
Citation: Pardo-Rodriguez, D.;

Santamaría-Torres, M.; Salinas, A.;

Jiménez-Charris, E.; Mosquera, M.;

Cala, M.P.; García-Perdomo, H.A.

Unveiling Disrupted Lipid Metabolism

in Benign Prostate Hyperplasia, Prostate

Cancer, and Metastatic Patients: Insights

from a Colombian Nested Case–Control

Study. Cancers 2023, 15, 5465.

https://doi.org/10.3390/

cancers15225465

Academic Editor: Gail Risbridger

Received: 2 October 2023

Revised: 23 October 2023

Accepted: 31 October 2023

Published: 18 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Unveiling Disrupted Lipid Metabolism in Benign Prostate
Hyperplasia, Prostate Cancer, and Metastatic Patients:
Insights from a Colombian Nested Case–Control Study
Daniel Pardo-Rodriguez 1 , Mary Santamaría-Torres 1 , Angela Salinas 2, Eliécer Jiménez-Charris 2 ,
Mildrey Mosquera 2 , Mónica P. Cala 1,* and Herney Andrés García-Perdomo 3,4,*

1 Metabolomics Core Facility—MetCore, Vice-Presidency for Research, Universidad de los Andes,
Bogotá 110111, Colombia; d.pardorodriguez@uniandes.edu.co (D.P.-R.);
m.santamariatorres@uniandes.edu.co (M.S.-T.)

2 Grupo de Nutrición, Departamento de Ciencias Fisiológicas, Facultad de Salud, Universidad del Valle,
Cali 760043, Colombia; angela.salinas@correounivalle.edu.co (A.S.);
eliecer.jimenez@correounivalle.edu.co (E.J.-C.); mildrey.mosquera@correounivalle.edu.co (M.M.)

3 UROGIV Research Group, School of Medicine, Universidad del Valle, Cali 72824, Colombia
4 Division of Urology/Urooncology, Department of Surgery, School of Medicine, Universidad del Valle,

Cali 72824, Colombia
* Correspondence: mp.cala10@uniandes.edu.co (M.P.C.); herney.garcia@correounivalle.edu.co (H.A.G.-P.)

Simple Summary: Prostate cancer represents a substantial global health issue, and its intricacies
continue to pose challenges for complete comprehension. In this study, an untargeted metabolomic
and lipidomic approach was employed to analyze plasma samples obtained from patients diagnosed
with benign prostatic hyperplasia (BPH), prostate cancer (PCa), and metastatic prostate cancer (Met).
The results revealed significant changes in lipid metabolism when comparing patients with prostate
cancer to those with benign prostatic hyperplasia and patients with metastasis. These findings
support the fundamental importance of lipid metabolism in the development and progression of
prostate cancer.

Abstract: Prostate cancer is a significant global health concern, and its prevalence is increasing
worldwide. Despite extensive research efforts, the complexity of the disease remains challenging
with respect to fully understanding it. Metabolomics has emerged as a powerful approach to
understanding prostate cancer by assessing comprehensive metabolite profiles in biological samples.
In this study, metabolic profiles of patients with benign prostatic hyperplasia (BPH), prostate cancer
(PCa), and metastatic prostate cancer (Met) were characterized using an untargeted approach that
included metabolomics and lipidomics via liquid chromatography and gas chromatography coupled
with high-resolution mass spectrometry. Comparative analysis among these groups revealed distinct
metabolic profiles, primarily associated with lipid biosynthetic pathways, such as biosynthesis of
unsaturated fatty acids, fatty acid degradation and elongation, and sphingolipid and linoleic acid
metabolism. PCa patients showed lower levels of amino acids, glycerolipids, glycerophospholipids,
sphingolipids, and carnitines compared to BPH patients. Compared to Met patients, PCa patients
had reduced metabolites in the glycerolipid, glycerophospholipid, and sphingolipid groups, along
with increased amino acids and carbohydrates. These altered metabolic profiles provide insights into
the underlying pathways of prostate cancer’s progression, potentially aiding the development of new
diagnostic, and therapeutic strategies.

Keywords: benign prostatic hyperplasia; Colombia; lipidic alteration; prostate cancer; metastasis;
untargeted metabolomics analysis
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1. Introduction

Prostate cancer (PCa) is a prevalent cancer affecting males and contributes considerably
to increased mortality rates globally. PCa patients might present with either localized or
advanced illness. PCa showed the highest prevalence among males over 45 years old
in 2020, with 1,409,428 new cases, and placed sixth in terms of death (374,018), ahead
of liver, colorectal, and stomach cancers. During the same year in Colombia, prostate
cancer had the greatest incidence with 14,422 cases and the highest mortality rate with
3835 deaths [1].

PCa is characterized by a moderate rate of development and early asymptomaticism.
This in turn makes early diagnosis difficult [2]. PCa can be diagnosed using a variety
of techniques, including transrectal ultrasound, digital rectal examination, and biopsy.
These techniques, however, are intrusive and could make patients feel uncomfortable or
ashamed [3]. Prostate-specific antigen (PSA) testing is another diagnostic technique. The
limited specificity of this biomarker is highlighted by the fact that a sizable fraction of
individuals with benign diseases, such as inflammation or hyperplasia, may have abnormal
PSA levels, leading to unnecessary biopsies [4]. As a result, several expert groups, including
the American Cancer Society, suggest that the current data on the effectiveness of PSA
screening are insufficient to support its routine use [5]. This demands research on novel
approaches to prostate cancer detection.

On the other hand, intrinsic factors, such as genetic alterations and origin tissue, as
well as extrinsic factors, such as access to nutrients and oxygen, interactions with cells in the
microenvironment, and radiation or chemotherapy exposure, may all impact the onset and
development of the tumor environment [6]. This suggests that population-specific factors,
such as race, genetics, dietary patterns, and lifestyle, influence the possibility of developing
the disease or the disease progressing, as well as the recurrence and mortality rates for
certain types of cancer [6–9]. For example, prostate cancer is uncommon among Asian
males, with age-adjusted incidence rates ranging from 2 to 10 per 100,000 people. Northern
Europe, on the other hand, has a high incidence rate, whereas African-American men have
the highest incidence rate worldwide [10]. All of this requires an in-depth knowledge of
cancer and its progression in patient cohorts from different geographical areas.

Metabolic changes in biofluids reflect changes in an individual’s physiological state,
making it a useful tool for understanding disease-related physiological processes and
identifying noninvasive biomarkers. Recent research has shown that changes in metabolism
have an impact on cancer development [11,12]. The integration of untargeted metabolomics
and advanced informatics has the potential to reveal the intricate metabolic complexity of
living systems [13–15]. Thus, the current proposal aimed to establish differential profiles
among patients with benign prostatic hyperplasia (BPH), PCa, and metastatic prostate
cancer (Met) through a case–control research nested in Colombia. To our knowledge,
this is one of the first studies to be carried out in a cohort of Colombian patients. This
type of research will establish the groundwork for understanding PCa in the Colombian
population and may identify metabolites that could be used as possible markers for the
disease’s diagnosis in the future.

2. Materials and Methods
2.1. Study Participants

We conducted a case–control study between November 2019 to November 2020. The
patients were recruited from the outpatient clinic and the prostate biopsy section of the
Urology Department at the Universidad del Valle and the Hospital Universitario del Valle,
Evaristo Garcia. This study was accepted by the ethics and research committee of the
hospital, under code 074-2019. The study included 37 individuals with BPH, 34 with PCa,
17 with confirmed Met, and 20 young individuals (HV) as a control group. The first cohort
consisted of participants aged 40 years or older with a diagnosis of localized PCa. The
risk classification of these patients was determined based on the categories defined by
the European Association of Urology [16]. In addition to the older age group, a second
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cohort consisted of participants with benign prostatic hyperplasia (BPH). The study also
enrolled patients with confirmed metastasis (Met) through imaging methods or those
undergoing chemotherapy or radiotherapy as a palliative approach for advanced disease
and healthy volunteers (HV), aged between 25 and 35 years, without a personal history of
genitourinary tract disease. These individuals did not exhibit the conditions described in
the exclusion criteria.

On the other hand, exclusion criteria included the following: patients with the concomi-
tant presence of other types of cancer, coagulation disorders, renal disorders, or metabolic
disorders, such as diabetes mellitus, gout, or hyperthyroidism; individuals with symp-
toms of acute illnesses within two weeks prior to sample collection, such as fever, cough,
headache, diarrhea, hematuria, as well as psychiatric disorders or episodes of stress-related
trauma; and the use of certain medications within two weeks before sample collection,
including antibiotics, hormones, nonsteroidal anti-inflammatory drugs, and chemotherapy
or radiotherapy medications, as well as failure to provide signed informed consent. After
obtaining signed consent, the blood samples from each patient were centrifuged for 5 min
at 4000 rpm at 4 ◦C. Following centrifugation, the plasma layer was carefully collected and
then stored at −80 ◦C to maintain its integrity. Subsequently, the samples were transported
to the Metabolomics Core Facility at the University of Los Andes for further analysis.

2.2. Metabolomics Analysis by RP-LC-QTOF-MS

A total of 100 µL of plasma was utilized for the extraction procedure, in which 300 µL of
cold methanol (−20 ◦C) was added and vortexed at 3200 rpm for 3 min. The samples were
then allowed to stand at −20 ◦C for 20 min to precipitate proteins and were subsequently
subjected to centrifugation at 13,000 rpm, 4 ◦C for 10 min. The supernatant was collected
and preserved for analysis using RP-LC-QTOF-MS and GC-QTOF-MS. The samples were
analyzed using an Agilent Infinity 1260 liquid chromatography system coupled to an
Agilent 6545 quadrupole time-of-flight mass spectrometer analyzer with electrospray
ionization (Agilent Jet Stream ESI source). A total of 2 µL of the sample was injected into a
ZORBAX Eclipse Plus C18 column (50 mm × 2.1 mm, 1.8 µm; Agilent, Santa Clara, CA,
USA) at 60 ◦C. The mobile phase employed was composed of 0.1% (v/v) formic acid in
Type I ultrapure water (Phase A) and 0.1% (v/v) formic acid in acetonitrile (Phase B) with a
constant flow rate of 0.6 mL/min. The elution gradient was programmed with the following
specifications: 5% B for 1 min; 5–80% B in 6 min; 100% B for 4.5 min. Finally, the flow rate
was decreased to 5% of Phase B and held for 5 min until the equipment was reconditioned.
Mass spectrometry detection was performed in positive electrospray ionization mode
in full-scan mode from 100 to 1100 m/z. The QTOF instrument was operated in 4 GHz
(high resolution) mode. Two reference masses, m/z 121.0509 [purine, ([C5H4N4+H]+)
and m/z 922.0098 [HP-0921, ([C18H18O6N3P3F24+H]+), were used for mass correction in
positive mode throughout the analysis. MS/MS acquisition mode was performed by data-
dependent acquisition mode using a QC sample at different collision energies of 20 and
40 eV.

2.3. Metabolomics Analysis by GC-QTOF-MS

From the previously prepared metabolic extracts, 50 µL was dried in a SpeedVac
(Thermo Scientific, Waltham, MA, USA) for 1 h at 35 ◦C. Then, 10 µL O-methoxyamine hy-
drochloride (15 mg/mL) in pyridine was added to each sample and vortexed at 3200 rpm
for 5 min, followed by incubation in the dark for 16 h. After this time, 10 µL of N,O-
Bis(trimethylsilyl) trifluoroacetamide with 1% trimethylchlorosilane was added and incu-
bated at 70 ◦C for 1 h. Finally, 50 µL of methyl stearate in heptane (C18:0, 10 mg/L) as an
internal standard was added and vortexed for 10 min at 3200 rpm.

To acquire data, an Agilent Technologies 7890B GC system was used in combination
with an Agilent Technologies 7250 QTOF mass spectrometer system. Derivatized samples
(1 µL) were injected onto a HP-5MS (30 m, 0.25 mm, 0.25 µm; Agilent, USA) column in
split mode (split ratio 30). The oven temperature was programmed from 60 ◦C (1 min)
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and increased at a rate of 10 ◦C/min until 325 ◦C (10 min). The transfer line temperature
to the detector, the source filament temperature, and the quadrupole temperature were
maintained at 280 ◦C, 230 ◦C, and 150 ◦C, respectively.

2.4. Lipidomic Analysis by RP-LC-QTOF-MS

A total of 100 µL of plasma was extracted with 350 µL of cold methanol (−20 ◦C) and
350 µL of methyl tert-butyl ether, followed by vortexing for 5 min. Then, samples were
centrifuged at 13,000 rpm, 20 ◦C for 10 min. The samples were analyzed using the same
LC-QTOF-MS system as described previously. A total of 5 µL of the obtained extract was
injected into a C18 column (100 mm × 3.0 mm, 2.7 µm; Agilent, USA) at 40 ◦C with a
gradient elution composed of 10 mM ammonium acetate H2O:MeOH (90:10) (Phase A) and
10 mM ammonium acetate ACN:MeOH:IPA (20:30:50) (Phase B) at a constant flow rate of
0.6 mL/min. The flow of B started at 70% and remained constant for 1 min. Afterward,
it increased to 86% over the course of 2.5 min and remained at this level until reaching
10 min. Then, it increased to 100% for 1 min and was maintained for 7 min. Following
this, it decreased for 3 min to recondition the equipment. Mass spectrometry detection
was carried out in positive ESI mode throughout a full-scan range of 100 to 1100 m/z. The
QTOF instrument was operated in 4 GHz (high-resolution) mode. For mass correction,
two reference masses, m/z 121.0509 (purine, [C5H4N4+H]+) and m/z 922.0098 (HP-0921,
[C18H18O6N3P3F24+H]+), were utilized throughout the analysis. MS/MS acquisition mode
was performed by data-dependent acquisition mode, using a QC sample at different
collision energies of 20 and 40 eV.

2.5. Quality Assurance (QA) and Quality Control Samples (QC)

For both LC and GC techniques, QA/QC procedures followed published guidelines to
minimize undesired variability [17]. At the beginning of each sequence, system suitability
procedures and tests were carried out to guarantee the appropriate instrumentation perfor-
mance. Solvent blanks and extraction blanks were also analyzed to handle the undesirable
and unavoidable signals from the materials and reagents used in the sample preparation.
A pooled quality control sample (QC) was prepared by combining equal aliquots from each
plasma sample, using the same procedure for both metabolomic and lipidomic analysis.
This QC was injected ten times at the beginning of the run and after every ten samples.
Additionally, to mitigate any potential bias, the biological samples were randomly arranged
within the sequence.

2.6. Data Processing and Analysis

The raw data obtained from the LC-QTOF-MS system was processed using Agi-
lent MassHunter Profinder B.10.0 software for deconvolution, alignment, and integra-
tion. In the case of GC-QTOF-MS data, the same processes were performed utilizing
the following software tools: Agilent Unknowns Analysis B.10.0, MassProfiler Profes-
sional B.15.0, and Agilent Mass Hunter Quantitative Analysis B.10.0, respectively. The data
matrix was normalized using the systematic error removal using random forest method
server (https://slfan2013.github.io/SERRF-online/ (accessed on 5 May 2022)), based on the
utilization of quality control pool samples [18]. Following that, data from all platforms
were carefully examined. A presence and reproducibility filter were applied, and only
the metabolites present in at least 80% of the samples within the same group and that
demonstrated a coefficient of variation (CV, %) in the QC samples below 20% for LC data
(30% for GC data) were considered for statistical analysis.

To identify the molecular features with statistically significant differences between
groups, univariate (UVA) and multivariate (MVA) statistical analyses were employed.
p-Values for UVA analysis were computed using nonparametric tests (Mann–Whitney
U test) in Matlab. PCA was employed as an unsupervised method in MVA analysis
to assess the quality of the data and the unsupervised samples distribution. Following
that, supervised orthogonal partial least squares discriminant analysis (OPLS-DA) models

https://slfan2013.github.io/SERRF-online/
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were applied to determine the molecular attributes responsible for the group separation.
The quality and performance of the multivariate OPLSDA models were assessed using
the R2, Q2, permutation test, and cross-validation analysis of variance values. For MVA
analysis, the SIMCA-P+16.0 program (Umetrics) was used. The statistically significant
features chosen met at least one of the following requirements: (1) UVA—p-value < 0.05
and (2) MVA—variance important in projection (VIP) > 1.

2.7. Metabolites Identification

Multiple parameters were used to annotate significant features analyzed by liquid chro-
matography, including verification of retention times and probability of adduct formation,
comparison of high-resolution masses with database records using the CEU Mass Mediator
tool (http://ceumass.eps.uspceu.es (accessed on 10 May 2022)), and generation of theoreti-
cal formulas using isotopic distributions. MS/MS data were compared with the spectra
data available in MS-DIAL 4.80 (http://prime.psc.riken.jp/compms/msdial/main.html
(accessed on 31 May 2022)), the Lipid Annotator software v10.0, and the GNPS server.
Manual interpretation of the MS/MS spectrum was also conducted. The identification
of compounds through GC analysis was performed by comparing the mass spectrum
and FAMES retention index with those reported in the Fiehn GC-MS Metabolomics RTL
(Retention Time Locked) Library 2013 [19]. Finally, the identification levels were assigned
for each platform according to Metabolomics Standards Initiative guidelines outlined by
Blaženović, I. et al. [20].

2.8. Altered Metabolite Pathway Mapping and Identification of Potential Diagnostic Biomarkers for
PCA Patients

The analysis of altered metabolic pathways in the experimental groups was performed
using the “Pathway Analysis” tool available on the MetaboAnalyst 5.0 site (http://www.
metaboanalyst.ca/ (accessed on 29 October 2022)). For it, the altered metabolites were
compared to the Homo sapiens (KEGG) metabolome database, which was accessible on
the same website. Finally, to identify potential diagnostic biomarkers for PCa patients,
Prism 8.0.2 (GraphPad, La Jolla, CA, USA) software was utilized to generate Receiver
Operating Characteristic (ROC) curves. These curves provide valuable insights into the
diagnostic accuracy of the selected metabolic markers.

3. Results
3.1. Description of the Cohorts

The cohort included 108 Colombian men with an average age of 61 years and a similar
range, except for the group of healthy volunteers (Table 1). Other anthropometric variables,
such as body mass index (25.2 ± 3.18), height (1.70 ± 0.06 m), and weight (72.5 ± 10.41 kg),
were consistent across the groups. PSA levels varied across the groups, with higher
averages observed in patients with Met (247 ± 418 ng/mL), PCa (17.3 ± 15.0 ng/mL), and
BPH (9.08 ± 4.30 ng/mL) compared to HV (0.558 ± 0.28 ng/mL).

3.2. Untargeted Metabolomic and Lipidomic Analyses

Untargeted metabolomics analysis was conducted to evaluate the altered metabolomic
profiles associated with BPH, PCa, and Met in a cohort of Colombian patients. A multi-
platform strategy was implemented to identify the highest possible number of metabolites
exhibiting alterations. The examination of the clusters revealed the grouping of quality
control samples within the utilized analytical platforms (Figure S1, orange dots). After each
analytical platform’s performance had been verified, the supervised orthogonal partial least
squares regression approach (OPLS-DA) was used to improve the distinctions between
the groups that included PCa and BPH (Figure 1A,C,E) and PCa and Met (Figure 1B,D,F).
This approach was aimed at identifying the molecular characteristics that significantly
influenced the segregation of these groups.

http://ceumass.eps.uspceu.es
http://prime.psc.riken.jp/compms/msdial/main.html
http://www.metaboanalyst.ca/
http://www.metaboanalyst.ca/
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Table 1. Clinical variables evaluated in the HV, BPH, PCa, and Met individual cohorts.

Variables
HV BPH PCa Met Overall

(N = 20) (N = 37) (N = 34) (N = 17) (N = 108)

Age (years)
Mean (SD) 29.7 (3.20) 66.4 (6.50) 67.2 (7.81) 73.0 (8.54) 60.9 (16.60)

Median [Min, Max] 29.0 [25.0, 34.0] 67.0 [55.0, 80.0] 68.0 [52.0, 82.0] 74.0 [61.0, 88.0] 64.0 [25.0, 88.0]

Anthropometric measurement

Weight (kg)
Mean (SD) 79.6 (7.58) 71.9 (9.63) 73.6 (10.3) 63.2 (8.52) 72.5 (10.4)

Median [min, max] 79.0 [65.0, 98.0] 70.0 [49.0, 100] 72.5 [48.0, 94.0] 63.0 [42.0, 78.0] 71.9 [42.0, 100]
Height (m)
Mean (SD) 1.75 (0.05) 1.68 (0.06) 1.69 (0.05) 1.67 (0.06) 1.70 (0.06)

Median [min, max] 1.76 [1.65, 1.85] 1.68 [1.56, 1.80] 1.69 [1.53, 1.77] 1.67 [1.57, 1.80] 1.70 [1.53, 1.85]
Body Mass Index

Mean (SD) 26.0 (2.79) 25.4 (2.82) 25.9 (3.46) 22.6 (2.58) 25.2 (3.18)
Median [min, max] 25.5 [22.5, 33.9] 25.4 [16.8, 33.0] 25.6 [19.2, 34.7] 22.5 [16.0, 28.7] 25.1 [16.0, 34.7]

Prostate-Specific Antigen (ng/mL)
Mean (SD) 0.558 (0.28) 9.08 (4.30) 17.3 (15.0) 247 (418) 43.8 (174)

Median [min, max] 0.470 [0.250, 1.2] 8.00 [3.10, 22.5] 11.7 [1.09, 64.0] 64.0 [0.15, 1590] 8.05 [0.15, 1590]
Missing 0 (0%) 0 (0%) 0 (0%) 2 (11.8%) 2 (1.9%)

HV: healthy volunteers, BPH: benign prostate hyperplasia, PCa: prostate cancer, Met: metastasis.
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ANOVA: 0.0031. Dots in salmon, blue, and cyan colors denote samples from patients with BPH, 
PCa, and Met, respectively. 
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Figure 1. OPLS-DA models for metabolic and lipidomic analysis. (A,C,E) BPH vs. PCa, (B,D,F) Pca
vs. MET. (A) GM(+):R2Y: 0.827, Q2: 0.231, CV-ANOVA: 0.011; (B) GM(+):R2Y: 0.829, Q2: 0.254, CV-
ANOVA: 0.009; (C) GL(+):R2Y: 0.716, Q2: 0.331, CV-ANOVA: 0.004; (D) GL(+):R2Y: 0.852, Q2: 0.455,
CV-ANOVA: 0.001; (E) GC: R2Y: 0.789, Q2: 0.36, CV-ANOVA: 0.012; (F) GC: R2Y: 0.697, Q2: 0.344,
CV-ANOVA: 0.0031. Dots in salmon, blue, and cyan colors denote samples from patients with BPH,
PCa, and Met, respectively.
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The OPLS-DA scoring plot in Figure 1 exhibited a distinct clustering between the
groups: BPH (salmon dots), PCa (blue dots) and Met (cyan dots). Furthermore, the
metrics R2 and Q2, which assess the model’s goodness of fit and predictive capacity,
respectively, based on the data, yielded acceptable values. To assess the model’s reliability,
cross-validation variance (cv-ANOVA) was conducted, confirming significant models
across all analyzed platforms (cv-ANOVA < 0.05); this suggests that the multivariate
models did not exhibit overfitting [20]. A total of 100 random permutation tests were
conducted to investigate the potential overfitting of the supervised OPLS-DA models. The
Y-intercepts of the Q2 distributions were consistently below zero across all implemented
analytical platforms (Supplementary Figure S2), indicating the reliability of the established
OPLS-DA model.

A combination of multivariate analysis (MVA) with a variable importance in projection
(VIP) threshold of greater than 1 and univariate analysis (UVA) with a significance level
(p-value) of less than 0.05 was employed to identify specific distinguishing metabolites.
This approach resulted in the identification of a total of 104 altered metabolites covering
all the platforms used in the study. Among these metabolites, 14.42% were found to be
increased, while 85.58% decreased when comparing individuals with BPH to those with
PCa. Additionally, 81 altered compounds were found in the comparison of PCa and MET
patients, with 37.04% showing a trend downward and 62.96% showing a trend up-ward.
A detailed list of the altered metabolites observed in BPH, PCa, and Met patients can be
found in Supplementary Table S1.

Figure 2A shows significant global changes between BPH and PCa in the following
categories: glycerolipids (25.96%), glycerophospholipids (25.00%), sphingolipids (16.35%),
fatty acyls (11.54%), amino acids and analogues (5.77%), organoheterocyclic compounds
(4.81%), carbohydrates (3.85%), and other compounds (6.73%). Similar patterns were seen
in the fluctuations of glycerolipids (23.46%), glycerophospholipids (20.99%), sphingolipids
(20.99%), fatty acyls (8.64%), amino acids and analogues (8.64%), sterol lipids (4.94%),
carbohydrates (3.70%), and other compounds (8.64%) in PCa and Met patients, as shown in
Figure 2B.
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In comparison to BPH patients, PCa patients exhibited a preferential decrease in the al-
tered metabolite trends for amino acids, glycerolipids, glycerophospholipids, sphingolipids,
and carnitines. No discernible trend was observed for fatty acids or carbohydrates. In-
terestingly, metabolites involved in coenzyme A metabolism were found to be reduced
in the PCa group. Furthermore, when compared to Met patients, PCa patients showed
a decrease in metabolites from the glycerolipid, glycerophospholipid, and sphingolipid
groups, along with an increase in amino acids and carbohydrates (Supplementary Table S1).
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In summary, PCa patients exhibited lower levels of glycerolipids, glycerophospholipids,
and sphingolipids compared to both BPH and Met patients.

After analyzing the metabolites presented in Figure 3, classified according to the largest
changes (FC < 0.5, FC > 1.5), the metabolites CL 65:4, cyclic acetylserotonin glucuronide,
Cys-Thr-Glu, glutamyl-hydroxyproline, glutamyl-pipecolic acid, hemin, hexadecadienyl-
carnitine, hydroxybutyryl-CoA, lypollysine, methylxanthine/methyilmalate, oleoyl-CoA,
oxo-dodecanoyl-CoA, and stearoyl-CoA were significantly altered between the BPH and
PCa groups, with decreased levels observed in the latter group. Furthermore, the metabo-
lites chenodeoxyglycocholic acid, LPC18:3, and Ser-Ser-OH showed significant increases,
and TG 47:1 and proline betaine, which decreased, were significantly different from the PCa
group compared to the Met group. Another group of compounds, including glycocholic
acid, hydroxyproline, linoleic acid, mesobilirubinogen, phytosphingosine and urobilino-
gen, exhibited significant changes across the three groups. The relative abundances of
substances like glycocholic acid, hydroxyproline, linoleic acid and phytosphingosine are
interesting because they were found to only be enhanced in PCa patients. Additionally,
the Met group was characterized by increased levels of urobilinogen, a metabolite that
significantly differed from the BPH and PCa groups.
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Figure 4 shows the enrichment analysis, which reveals the dysregulated metabolic
pathways when BPH, PCa, and Met patients are contrasted. The comparison between PCa
and BPH patients (Figure 4A) revealed multiple dysregulated pathways (highlighted in
various shades of blue), primarily related to lipid metabolism. These pathways include the
biosynthesis of unsaturated fatty acids, fatty acid degradation and elongation, sphingolipid
metabolism, and linoleic acid metabolism. Other pathways also showed some level of
impact but with lesser significance. The comparison of PCa and Met patients also revealed
significant changes in lipid-related pathways, in line with the previous results. Among
the most significant pathways were those involved in the biosynthesis of unsaturated fatty
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acids, sphingolipid metabolism, and linoleic acid metabolism. The biosynthetic pathway
for valine, leucine, and isoleucine exhibited significant alterations. In summary, the global
trends, along with the analysis of dysregulated pathways in PCa vs. BPH and PCa vs. Met
comparisons are primarily changes related to the lipid profile, which suggests that patients
with PCa generally have lower levels of lipids compared to patients with BPH and Met.
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3.3. Potential Diagnostic Biomarkers among BPH and PCa Patients

Based on their highest levels of identification (ID level 1-2), fold change, VIP values,
and p-values with FDR, a total of six metabolites (hydroxyproline, hydroxybutyryl-CoA,
linoleic acid, methyl galactopyranoside, oleoyl-CoA, and phytosphingosine) were selected
for potential involvement in the prognostic between BPH and PCa groups. The predictive
capacity of each selected biomarker, measured through ROC analysis, is depicted in Figure 5.
Interestingly, the results showed that hydroxybutyryl-CoA (Figure 5B) exhibited the highest
performance with area under the curve (AUC) values of 0.912 (CI: 0.8222–0.98), along with
selectivities and sensitivities of 0.8. Other compounds such as hydroxyproline (Figure 5A),
linoleic acid (Figure 5C), oleoyl-CoA (Figure 5E), and phytospingosine (Figure 5F) demon-
strated acceptable AUC values of 0.731 (CI: 0.612–0.843), 0.703 (CI: 0.545–0.828), 0.807
(CI: 0.692–0.896), and 0.729 (CI: 0.602–0.847), respectively. On the other hand, methyl
galactopyranoside (Figure 5D) exhibited poor performance, with AUC values below 0.7.
In summary, the results obtained suggest that metabolites such as hydroxybutyryl-CoA,
oleoyl-CoA, hydroxyproline, and phytosphingosine could be used as prognostic biomark-
ers for both BPH and PCa patients. It is essential that future studies assess the performance
of these potential biomarkers in diverse patient cohorts.
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Figure 5. Analysis of the receiver operating characteristics of potential plasma biomarkers for
diagnostic between patients with PCa and BPH. ROC curve analysis and box plot of metabolites with
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CoA, (C) Linoleic acid, (D) Methyl galactopyranoside, (E) Oleoyl-CoA, (F) Phytosphingosine. Box
plot in salmon and blue colors, representing BPH and PCa patients, respectively. Data are shown by
the median, with the range from minimum to maximum.

3.4. Subgrouping of the Samples Belonging to the PCa Group

Different methodologies were employed to cluster the samples belonging to this group
to establish probable metabolomic profiles among subclassifications within the PCa patient
group. The Gleason score system, which is based on microscopic examination of cancer
cells during a biopsy or prostatectomy, PSA levels, and the TNM (tumor, nodes, metastasis)
staging system, which is used to describe the degree and spread of prostate cancer, were all
examined. The Gleason scoring system provides a grade from 1 to 5 to the most prevalent
spots of cancer cells, and the sum of the two most common grades yields a final score. The
samples were grouped as follows: total Gleason score 6 (3 + 3), 7 (3 + 4/4 + 3), 8 (4 + 4),
9 (4 + 5/5 + 4). Regarding the subgroups based on PSA level, the samples were classified
as follows: low (≤10), intermediate (10–20), high (≥20). TNM staging is based on three
major factors: the size of the primary tumor, the presence of affected lymph nodes, and
the occurrence of metastasis in other organs. Each component is assigned a numerical
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value, which is then added together to define the cancer stage (T0, T1, T2). However, in
both multivariate and univariate models, employing these subgroupings did not result in
precise clustering of the samples (Supplementary Figure S3), displaying high heterogeneity
among PCa patient samples.

4. Discussion

Prostate cancer is a highly heterogeneous tumor with a wide range of clinical out-
comes, ranging from innocuous indolent tumors to aggressive metastasizing tumors [21].
It has a wide range of morphological patterns as well as some unusual metaplastic dif-
ferentiation [22]. The vast variability of prostate cancer is still insufficiently understood.
Nevertheless, spatial heterogeneity and other forms of genetic and molecular heterogeneity,
including interpatient, intertumoral, and intratumoral variability, play important roles in
disease pathogenesis [22–25]. Others factors, including disparities in PSA testing prac-
tices among nations [26,27], in conjunction with occidental dietary patterns, sedentary
lifestyles and obesity [27], tumor microenvironment [28], differing healthcare systems,
population longevity, and other mortality causes collectively contribute to a multifaceted
scenario [27]. These factors impact global prostate cancer incidence and mortality rates,
presenting challenges to developing suitable therapies and exploring alternative diagnostic
and prognostic strategies.

For better comprehension of the underlying physiological processes of the disease,
chromatographic techniques coupled with high-resolution mass spectrometry have been
employed to characterize altered metabolic profiles in Colombian patients with BPH, PCa,
and Met. According to the findings, the predominant metabolic changes between BPH,
PCa, and Met patients are related to lipid metabolism (Figure 6). Lipids are essential for
tumor growth and metastasis, and they play a significant role in malignant tumors. In
addition to their role as components of cell membranes, lipids serve multiple functions in
cancer cells. They act as a significant energy source [29–31], functioning as crucial signaling
molecules [32,33]. Additionally, they influence the tumor microenvironment by promoting
events including inflammation, angiogenesis, and immune suppression [31,33], and they
also contribute to altering membrane composition [33].

Throughout the obtained results, we observed that both PCa and BPH patients exhibit
elevated biosynthetic pathways associated with lipids, including biosynthesis of unsat-
urated fatty acids, fatty acid degradation and elongation, sphingolipid metabolism, and
linoleic acid metabolism, compared to healthy volunteers. These results are consistent with
observations from other studies where it has been reported that this particular category of
compounds in PCa is increasing [34–36]. This increase is linked to the androgen receptor,
which regulates lipid metabolism, particularly by inducing the expression of sterol reg-
ulatory element-binding and fatty acid synthase proteins [37]. Similarly, the severity of
inflammation in the prostatectomy sample has also demonstrated a positive correlation
with hyperlipidemia, and prostate size has also been found to be strongly connected to the
degree of prostatic inflammation [38,39]. Collectively, these findings imply that hyperlipi-
demia could potentially play a pivotal role in both BPH and PCa. The relationship between
BPH and PCa remains a matter of debate [40–44]. Nevertheless, indications have arisen
that suggest an increased incidence of PCa in Korean patients with BPH and/or prostatitis.
Notably, this association was most pronounced in cases where both BPH and prostatitis
were present [41]. Similarly, a study involving Danish men observed a two- to three-fold
increased risk of PCa incidence and a two- to eight-fold increased risk of PCa mortality in
individuals with clinical BPH during a follow-up period of up to 27 years [44].
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figure highlights the main alterations observed in comparisons of the BPH vs. PCa and PCa vs.
Met groups, classified by compound families. The altered families are highlighted in red. The
box in the salmon, blue, and light blue colors corresponds to the tendencies in BPH, PCa, and Met
groups, respectively. LDLR: Low-density lipoprotein receptor; FSBPs: Fatty acid binding proteins;
CD36: N-linked glycosylated transmembrane protein; MG: Monoacylglycerols; DG: Diacylglycerol;
TG: Triacylglycerol; PC: Glycerophosphocholine, PE: Glycerophosphoethanolamine; PS: Glycerophos-
phoserine; PG: Glycerophosphoglycerols; PA: Phosphatidic acids; LPA: Lysophosphatidic acids.
Adapted from [30].

BPH and PCa are linked by a variety of variables, including metabolic syndrome,
hormones, and inflammation. Notably, inflammatory mediators may contribute to PCa
through a variety of signaling pathways, including apoptosis suppression, cell growth
stimulation, and tumor suppressor gene loss [45]. The role of hyperlipidemia in the
development of inflammation is particularly important. Furthermore, the findings suggest
that lipid imbalance, and, hence, inflammatory induction, is more pronounced in BPH,
reflecting a progressive development toward PCa. This suggests that early activation of
lipid metabolism is crucial for cancer development and establishment [46]. On the other
hand, metabolic changes play a pivotal role in tumor development and dissemination.
While glucose is typically recognized as the primary metabolic substrate in rapidly growing
tumors, other substrates, such as amino acids, pyruvate, lactate, and lipids, can also
expedite the metastatic progression [46,47]. Lipid metabolism holds particular significance
within the metastatic cascade, evident in elevated de novo lipid synthesis via ATP-citrate
lyase and fatty acid synthase, along with heightened expression of fatty acid transporters
(CD36). The accumulation of lipids in lipid droplets has been identified as a means to
energetically support invasiveness [48]. Moreover, membrane lipid imbalances may foster
invasion and migration processes triggered by the epithelial–mesenchymal transition of
metastasis-initiating cells, further facilitating the extravasation of cancer cells from the
bloodstream into distant organs [46,47].
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As previously described, there has generally been an observed positive correlation
between lipid levels and metastasis progression. However, this topic remains controversial
and is currently a focal point within the scientific community. Some research suggests
the possibility of a negative regulation of lipid metabolism. For instance, a study that
combined the proteogenomic features of metastatic colorectal cancer tumors found that
proteins enriched in metabolic pathways, such as fatty acid degradation, citrate cycle, and
oxidative phosphorylation, were downregulated in metastatic tumors [49]. In the same way,
the role of the fatty acid transporter CD36 has been assessed in pancreatic tumor cells, a
cancer type known for its significant invasion and metastatic potential. The CD36 gene has
been found to express itself at low levels in pancreatic cancer. Reduced CD36 expression is
associated with bigger tumor sizes and a poor prognosis for survival [50]. Interestingly,
the metabolic profiles of Met and PCa, analyzed in this research, revealed lower levels
of fatty acids, carnitines, and steroid lipids, along with higher levels of sphingolipids,
glycerophospholipids, and glycerolipids in Met patients compared to PCa patients. This
may reflect the cancer’s heterogeneity, as the altered behavior of lipidic families during the
PCa–Met transition reveals multiple nuances that are not yet fully understood.

Considering the multiple functions performed by lipids in cellular homeostasis, it is
intriguing to believe that dysregulation of this network plays a role in the development of
many illnesses [51,52]. This characteristic has driven the search and development of lipids
with potential in the diagnosis and prognosis of multiple diseases, particularly in cancer.
For example, a prospective pilot study that included 74 PCa patients, 74 BPH patients, and
72 healthy subjects analyzed 18 lipid metabolites as potential biomarkers for the diagnosis
of PCa with PSA levels in the gray zone of 4–10 ng/mL. This study found areas under the
curve greater than 0.8 and sensitivities and specificities ranging from 71.62% to 93.24%.
Interestingly, the trends of this group of lipid metabolites were found to be lower in the PCa
group compared to the BPH group, which is consistent with the findings in this research [53].
Other lipids, such as nonanedioic acid, LPC 18:0, LPE 18:2, pregnanetriol glucuronide,
decanoic acid (capric acid), heptadecanoic acid, and hexadecanedioic acid, have been
described as potential diagnostic biomarkers distinguishing between PCa patients and
healthy individuals [54].

In de novo lipid synthesis, acetyl-CoA serves as the fundamental building block for
fatty acids and can be produced from citrate or acetate. This process is intricately linked
to energy production. Numerous studies have identified disruptions in the processes
related to acyl-CoA catabolism in a wide range of cancers, including colorectal, breast,
melanoma, liver, lung, blood, and prostate cancers [55]. Given the involvement of acyl-
CoA metabolism in the context of cancer, some research has considered it a potential
diagnostic and prognostic biomarker. The enzyme long-chain fatty acyl-CoA synthetase,
responsible for activating fatty acids by catalyzing the condensation of fatty acids with a
molecule of coenzyme A to form a thioester, has been shown through a meta-analysis of
publicly available gene expression databases to exhibit a positive correlation with a distinct
subtype of triple negative breast cancer. This subtype is characterized by the absence of
the androgen receptor and is associated with an aggressive breast cancer phenotype [56].
Similarly, the enzyme acetyl coenzyme A synthase 2, responsible for converting acetate
to acetyl coenzyme A, was found to be upregulated in cervical squamous cell carcinoma
tissues through data mining and in vitro experiments. This discovery revealed that acetyl
coenzyme A synthase 2 is associated with a poor prognosis in this context [57]. The
present research identified metabolites such as hydroxybutyryl-CoA and oleoyl-CoA,
which exhibited AUC values greater than 0.8 and could be associated with the diagnostic
of BPH to PCa. However, it is essential for this information to be validated in a new
cohort study.

The main limitation of the present investigation involves the age difference between
the healthy controls and the other groups. However, the study’s purpose only considered
comparisons between BPH, PCa, and Met. A new group will be required to validate
the potential biomarkers provided as well as to implement guided procedures for their
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quantification. In the future, we intend to apply modifications to these parameters to obtain
more robust data through semi-targeted and quantitative lipidomics studies.

5. Conclusions

The present study established the metabolic features of BPH, PCa, and Met in plasma
metabolites using LC-QTOF-MS and GC-QTOF-MS and provided evidence of changes
in chemical families such as fatty acids, glycerolipids, glycerophospholipids, and sph-
ingolipids throughout PCa development. In addition, we also address how the lipid
imbalance in patients with BPH, PCa, and Met changes according to each of the diseases.
This shows that the dynamics of lipid family levels may be shifting, thereby participating
in the development and establishment of each pathology. Future studies should take this
into consideration.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/cancers15225465/s1, Supplementary Table S1: Altered metabolites
between PCa vs. BPH and PCa vs. Met comparisons; Figure S1: PCA models for metabolic and
lipidomic analysis; Figure S2: OPLS-DA permutation test plots; Figure S3: PLSDA Models for
comparisons regarding PSA, TNM, and Gleason score classifications.

Author Contributions: H.A.G.-P., A.S. and M.M., sample collection and processing; D.P.-R., M.P.C.
and M.S.-T., metabolomic data acquisition and processing; D.P.-R., M.P.C., M.M., M.S.-T. and E.J.-C.
analyzed and interpreted the metabolomics results; D.P.-R., M.P.C., M.S.-T. and H.A.G.-P. participated
in the discussion of the results; D.P.-R. and M.P.C. drafted the manuscript; H.A.G.-P. is the leader of
the project and designed the experiments, interpreted the results, and revised the manuscript. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Minciencias, grant number 1106-844-67709.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Ethics Committee of Hospital Universitario del Valle, Evaristo Garcia
(protocol code 074-2019 approved on 13 May 2019).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available in this article.

Acknowledgments: The authors acknowledge the use of the instruments and the scientific and
technical assistance of Metabolomics Core Facility–MetCore at the Universidad de Los Andes, a
facility supported by the vice-presidency for research. The authors would like to thank all the
voluntary participants of the study and the Hospital Universitario del Valle, Evaristo Garcia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Global Cancer Observatory. Available online: https://gco.iarc.fr/today (accessed on 17 May 2023).
2. Sharma, S.; Zapatero-Rodríguez, J.; O’Kennedy, R. Prostate Cancer Diagnostics: Clinical Challenges and the Ongoing Need for

Disruptive and Effective Diagnostic Tools. Biotechnol. Adv. 2017, 35, 135–149. [CrossRef] [PubMed]
3. De Koning, H.J.; Auvinen, A.; Sanchez, A.B.; Da Silva, F.C.; Ciatto, S.; Denis, L.; Gohagan, J.K.; Hakama, M.; Hugosson, J.;

Kranse, R.; et al. Large-Scale Randomized Prostate Cancer Screening Trials: Program Performances in the European Randomized
Screening for Prostate Cancer Trial and the Prostate, Lung, Colorectal and Ovary Cancer Trial. Int. J. Cancer 2002, 97, 237–244.
[CrossRef]

4. Bangma, C.H.; Roemeling, S.; Schröder, F.H. Overdiagnosis and Overtreatment of Early Detected Prostate Cancer. World J. Urol.
2007, 25, 3–9. [CrossRef] [PubMed]

5. DeSantis, C.E.; Lin, C.C.; Mariotto, A.B.; Siegel, R.L.; Stein, K.D.; Kramer, J.L.; Alteri, R.; Robbins, A.S.; Jemal, A. Cancer Treatment
and Survivorship Statistics, 2014. CA Cancer J. Clin. 2014, 64, 252–271. [CrossRef] [PubMed]

6. Vander Heiden, M.G.; DeBerardinis, R.J. Understanding the Intersections between Metabolism and Cancer Biology. Cell 2017,
168, 657–669. [CrossRef] [PubMed]

7. Faulds, M.H.; Dahlman-Wright, K. Metabolic Diseases and Cancer Risk. Curr. Opin. Oncol. 2012, 24, 58–61. [CrossRef] [PubMed]
8. Peng, G.; Pakstis, A.J.; Gandotra, N.; Cowan, T.M.; Zhao, H.; Kidd, K.K.; Scharfe, C. Metabolic Diversity in Human Populations

and Correlation with Genetic and Ancestral Geographic Distances. Mol. Genet. Metab. 2022, 137, 292–300. [CrossRef]
9. Mullins, J.K.; Loeb, S. Environmental Exposures and Prostate Cancer. Urol. Oncol. Semin. Orig. Investig. 2012, 30, 216–219. [CrossRef]

https://www.mdpi.com/article/10.3390/cancers15225465/s1
https://www.mdpi.com/article/10.3390/cancers15225465/s1
https://gco.iarc.fr/today
https://doi.org/10.1016/j.biotechadv.2016.11.009
https://www.ncbi.nlm.nih.gov/pubmed/27939303
https://doi.org/10.1002/ijc.1588
https://doi.org/10.1007/s00345-007-0145-z
https://www.ncbi.nlm.nih.gov/pubmed/17364211
https://doi.org/10.3322/caac.21235
https://www.ncbi.nlm.nih.gov/pubmed/24890451
https://doi.org/10.1016/j.cell.2016.12.039
https://www.ncbi.nlm.nih.gov/pubmed/28187287
https://doi.org/10.1097/CCO.0b013e32834e0582
https://www.ncbi.nlm.nih.gov/pubmed/22123235
https://doi.org/10.1016/j.ymgme.2022.10.002
https://doi.org/10.1016/j.urolonc.2011.11.014


Cancers 2023, 15, 5465 15 of 16

10. Hinata, N.; Fujisawa, M. Racial Differences in Prostate Cancer Characteristics and Cancer-Specific Mortality: An Overview. World
J. Men’s Health 2022, 40, 217–227. [CrossRef]

11. Sciacovelli, M.; Gaude, E.; Hilvo, M.; Frezza, C. The Metabolic Alterations of Cancer Cells. In Methods in Enzymology; Academic
Press Inc.: Cambridge, MA, USA, 2014; Volume 542, pp. 1–23, ISBN 9780124166189.

12. Oermann, E.K.; Wu, J.; Guan, K.L.; Xiong, Y. Alterations of Metabolic Genes and Metabolites in Cancer. Semin Cell Dev. Biol. 2012,
23, 370–380. [CrossRef]

13. Suri, G.S.; Kaur, G.; Carbone, G.M.; Shinde, D. Metabolomics in Oncology. Cancer Rep. 2023, 6, e1795. [CrossRef]
14. Subramani, R.; Poudel, S.; Smith, K.D.; Estrada, A.; Lakshmanaswamy, R. Metabolomics of Breast Cancer: A Review. Metabolites

2022, 12, 643. [CrossRef] [PubMed]
15. Kdadra, M.; Höckner, S.; Leung, H.; Kremer, W.; Schiffer, E. Metabolomics Biomarkers of Prostate Cancer: A Systematic Review.

Diagnostics 2019, 9, 21. [CrossRef] [PubMed]
16. EAU Guidelines. 2023. Available online: http://uroweb.org/guidelines/compilations-of-all-guidelines/ (accessed on 16 June 2023).
17. Kirwan, J.A.; Gika, H.; Beger, R.D.; Bearden, D.; Dunn, W.B.; Goodacre, R.; Theodoridis, G.; Witting, M.; Yu, L.R.; Wilson, I.D.

Quality Assurance and Quality Control Reporting in Untargeted Metabolic Phenotyping: MQACC Recommendations for
Analytical Quality Management. Metabolomics 2022, 18, 70. [CrossRef] [PubMed]

18. Fan, S.; Kind, T.; Cajka, T.; Hazen, S.L.; Tang, W.H.W.; Kaddurah-Daouk, R.; Irvin, M.R.; Arnett, D.K.; Barupal, D.K.; Fiehn, O.
Systematic Error Removal Using Random Forest for Normalizing Large-Scale Untargeted Lipidomics Data. Anal. Chem. 2019,
91, 3590–3596. [CrossRef]

19. Kind, T.; Wohlgemuth, G.; Lee, D.Y.; Lu, Y.; Palazoglu, M.; Shahbaz, S.; Fiehn, O. FiehnLib: Mass Spectral and Retention Index
Libraries for Metabolomics Based on Quadrupole and Time-of-Flight Gas Chromatography/Mass Spectrometry. Anal. Chem.
2009, 81, 10038–10048. [CrossRef]
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