40]. Overexpression of miR-182 (using a mimic
oligonucleotide) in cholangiocytes promotes the upregulation of pro-inflammatory and
cell cycle-related genes (CCL20, CXCL1, Il-8, and Cyclin D1). However, this study remains
descriptive and intense efforts are still required to understand the functions of these
other miRNAs.

Taken together, these findings indicate that miRNAs are strongly involved in AH.
However, due to the lack of in vivo models recapitulating the alterations observed in
patients our knowledge of miRNA function in AH is strictly limited to in vitro models
(cell lines and primary cells). Developing new models of AH represent one of the most
important challenges in the field.

7. MicroRNAs in Alcohol-Related Hepatocellular Carcinoma (HCC)

Intense efforts have been devoted to characterize HCC at the genetic levels [215]. How-
ever, it is now clear that epigenetic defects importantly contribute to the altered expression
of oncogenes, drivers or tumor suppressors, or tumor-promoting processes (e.g., chronic
inflammation) [216]. The role of miRNAs in hepatocarcinogenesis has been well docu-
mented and miRNAs, importantly, control the most common cancerous hallmarks but also
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the pathways associated with hepatocarcinogenesis [217,218]. In agreement, suppression
of miRNA processing machinery genes like Dicer, DGCR8, Drosha, and transactivation
response RNA binding protein (TRBP), reduces miRNA maturation and synthesis and
leads to HCC development [219,220]. However, most studies characterizing miRNAs in
HCC are using models unrelated to alcohol etiology. Mouse models are commonly used
to study HCC but their aversion and higher alcohol metabolism compared to humans
make ethanol-enriched diet models insufficient to develop HCC without genetic engineer-
ing, implantation, or chemical induction [221]. Other models of cirrhotic HCC exist like
transgenic oncopig cancer models undergoing ethanol infusion to develop concomitant
fibrosis [222]. Finally, as discussed before, alcohol-associated cirrhosis involves strikingly
different miRNAs as compared to NASH-associated cirrhosis, thus indicating that the
mechanisms fostering HCC is also different. In this chapter, we are therefore focusing on
miRNAs in the context of ALD-associated HCC.

7.1. miRNAs with Oncogenic/Tumor Suppressive Functions in ALD-Related HCC

Although the importance of miRNAs in HCC development is well-established [217],
our knowledge is limited to models unrelated to chronic alcohol consumption. Whether
these miRNAs are also involved in alcohol-related HCC is not guaranteed. Deciphering
the specific miRNA signature in alcohol-related HCC is therefore of major importance to
identify new biomarkers and/or therapeutic targets.

A bioinformatic analysis by Shen et al. on 48 human HCC tumors, identified the
upregulation of four miRNAs, including miR-10b, miR-21, miR-500a, and miR-532 [223]
and the downregulation of eight miRNAs including miR-424, miR-3607, miR-24-1, miR-139,
miR130a, miR-29c, miR-101-1, and miR-101-2 in the context of alcohol abuse [223]. Although
these miRNAs were previously associated with HCC-related processes [191,224–231], their
role in alcohol-related HCC remains unexplored. MiR-21 is a well-established oncomiR in
HCC [232,233] and its expression is also increased in alcohol-treated hepatic cancer cells
(HepG2) [84]. Upon ethanol treatment, IL-6 induced STAT3 activation, which binds to
miR-21′s promoter and increases its expression. In turn, miR-21 promotes cancer cell sur-
vival. However, the induction of miR-21 in patients with alcohol-associated HCC does not
correlate with patient prognosis, [234], thus contrasting with other studies in “non-alcoholic
HCC” [235,236]. Surprisingly, recent findings have demonstrated that the loss of miR-21
in hepatocytes in vivo promotes hepatic carcinogenesis in a model of diethylnitrosamine-
treated mice [237], thus suggesting that miR-21 can also exert tumor suppressive properties.
The literature is therefore providing discrepant information regarding miR-21′s functions
and thus further studies are required to evaluate the therapeutic potential of targeting miR-
21 in suitable in vivo models of alcohol-related HCC. A miRNA profiling of human HCC
tumors revealed that miR-126* is downregulated in alcoholic HCC [238]. The consequences
of this downregulation remain to be investigated in the context of alcohol-induced HCC.

Several factors, like DNA methylation, hypoxia, or endogenous factors (stress, steroid
hormones) are known to regulate the expression of miRNAs [239]. Among them, β-catenin,
one of the main alterations in HCC [240], is activated by ethanol exposure in HepG2
cells [108] and induces miR-22-3p expression. In turn, miR-22-3p promotes HCC by directly
downregulating Ten-eleven-translocation 2 (TET2) expression [108].

Finally, in a mouse model of alcoholic HCC (Lieber–DeCarli alcohol diet + intraperi-
toneal injection of DEN), miR-122 expression is downregulated [54], thus leading to the
overexpression of cyclin G1 and hypoxia-inducible factor 1-alpha (HIF1α) expression, two
direct targets of this miRNA involved in cancer cell proliferation and invasion [54].

7.2. Other miRNAs with Poorly Defined Functions in ALD-Related HCC

The role of miRNAs in alcohol-related HCC is largely underestimated. Based on the
literature (Table 2), these miRNAs are involved in the regulation of oncogenes (e.g., miR-15a
and wnt3a), tumor suppressors (e.g., miR-191 and KLF6), as well as several pathways
associated with hepatocarcinogenesis (see example in Figure 6B). In a transcriptomic
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dataset (GSE10694), we cross-compared alcohol-related HCC with non-tumoral livers
(Figure 6A). This analysis revealed a whole set of differentially expressed miRNAs between
the two groups, including 10 being upregulated (miR-106a, miR-106b, miR-15b, miR-191,
miR-210, miR-221, miR-222, miR-224, miR-25, miR-331) and 11 downregulated (miR-100,
miR-101, miR-10a, miR-125b, miR-148a, miR-15a, miR-199a, miR-199a*, miR-22, miR-422b,
miR-99a) in the tumors as compared to healthy controls. Based on the literature (Table 2
and Figure 6B), these miRNAs are involved in several HCC-related pathways. Of note,
some miRNAs exert pleiotropic functions on several pathways and thus represent potential
therapeutic targets. Our analysis is limited by the sample size but it still gives an indication
about a possible miRNA profile of HCC with alcohol abuse. Such profiles can be used
as a starting hypothesis for future studies to be validated at first and may be used as a
diagnostic tool.
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Figure 6. (A) A transcriptomic dataset (GSE10694) was used to identify new miRNAs deregulated in
hepatocellular carcinoma with alcohol abuse. The data are represented in a heatmap showing the
log2 fold change of deregulated miRNAs. (B) Significantly deregulated microRNAs were subjected
to literature-based screening to classify them in the most common HCC-related pathways. The
data were retrieved in July 2023. miRNAs in red bubbles: upregulated; miRNA in blue bubbles:
downregulated. Black arrows: activation of the pathway; Blue inhibitory arrows: pathway inhibition.
Created with Biorender.com.

Other bioinformatic studies also revealed that miR-432, whose expression is increased
in the ASH mouse model (LDC diet) could be a predictive biomarker for HCC [241]. Besides
these miRNAs, several have been identified in HCC from alcohol abusers infected with
HBV, such as miR-223 and miR-944, which are upregulated in alcohol-associated HCC.
Other miRNAs, such as miR-9 and miR-153-2-p, are downregulated in the HBV-positive
HCC drinkers group compared to the HCC non-drinkers group [242].
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In a study gathering 186 North American patients, miR-26a is downregulated in HCC
tumors from patients with chronic alcohol consumption compared to adjacent non-tumor
tissues [110]. However, the role of miR-26 in alcoholic HCC remains to be investigated.

Taken together, these data indicate that the miRNAs deregulated in ALD-related
HCC have been largely underestimated. Very few in vivo models are available to study
ALD-related hepatic carcinogenesis. Although ethanol exposure (Lieber–DeCarli Diet) in
mice can accelerate hepatic carcinogenesis induced by diethylnitrosamine [243], this model
does not fully recapitulate the features of ALD-related HCC in patients. New models are
urgently needed to perform functional analyses of miRNAs in this disease. Moreover, other
aspects underlying the complexity of miRNA-dependent regulation should be considered.
The presence of a single nucleotide polymorphism (SNP) in an miRNA sequence may alter
miRNA expression and influence hundreds of target genes, as suggested for a SNPin the
promoter region of pri-miR-34b/c, which correlates with an increased risk of developing
HCC in patients with a history of alcohol abuse [244].

Table 2. Summary of deregulated miRNAs and their impacts on different pathways associated with HCC.

MiRs Pathways Model Function Target Ref

MiR-100 PI3K/AKT/mTOR
IGF signaling

HCC cells from patients,
Human HCC cell lines
(SK-Hep1, MHCC97-L,
SMMC-7721, HCCLM3,

Huh7, Hep3B, and
HepG2),

Tumor growth inhibition
Apoptosis promotion
Autophagy induction

Insulin-like growth factor
2 (IGF2), mammalian
target of rapamycin

(mTOR), and insulin like
growth factor 1 receptor

(IGF-1R)

[189,190]

MiR-101 PI3K/AKT/mTOR,
TGFβ, Epigenetics

HBV-related HCC tissue
from patients,

immortalized liver cell
line L-02, and human

HCC cell lines (HepG2,
Hep3B, SMMC-7721,
Huh7, MHCC-LM9)

Autophagy inhibition,
Invasion and EMT

inhibition, proapoptotic
function, prevention of

HCC progression

mTOR, EZH2,
H3K27me3, EED,

myeloid leukemia cell
differentiation protein

(Mcl-1), DNA
methyltransferase 3A
(DNMT3A), TGFβR1,

Smad2

[209,228,230,
245–249]

MiR-106a TP53/Cell cycle Human HCC cell lines
(HepG2 and Hep3B)

Apoptosis resistance, cell
cycle progression and

invasion

Tumor Protein P53
Inducible Nuclear Protein
1 (TP53INP1) and cyclin

dependent kinase
inhibitor 1A (CDKN1A)

[250]

MiR-106b TP53/Cell cycle,
TGFβ signaling

Tissue from patients,
Human HCC cell lines
(Hep3B, Huh7, HepG2,

and Bel-7402)

Promote HCC cell
proliferation and

migration

Disabled homolog 2
(DAB2), SMAD Family

Member 7 (SMAD7)
[207,209]

MiR-10a PI3K/AKT/mTOR
HCC patients, human
HCC cell lines (Huh7,

HepG2, and PLC)

Cell proliferation
inhibition

chemosensibility
Musashi 1 (MSI1) [251]

MiR-125b
IL6/JAK/STAT, IGF
signaling, Apoptosis,

epigenetics

Human HCC cell lines
(MHCC97L, SMMC7721,
HepG2, HL-7702), HCC

tissue from patients

Promote apoptosis,
induce cell senescence
and invasion inhibition

IGF2, Mcl-1, Bcl-w,
Interleukin (IL)-6, IL-6R,

sirtuin 6 (SIRT6) and
SIRT7

[189,252–254]

MiR-148a
Epigenetics,

PI3K/AKT, TGFβ
signaling

Human HCC cell lines
(MHCC97, Huh7, HepG2,

SMMC-7721, and
HCCLM3), normal liver

cell line L02

Cell proliferation
inhibition

Cell migration and
invasion inhibition

DNA methyltransferase
DNMT1, Death

receptor-5 (DR-5),
SMAD2

[240,241,255]

MiR-15a

WNT/β-catenin,
TGF-β signaling,

epigenetics,
JAK/STAT

HCC tissue from patients,
Human HCC cell lines

(HCC-LM3, Huh-7,
CSQT2, HepG2,
MHCC97H, and

SMMC-7721), normal
liver cell line THLE2,

Tumor xenograft

Inhibition of HCC
proliferation, migration
and invasion. Promote

apoptosis

O-linked
N-acetylglucosamine
(GlcNAc) transferase
(OGT), Transforming
Growth Factor Beta 1

(TGF-β1), SMAD7,
WNT3A, signal

transducer and activator
of transcription 3 (STAT3)

[256–260]
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Table 2. Cont.

MiRs Pathways Model Function Target Ref

MiR-15b Apoptosis,
WNT/β-catenin

HCC patients, Human
HCC cell lines (HepG2,

Huh7, Hep3B,
MHCC-97L and

MHCC-97H)

Cell proliferation
inhibition

Promote apoptosis

WNT3A, B-cell
lymphoma 2 (BCL-2) [261]

MiR-191 TP53/Cell cycle
HCC tissue from patients,

Hep3B and HepG2 cell
lines

Cell cycle progression
and cell proliferation

ZO-1-associated Y-box
factor

(ZONAB)/cyclinD1
[262]

MiR-199a
HGF/c-Met,

TP53/Cell cycle,
PI3K/AKT/mTOR

Human HCC cell lines
(Huh7, HepG2, SNU182,

PLC/PRF/5, Hep3B,
SNU423, and SNU449)

Inhibition of cell
proliferation, cell cycle

arrest, apoptosis
induction

CD44, mTOR, c-Met,
zinc-fingers and

homeoboxes-1 (ZHX1)
[263–265]

MiR-210 PI3K/AKT
Human HCC cell lines

(HepG2, MHCC-97H and
HuH7)

Promote proliferation
and invasion

Inhibition of apoptosis
PI3K, AKT, mTOR [223]

MiR-22 Epigenetics,
TP53/Cell Cycle

HCC tissue from patients,
Human HCC cell line

PLC/PRF/5 and
MHCC97L

Induction of apoptosis
Cell proliferation

inhibition

X-linked IAP (XIAP),
Histone deacetylase 4

(HDAC4),
Cyclin-dependent kinase
inhibitor 1A (CDKN1A)

[266–268]

MiR-221 PI3K/AKT/mTOR
TP53/Cell cycle

HCC patients, HCC cell
lines (PLC/PRF/5, Huh7,

HepG2, SNU-449,
SNU398, SNU-423 and

SK-Hep-1)

Cell proliferation
Cell cycle progression

CD44, CDKN1B/p27,
CDKN1C/p57 DNA

damage-inducible
transcript 4 (DDIT4)

[228–230]

MiR-222 PI3K/AKT/mTOR,
TP53/Cell Cycle

Human HCC cell lines
(HepG2, Hep3B, HKCI-4,

and HKCI-9)

Cell proliferation,
Migration, and invasion
and inhibits apoptosis

p27
protein phosphatase 2A

subunit B (PPP2R2A)
[269,270]

MiR-224 PI3K/AKT/mTOR,
TGFβ signaling

HCC tissue from patients,
Human HCC cell lines

(HepG2)
Cell proliferation

Protein Phosphatase 2
Scaffold Subunit Abeta

(PPP2R1B), SMAD4
[271–273]

MiR-25 WNT/β-catenin Human HCC cell lines
(HCCLM3 and Huh7)

cell proliferation,
migration and invasion PTEN [274]

MiR-99a
IGF signaling,

TP53/cell cycle
Epigenetics

HCC tissue from patients,
Human HCC cell lines
(Hep2G SMMC-7721,

Huh7, and Hep3B)

Cell proliferation and
invasion inhibition, block

cell cycle

IGF1R
mTOR
AGO2

[275–277]

8. Therapeutical Strategies against ALD/HCC-Related miRNAs
8.1. A Myriad of Strategies to Target miRNAs

Regulating miRNAs to shape the transcriptome is a promising therapy for ALD. Based
on the miRNA landscape of ALD and HCC, several miRNAs may represent therapeutic
targets. Inhibiting the detrimental miRNAs, or instead restoring the protective ones, could
be achieved using different strategies (Figure 7).

Downregulated expression of beneficial miRNA can be restored by the intracellu-
lar delivery of miRNA mimics, agomiRs, or plasmids encoding miRNAs. In contrast,
strategies have been designed to decrease the expression of overexpressed detrimental
miRNAs. These miRNA suppression therapies are based on the nucleotide complemen-
tarity between the miRNAs and anti-miR oligonucleotides (AMO), like miRNA inhibitors,
antagomirs, miRNA masks, small RNA zippers, ceRNA (competing endogenous RNA),
and miRNA sponges. This latter being designed to bind and compete for the binding of
several miRNAs to their mRNA targets, which is a similar strategy to that developed with
circular-RNA [278,279]. Other opportunities rely on gene-editing systems like CRISPR/Cas
or using small-molecule inhibitors or degraders (SMIR) [280,281]. However, these therapeu-
tical opportunities face several issues, especially when administered intravenously: poor
pharmacodynamics (degradation by RNAse, rapid blood clearance), non-specificity of the
miRNA delivery to the biological target, low tissue permeability, and physical properties
making the miRNAs unable to enter cells in their native form. In this context, many chemi-
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cal modifications have been performed on nucleotides or the phosphoribosyl backbone to
improve miRNA efficacy and half-life [278].
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To avoid miRNA degradation from the administration site and to improve the tissue
specificity, increasing efficiency while decreasing the side-effects of miRNA-based thera-
peutics, carrying vehicles have been developed [282], such as lentivirus (LV), retrovirus
(RV), adenovirus (Ad) and Ad-associated viruses (AAV) [278], and virus-like particles
(VLP) [283–286]. While RV and LV can express miRNA mimics or antagomir over long
periods of time due to their genomic integration, this random process could be critical for
the cells. Ad and AAV are interesting but immune reactions have been reported both in
rodent models and humans [287,288], and further efforts must be made to unlock their
full potential as miRNA delivery systems. Non-viral-based delivery systems involving
nanocarriers (NCs) and modified extracellular vesicles (EVs) may represent an alternative
option. Firstly, EVs, or exosomes, are 50–300 nm vesicles secreted by cells containing biolog-
ical compounds including miRNAs. These natural carriers are produced and enriched for
miRNA ex-vivo using mesenchymal or adipose-derived stem cells as biofactories. While
limitations prevail, EVs constitute the most promising opportunity for the safe targeted
delivery of miRNA regulators [289]. Finally, among their extreme diversity, lipid-based
and polymeric delivery systems represent the most used NCs with a size range below
250 nm [282,290–292].
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In this general context, delivering miRNA regulators to the liver appears possible.
Clinical successes from the hepatic delivery of siRNA encourage the miRNA therapy [293].
In the following paragraph, we discuss the potential miRNAs that could be targeted for the
treatment of ALD and HCC.

8.2. Therapeutic targeting of miRNAs in ALD
8.2.1. Steatosis

Targeting miRNAs to prevent alcohol-induced steatosis may represent an interesting
approach to avoid progression toward more severe stages of the disease (i.e., fibrosis).
However, it should be kept in mind that hepatic steatosis is a protective mechanism against
detrimental free fatty acids (e.g., palmitate) [294,295]. Thus, impairing miRNAs involved
in de novo lipogenesis may reduce hepatic steatosis but may worsen lipotoxicity and thus
hepatic fibrosis. This effect has been documented for several strategies aiming at impairing
de novo lipogenesis [296].

8.2.2. ASH

Targeting deregulated miRNA in ASH is also interesting, given that these miRNAs
are not only pro-inflammatory but are also priming the liver for hepatocarcinogenesis.
Moreover, some miRNAs display pleiotropic regulatory functions on the pro-inflammatory
processes of ASH (e.g., miR-155). Targeting HCC priming events may reduce the occurrence
of hepatic tumors in alcoholic patients. Based on our literature overview, few miRNAs
could be targeted, including miR-122 or miR-21. An elegant strategy aimed at sponging
miR-21 while delivering pre-miR-122 in HCC has recently been developed in vitro [285]
and may pave the way for in vivo assay in ASH models. Other have described the hepatic
delivery of miR-122 for the treatment of HCC in mouse using lipid nanocarriers or exosomes
that can be repurposed in ASH to limit the occurrence of HCC [297,298]. However, such
approaches were never investigated in the context of ALD. Moreover, it also remains to
develop more physiological models of ASH. To date, the Lieber–DeCarli diet + CCl4 is the
only model allowing hepatic steatosis and inflammation.

8.2.3. Cirrhosis

In alcoholic cirrhosis, we have discussed several miRNAs that could be targeted by
specific strategies. However, few of them have been evaluated as potential therapeutic
targets. Among them, the inhibition of miR-132 by intraperitoneal injection of LNA-anti-
miR-132 efficiently reduces hepatic fibrosis in CCl4-treated mice [74]. Although these
preclinical findings are encouraging, further efforts are still required to characterize the
therapeutic potential of targeting these miRNAs.

8.2.4. HCC

Given the wide range of miRNAs involved in alcohol-related HCC, it might be difficult
to make a choice and target only one miRNA. Targeting multiple miRNAs may represent
an appealing approach, but another strategy could be to target miRNAs with the most
pleiotropic functions on HCC-related pathways. In that sense, miR-191 and miR-222 may
represent potential targets due to their capacity to control several pathways, including
TP53, and the Wnt/β-catenin and PI3K/AKT signaling.

To specifically address the miRNA described in this review, one should keep in
mind the complex cellular interplay in the liver. Indeed, ALD cannot restrict to the sole
parenchymal hepatocytes but instead the surrounding non-parenchymal cell types must be
considered like the hepatic stellate cells (HSCs) [299] and the Kupffer cells (KCs) [300,301].
A safe and efficient miRNA-based delivery system should possess a passive targeting
property or have a targeting moiety toward one of those liver cells types (designated as an
active targeting), to avoid adverse side effects as described in the MRX34 (miR-34a mimics)
phase I clinical trial [302]. Negatively charged NCs can be opsonized in the blood flow
and, together with a size larger than 100–200 nm, they are easily taken up by the liver
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sinusoidal endothelial cells (LSECs) and the KCs. Hydrophobic NCs are likewise more
quickly captured by these cells [303]. On the other hand, smaller NCs can reach the space
of Disse through the LSEC fenestrations and thus the HSC and the hepatocytes, especially
if they have been decorated with poly-ethylene glycol (PEG) to improve their stealthiness
and escape the immune surveillance [303,304]. However, this passive targeting is not
sufficiently precise to target one liver cell type and targeting a moiety is recommended for
that purpose, as previously reviewed [291,292] and summarized here in Figure 7.

8.3. Therapeutic Approaches Targeting miRNAs in Clinical Trials and Future Perspectives

To date, no miRNA suppression or replacement strategy using an active targeted deliv-
ery system exists in the therapeutic arsenal despite the promise of success. MiRNA-based
clinical trials, investigational miRNA-based therapies, patented, approved, or marketed
medicine have been reviewed [279,282,305,306]. Although there are currently no clinical
trials on miRNAs targeting in ALD, some miRNAs involved in ALD or ALD-related HCC
have been studied in other contexts (see examples in Table 3). Few clinical trials have been
devoted to HCC or Hepatitis C virus (HCV), such as miravirsen (anti-miR-122), MRX34, or
RG-101 (anti-miR-122), which have not yet passed clinical trial phase I/II [307–309]. MRX34
has even been halted because of off-target delivery of the miRNA mimic [310]. However,
very sparse data are published on miRNA as a clinical target to treat the consecutive ALD
stages before the occurrence of HCC.

Table 3. Examples of miRNA-based clinical trials which are deregulated in ALD or ALD-related
HCC (clinicaltrials.gov, retrieved in 25 October 2023).

Identification Title Phase miRNA Target Disease

NCT01727934
Miravirsen Study in Null Responder to

Pegylated Interferon Alpha Plus Ribavirin
Subjects with Chronic Hepatitis C

II miR-122 Hepatitis C virus infection

NCT02862145

Pharmacodynamics Study of MRX34,
MicroRNA Liposomal Injection in
Melanoma Patients with Biopsy
Accessible Lesions (MRX34-102)

I miR-34 Advanced melanoma

NCT03373786 A Study of RG-012 in Subjects with Alport
Syndrome I miR-21 Alport syndrome

NCT02369198
MesomiR 1: A Phase I Study of TargomiRs
as 2nd or 3rd Line Treatment for Patients

with Recurrent MPM and NSCLC
I miR-16

Malignant Pleural Mesothelioma
(MPM) and Advanced Non-Small

Cell Lung Cancer (NSCLC)

NCT03601052

Efficacy, Safety, and Tolerability of
Remlarsen (MRG-201) Following

Intradermal Injection in Subjects with a
History of Keloids

II miR-29 Keloid formation

NCT03837457

PRISM: Efficacy and Safety of
Cobomarsen (MRG-106) in Subjects with
Mycosis Fungoides Who Have Completed

the SOLAR Study (PRISM)

II miR-155 Cutaneous T-Cell Lymphoma
(CTCL) and Mycosis Fungoides (MF)

NCT0280552
Safety, Tolerability and Pharmacokinetics

of MRG-106 in Patients with Mycosis
Fungoides (MF), CLL, DLBCL or ATLL

I miR-155

Cutaneous T-Cell Lymphoma
(CTCL), Mycosis Fungoides (MF),
Chronic Lymphocytic Leukemia

(CLL), Diffuse Large B-Cell
Lymphoma (DLBCL) and Adult

T-Cell Leukemia/Lymphoma (ATLL)

NCT03713320

SOLAR: Efficacy and Safety of
Cobomarsen (MRG-106) vs. Active

Comparator in Subjects with Mycosis
Fungoides (SOLAR)

II miR-155 Cutaneous T-Cell Lymphoma
(CTCL) and Mycosis Fungoides (MF)

NCT03603431

Safety, Tolerability, Pharmacokinetics, and
Pharmacodynamics of MRG-110

Following Intradermal Injection in
Healthy Volunteers

I miR-92a Ischemia

clinicaltrials.gov
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Some carriers have been developed, encouraging further research. For example, a
miR-122 lipoplex consisting of a cationic lipid nanoparticle formulation allowed miR-122
hepatic delivery and restored deregulated gene expression in the HCC mouse model [311].
Other lipid-based or polymeric nanocarriers for hepatic miR-122 delivery demonstrated
a hepatic tropism but without actively targeting a specific cell type [297,312]. Adding
a targeting moiety ameliorates the efficacy of the miRNA delivery, like the use of GE11
(targeting the EGF Receptor overexpressed in HCC) decorated Virus-like Particle for spong-
ing miR-21 together with the delivery of a miR-122 mimic [285]. Other have described a
galactosylated-chitosan NC to deliver miR-122 that sensitized HCC cells to a co-delivered
anticancer drug [313]. In a context of steatosis and HCC, exosomes genetically modified to
express anti-miR-199a-5p or miR-223 [314,315], lactosylated-polymeric methacrylate-based
NC loaded with miR-146b mimic [316], or anti-glypican3-decorated liposome loaded with
an anticancer and anti-miR-27a [317] are other examples of hepatocyte-targeted miRNA
delivery systems. Besides those, the use of small molecules could be of interest as shown
in a mouse model of ALD in which Baicalin-stimulated expression of miR-205 led to the
inhibition of NF-kB-driven inflammation and finally protected the liver against ethanol-
induced injury [88]. This latter strategy could be enhanced by the use of hepatic-targeted
carriers and assessed for its ability to limit HCC occurrence. Focusing on HSC reveals
that the main targeting strategy exploits the affinity of these cells for the retinol binding
protein with liposome loaded with vitamin A and miRNA [318,319], and a clinical trial to
deliver oligonucleotides to HSC using Vitamin A (NCT02227459). Finally, passive targeting
is used for miRNA delivery in KCs, as described by Liu et al. in mice [320], where a
polymeric carrier with a diameter of 279 nm and a positive charge serves as a synthetic
anti-NFkB miRNA delivery platform. However, one can fear off-target side effects as for
MRX34 [302]. More recently, NCs have been developed to target both KCs and HSCs
and disrupt their detrimental crosstalk in ALD, especially to reverse liver fibrosis. The
two reported strategies relied on polymeric NCs able to deliver anti-miR-155 to KCs in
parallel with the blockade of the HSC’s CXCR4. Cyclam derivatives, known to inhibit
CXCR4 [321], decorated polyethylene imine core NCs loaded with anti-miR-155. With sizes
of 60 and 150 nm, respectively, and a positive surface charge, both NCs reversed the hepatic
damages in an ethanol/CCl4 mouse model of liver fibrosis [322,323]. Finally, starting from
an amino–lipid-based nanocarrier library, it has been demonstrated that the surface of
the nanocarriers can be functionalized by blood circulating proteins to obtain an active
targeting of the liver cells. Depending on the amino–lipid, NCs were decorated by a corona
of either apolipoprotein E or albumin, leading to the targeting of the hepatocytes or KCs,
respectively [324], while sharing similar physical properties. These carriers have proven
efficient in the delivery of let-7 g miRNA in an aggressive myc-driven HCC mouse model.

9. Conclusions

Although ALD is the most prevalent liver disease in developed countries, there are
currently no reviews documenting the role of miRNAs in the all the stages of this disease.
Our study is not only providing an exhaustive overview of the role of miRNAs in the
development of ALD but also provides evidence that deregulated miRNAs at each stage
of the disease contribute to the establishment of a neoplastic phenotype. More than one
hundred miRNAs are discussed, thus highlighting the importance of post-transcriptional
regulation of gene expression in ALD and HCC and raising many questions regarding the
therapeutic targeting of these miRNAs. Currently, they are no miRNA-targeted delivery
systems for the treatment of ALD on the market. Although many strategies can be designed
to efficiently target these miRNAs, it remains to be determined which ones should be
targeted. Moreover, more suitable in vivo models are tremendously required to characterize
the role of these miRNAs in ALD/HCC and evaluate the potential of their therapeutic
potential. The very first stages of ALD, including steatosis, are not a primary source
of research and the targeted delivery of miRNA mainly focuses on the later stages like
fibrosis resolution or HCC remission. The development of dual therapeutics, combining
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several drugs (anti-miR and anticancer) or targeting several cell types (KCs and HSCs),
together with a passive-to-active targeting, pave the way for efficient future treatments
of ALD. Furthermore, increasing evidence challenges the dogmatic view of miRNAs as
strict inhibitors of gene expression, and suggest, in contrast, that miRNAs can induce gene
expression [325]. Finally, it should be remembered that miRNA-dependent regulation
is a complex process tightly regulated by other trans-acting factors (e.g., lncRNAs or
RBPs), which regulate the bioavailability and the activity of miRNAs. Emerging evidence
indicates that this interplay is relevant in ALD, as shown by miR-214, which is sponged
and inactivated by the ethanol-induced lncRNA urothelial cancer-associated 1 (UCA1) in
a hepatocyte cell line [326]. The complexity of miRNA-dependent functions is further
enhanced by miRNAs editing by specific enzymes (e.g., Adenosine Deaminase, RNA
specific, ADAR) controlling miRNA functions and whose expression is often imbalanced in
pathological states (i.e., HCC) [327,328].
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