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1. Supplementary details on the modeling framework 
 

a. Characterization of tumor dynamics 

Change in tumor size (TS) over time was described considering a linear net tumor growth (𝑘𝑔𝑟𝑜𝑤𝑡ℎ) and 

first-order drug-induced tumor decay (𝛽0) as shown in Eq. 1. Drug-induced tumor decay was described 
as a function of paclitaxel area under the plasma concentration-time curve from start to end of a cycle 
(AUCcycle), based on a single paclitaxel dose administered on the first day of a 21-day cycle. To account for 
resistance development, the drug effect was estimated as exponentially decreasing over time (𝜆). 
Therefore, the change in TS over time was described as follows, 

 

dTS(t)

dt 
= 𝑘𝑔𝑟𝑜𝑤𝑡ℎ(𝑡) − 𝛽0 ∙ e-λ ∙

  
t∙

 
𝐴𝑈𝐶𝑐𝑦𝑐𝑙𝑒∙ TS(t)  

 
Equation 1 

where 
dTS(t)

dt 
 denotes the change in TS over time; 𝑘𝑔𝑟𝑜𝑤𝑡ℎ is the linear net tumor growth rate constant; 𝛽0 

is the drug-induced tumor decay rate constant per unit of paclitaxel exposure at time = 0; 𝜆 is the rate 
constant for change in drug effect over time; and AUCcycle is the paclitaxel area under the plasma 
concentration-time curve from start to end of a cycle based on a single paclitaxel dose administered on 
the first day of a 21-day cycle.  
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b. Derivation of population and individual tumor size model parameters from the tumor size model 

developed within the multiple imputation framework 

In contrast to simply taking the arithmetic mean of the individual parameter estimates across the 𝑚 
replicates within the multiple imputation framework, the individual TS parameters along with their 
associated variances and uncertainty were computed. Hence, the variability and uncertainty associated 
with the multiple imputation approach were taken into consideration. This allowed for a sequential 
modeling approach (1) where individual TS parameter estimates along with their uncertainty predict 
longitudinal TS and consequently influence C-reactive protein (CRP) concentrations.  

Derivation of population and individual TS model parameters are outlined in steps 1 and 2, respectively. 

Population parameters (step 1) 

Population TS model parameter estimates (i.e., 𝑘𝑔𝑟𝑜𝑤𝑡ℎ, 𝜆, 𝛽0) from the 𝑚 replicates of the multiple 

imputation were pooled according to Rubin’s rule (Eqs. 2 and 3) (2) to obtain the mean of the population 
parameters (Eq. 2)  and their associated variances and standard errors (Eq. 3). 

�̃� =
1

𝑚
∑ �̂�(𝛾)

𝑚

𝛾=1
 

  Equation 2 

 

�̃� =
1

𝑚
∑ �̂�(𝛾)

𝑚

𝛾=1
  +  

𝑚 + 1

𝑚(𝑚 − 1)
∑ ( �̂�(𝛾)

𝑚

𝛾=1
− �̃�)2 

Equation 3 

 

where in Eqs. 2 and 3, 𝑚 is the number of replicates (here 𝑚 = 50), 𝛽 is a TS parameter,  �̂�(𝛾) is the 

estimate of 𝛽 from the imputed dataset 𝛾 (𝛾 = 1, ..., 𝑚), �̃� is the calculated estimate of 𝛽, 

�̃� is the calculated variance associated with �̃�, and �̂�(𝛾) is the estimate of 𝑏 from the imputed 
data set 𝛾 (𝛾 = 1, ..., 𝑚).  

Individual parameters (step 2) 

Following the same principle described by Rubin (2), to obtain individual (𝑖) parameter estimates (i.e., 
𝑘𝑔𝑟𝑜𝑤𝑡ℎ,𝑖 , 𝜆𝑖, 𝛽0,𝑖) from the 𝑚 replicates of the multiple imputation, mean individual parameter estimates,  

�̃�, of the individual variability, η , i.e., η𝐾𝑔𝑟𝑜𝑤𝑡ℎ
, η𝜆, ηβ were computed at an individual level to obtain a 

single parameter set per individual according to Eq. 2. The computed mean individual variability was then 
transformed to the respective individual parameter estimate as parameterized in the TS model and 
according to Eq. 4, 

𝑃𝑎𝑟𝑖 = 𝑃𝑎𝑟𝑚𝑒𝑎𝑛 ∙ 𝑒η𝑝𝑎𝑟,𝑖  Equation 4 
 

where 𝑃𝑎𝑟𝑖 is the individual parameter estimate, 𝑃𝑎𝑟𝑚𝑒𝑎𝑛 is the mean population parameter estimate 
obtained from step 1 and  η𝑝𝑎𝑟,𝑖 is the computed mean individual variability. 

The calculated variances, �̃� (Eq. 3), associated with the individual TS parameters were therefore the sum 

of the mean of the individual variances, �̂�, associated with the individual variability, η; and the second 

term (
𝑚+1

𝑚(𝑚−1)
∑ ( �̂�(𝛾)𝑚

𝛾=1 − �̃�)2) where �̂� is the estimate of the individual variability, η, and �̃� is the 

calculated mean individual estimate of the individual variability. The variance was afterwards used as the 
source of uncertainty (standard error) associated with the individual TS parameters. 
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c. Characterization of C-reactive protein concentration-time course 

The CRP model aimed to characterize circulating CRP concentrations through a structural turnover model. 
In this model, CRP concentration was governed by a zero-order production rate constant (𝐾𝑖𝑛) and a first-
order degradation rate constant (𝐾𝑜𝑢𝑡) (3,4). Initially, a steady state was assumed, where baseline was 

derived from the ratio of 𝐾𝑖𝑛:𝐾𝑜𝑢𝑡 (3,4).  𝐾𝑜𝑢𝑡  was fixed to result in a CRP half-life of 19 h (𝐾𝑜𝑢𝑡 =
𝑙𝑛2

19 ℎ
), 

which was reported to be independent of the (patho)physiological state of the individual (5). 

As 𝐾𝑖𝑛 was the single determinant of CRP concentration and the only estimable parameter, interindividual 
variability (IIV) was considered only on 𝐾𝑖𝑛 as an exponential function assuming a lognormal distribution. 
Residual variability was modeled as an additive component in the log domain (corresponding to an 
exponential relation in the linear scale). 

Variables that could impact CRP concentrations were chosen based on clinical relevance and graphical 
relations (i.e., correlation between those variables and 𝐾𝑖𝑛, Table S1) and were investigated for a potential 
statistically significant impact only on 𝐾𝑖𝑛 —as the precursor conversion step of CRP production—using a 
stepwise covariate model (SCM)-building approach (6). 

Table S1. List of variables tested for impact on C-reactive protein production 

Characteristics of variables Continuous variables Categorical variables 

Variables that reflect disease 

aggressiveness 

• Baseline tumor size  • Disease stage 

• Baseline ECOG status 

• Presence/absence of 

brain lesions 

• Number of target lesions 

• Number of non-target lesions 

• Sum of target and non-target 

lesions 

Variables that reflect an 

inflammatory status 

• BMI as marker of 

obesity 

• Smoking status 

Variables of physiological 

relevance to CRP production by 

hepatocytes 

• ALT and AST as markers 

of liver injury 

• Baseline IL-6 as 

cytokine precursor of 

CRP production 

 

• Presence/absence of liver lesions 

as marker of liver injury 

 

Variables showing correlation 

with CRP production in the 

graphical exploration 

— • NSCLC histology 

ALT: alanine amino transferase activity; AST: aspartate amino transferase activity; BMI: body mass index; CRP: C-

reactive protein; ECOG: Eastern Cooperative Oncology Group; IL-6: interleukin 6; NSCLC: non-small-cell lung cancer. 
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d. Stepwise covariate model building 

To identify the most statistically significant variables impacting specific model parameter(s), the SCM 
building approach provided by PsN (6,7) was used.  

The SCM was a two-step procedure. In the first step, different variables were included univariately to the 
parameter and the variable that resulted in the most significant improvement in model performance (i.e., 
lowest p-value) was retained in the model. The process was repeated with the remaining variables until 
no further inclusion of a parameter-variable relationship resulted in a significant model improvement (full 
model).  

In the second step, starting with the full model, a stepwise backward elimination step was performed 
where each of the included variables was removed, one at a time, and the variable that did not result in 
a significant worsening in the model performance was excluded. This continued until removal of any 
variable was associated with significant worsening of model performance (6).  

In this work, a p-value <0.05 per 1 𝑑𝑓 was set as a threshold for inclusion of a parameter-variable 
relationship in the forward inclusion step and a stricter criterion of p-value <0.01 per 1 𝑑𝑓 was set as a 
threshold for the exclusion of a parameter-variable relationship in the backward elimination step, to 
retain variables of highest impact in the final model. 
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e. Functional relationships between CRP production rate constant (𝒌𝒊𝒏) and the identified variables 

The functional relationships between 𝑘𝑖𝑛 and the identified variables interleukin-6 (IL6), baseline TS 

(BLTS), smoking status, and disease stage are described in Eq. 5,  

𝑘𝑖𝑛 = 𝜃𝐾𝑖𝑛 ∙ (1 + 𝜃𝐼𝐿6 ∙ (𝐼𝐿6 − 2.57)) ∙ exp(𝜃𝑇𝑆 ∙ (𝐵𝐿𝑇𝑆 − 8.25))

∙  {
1                 , 𝑁𝑜𝑛 − 𝑠𝑚𝑜𝑘𝑒𝑟𝑠

1 + 𝜃𝑆𝑀𝐾2   , 𝐹𝑜𝑟𝑚𝑒𝑟 𝑠𝑚𝑜𝑘𝑒𝑟𝑠
1 + 𝜃𝑆𝑀𝐾3    , 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑚𝑜𝑘𝑒𝑟𝑠 

∙ {
1                 , 𝑆𝑡𝑎𝑔𝑒 𝐼𝑉

1 + 𝜃𝑠𝑡𝑎𝑔𝑒   , 𝑆𝑡𝑎𝑔𝑒 𝐼𝐼𝐼𝐵 ∙ exp(𝜂𝐾𝑖𝑛) 

Equation 5 

where 𝜃𝐾𝑖𝑛 is 𝑘𝑖𝑛 of a non-smoker with disease stage IV, baseline IL6 of 2.57 pg/L, and baseline TS of 8.25 
cm (median values); 𝜃𝐼𝐿6  is the fractional change in CRP production rate constant per unit change in 
baseline IL-6 from the median value of 2.57 pg/L; 𝜃𝑇𝑆  is the exponent reflecting the change in the natural 
log 𝑘𝑖𝑛 per unit change in baseline tumor size from the median value of 8.25 cm; 𝜃𝑆𝑀𝐾2  and 𝜃𝑆𝑀𝐾3 are 
the fractional changes in 𝑘𝑖𝑛 in former and current smokers, respectively, compared with non-smokers; 
and 𝜃𝑠𝑡𝑎𝑔𝑒  is the fractional change in 𝑘𝑖𝑛 in patients with disease stage IIIB compared with patients with 

disease stage IV. 
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f. Development of time-to-event progression-free survival base model 

A landmark survival analysis with a landmark time chosen at the beginning of treatment cycle 3 (i.e., day 

42 from the start of treatment) was performed. The TTE base model with a parametric lognormal function 

(Figure S1, E) best described the observed progression-free survival (PFS) events over time compared with 

the exponential (Figure S1, A), Weibull (Figure S1, B), Gompertz (Figure S1, C)  or log-logistic  (Figure S1, 

D) hazard functions, where all showed a strong underprediction of PFS events after 6 months. Even though 

the lognormal hazard function slightly underpredicted PFS events between 7 months and 14 months, they 

were still closely aligned within the 90% confidence interval (shaded beige area) (Figure S1, E). Moreover, 

the lognormal hazard function was associated with superior model performance compared with the 

exponential (∆AIC= +60.6), Weibull (∆AIC= +37.8), Gompertz (∆AIC= +60.5), or log-logistic (∆AIC= +36.6) 

hazard functions. 

Therefore, the lognormal TTE model was adopted as the base model for the subsequent exploration of 

predictors. 

 

Figure S1.  Kaplan-Meier visual predictive checks (n = 250) comparing the predictive performance of time-to-event 

base models with (A) exponential, (B) Weibull, (C) Gompertz, (D) log-logistic, and (E) lognormal hazard functions to 

the observed progression-free survival data. 

Solid line: observed progression-free survival data (thin vertical lines represent censoring times corresponding to the 

time of the patient’s last participation in the study), dashed line: median model predicted profile, with 90% 

confidence interval (beige shade). 

 

  



Nassar et al. 
 

8 
 

g. Development of parametric time-to-event overall survival base model 

Analogous to the PFS time-to-event anlaysis, a landmark survival analysis with a landmark time chosen at 

the beginning of treatment cycle 3 (i.e., day 42 from the start of treatment) was performed. The TTE base 

model with a parametric Weibull function best described the observed overall survival over time 

compared to the exponential and Gompertz hazard functions (Figure S2). Despite overpredicting survival 

between 6 months and 17 months (i.e., underprediction of the hazard of death), and a slight 

underprediction after 24 months, the Weibull TTE model still showed an adequate description in the early 

months (<6 months) and between 17 and 24 months (Figure S2, B). On the other hand, although the 

exponential and Gompertz TTE models adequately predicted the risk of death during the first 6 months 

(Figure S2, A, C), the constant TTE model showed a consistent overprediction of survival over the entire 

time-course (Figure S2, A), whereas the Gompertz TTE model alternated between an overprediction of 

survival (between 6 months and 24 months) followed by an underprediction (>24 months) (Figure S2, C). 

Moreover, they did not provide a significant improvement in model performance compared with the 

Weibull TTE model (∆AIC= +20.1 and +16.1, respectively). 

Therefore, the Weibull TTE model was adopted as the base model for the subsequent exploration of 

predictors. 

 

Figure S2.  Kaplan-Meier visual predictive checks (n = 250) comparing the predictive performance of time-to-event 

base models with (A) exponential, (B) Weibull, and (C) Gompertz hazard functions to the observed overall survival 

data. 

Solid line: observed survival data (thin vertical lines represent censoring times corresponding to the time of the 

patient’s last participation in the study), dashed line: median model predicted profile, with 90% confidence interval 

(green shade). 
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2. Additional supplementary tables 

Table S2. Baseline demographics and clinical characteristics of patients with C-reactive protein measurements  

Patient characteristic All patients (n=258) 

Age [years]  
median [range] 

 
64.0 [41.0, 78.0] 

Sex, n (%) 
Female  
Male 

 
91 (35.3)  
167 (64.7) 

Treatment arm, n (%) 
BSA-guided paclitaxel dosing arm  
PK-guided paclitaxel dosing arm 

 
126 (48.8)  
132 (51.2) 

Body weight [kg] 
median [range] 

 
74.0 [42.0, 135] 

Body height [cm] 
median [range] 

 
171 [146, 194] 

Body mass index [kg/m2] 
median [range] 

 
24.9 [16.8, 41.7] 

Body surface area [m2] 
median [range] 

 
1.86 [1.34, 2.49] 

Alanine amino transferase activity [U/L] 
median [range] 

 
23.0 [5.00, 125] 

Aspartate amino transferase activity [U/L] 
median [range] 

 
21.0 [9.00, 212] 

Smoking status, n (%) 
Non-smokers  
Former smokers  
Current smokers 

 
28 (10.9)  
132 (51.2) 
98 (38.0) 

Disease stage, n (%) 
IIIB  
IV 

 
41 (15.9)  
217 (84.1) 

NSCLC histology, n (%) 
Adenocarcinoma 
Squamous-cell carcinoma 
Bronchioalveolar carcinoma   
Carcinoma, not otherwise specified  

 
165 (64.0)  
60 (23.3) 
1 (0.388)  
32 (12.4)  

Brain lesions, n (%) 
No  
Yes 

 
224 (86.8)  
34 (13.2) 

Liver lesions, n (%) 
No  
Yes 

 
207 (80.2)  
51 (19.8) 

Baseline ECOG performance status, n (%) 
0  
1  
2 

 
135 (52.3)  
105 (40.7)  
18 (6.98) 

BSA: body surface area; ECOG: Eastern Cooperative Oncology Group; NSCLC: non-small-cell lung cancer; PK: 
pharmacokinetic. 
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Table S3. Sampling frequency of C-reactive protein 

Time of C-reactive protein sample Number of samples 

 Day 1 Day 2 

Cycle* 1 255 87 

Cycle* 2 210 70 

Cycle* 3 147 — 

End-of-treatment 170 — 

Total 939 

*Each cycle was 3-week long 

 

 

Table S4. Population and individual tumor size model parameters  

Parameter [unit] Population parameters* Individual parameters 

Parameter 

estimate 

RSE, % Parameter estimate 

median [range] 

SE, % 

median [range] 

𝑘𝑔𝑟𝑜𝑤𝑡ℎ [cm/h] 1.03 × 10-4 

 

43.2 1.04 × 10-4 

[2.79 × 10-5, 3.88 × 10 -3] 

1.17 

[0,1.25] 

𝛽 [(µmol/Lh)
-1
h

-1
] 2.30 × 10-5 12.8 2.30 × 10-5 

[1.11 × 10-5, 2.11 × 10-4] 

0.612 

[0,0.853] 

𝜆 [1/h] 8.75 × 10-4 

 

15.4 8.75 × 10-4 

[2.42 × 10-4, 1.22 × 10-3] 

0.494 

[0,0.538] 

*As reported in (8) 

𝛽: paclitaxel area under the plasma concentration-time curve from start to end of a cycle-driven tumor decay rate 

constant at start of treatment (time = 0); 𝑘𝑔𝑟𝑜𝑤𝑡ℎ: linear net tumor growth rate constant; 𝜆: rate constant for 

exponential decline in drug effect over time; RSE: relative standard error; SE: standard error. 
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3. Additional supplementary figures 

 

Figure S3. Forest plot of the impact of significant variables on C-reactive protein production rate constant (𝐾𝑖𝑛) 

relative to the reference value 1 (bold vertical line, reference patient: non-smoker, disease stage IV, median baseline 

tumor size = 8.25 cm, median baseline IL-6 = 2.57 pg/mL). Effects of continuous variables (i.e., baseline IL-6, baseline 

tumor size) are shown at the 5th and 95th percentiles of the respective variable and effects of categorical variables 

(i.e., smoking status, disease stage) are shown relative to the reference category. 

Black boxes: variable effect; horizontal lines: 95% confidence intervals (CI); IL-6: interleukin-6; TS: tumor size.  
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Figure S4.  Basic goodness-of-fit plots of coupled tumor dynamics-CRP model [A] observations versus population 

predictions; [B] observations versus individual predictions; [C] conditional weighted residual versus population 

predications; [D] conditional weighted residuals versus time. Blue dots: data points; solid black line: line of identity 

of slope 1 or zero. CRP: C-reactive protein. 
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Figure S5. Visual predictive check (n = 250 simulations) of the coupled tumor dynamics-CRP model. Dots: observed 

CRP concentrations; solid red and black lines: median of the observed and simulated CRP concentrations, 

respectively; upper and lower dotted red and black lines: 5th and 95th percentiles of the observed and simulated CRP 

concentrations, respectively. Shaded areas: 95% confidence interval of the simulated percentiles. The number of 

bins was set to 8 with equal number of observations. CRP: C-reactive protein. 
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