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Simple Summary: This report shows that KLF5 plays a crucial role in the progression of chronic
pancreatitis to pre-neoplastic precursor lesions. Notably, the deletion of Klf5 from pancreatic acinar
cells by itself or in the context of activating KRAS mutation resulted in a significant reduction
in inflammatory and stromal activation and, thus, inhibition of chronic pancreatitis progression.
Furthermore, this study demonstrated that KLF5 exerts its role by directly activating profibrotic
and inflammatory cytokines. Using ChIP-PCR, we demonstrated that KLF5 binds directly to the
Il1b, Il6, and Tgfb1 gene promoters in vitro and in vivo. Deletion of Klf5 during chronic pancreatitis
development and progression resulted in a decrease of several vital chemokines, such as CCL6, CCL11,
and CCL21. In summary, we showed that KLF5 regulates inflammatory and fibrotic responses during
chronic pancreatitis.

Abstract: Chronic pancreatitis results in the formation of pancreatic intraepithelial neoplasia (PanIN)
and poses a risk of developing pancreatic cancer. Our previous study demonstrated that Krüppel-like
factor 5 (KLF5) is necessary for forming acinar-to-ductal metaplasia (ADM) in acute pancreatitis.
Here, we investigated the role of KLF5 in response to chronic injury in the pancreas. Human
tissues originating from chronic pancreatitis patients showed increased levels of epithelial KLF5.
An inducible genetic model combining the deletion of Klf5 and the activation of KrasG12D mutant
expression in pancreatic acinar cells together with chemically induced chronic pancreatitis was used.
The chronic injury resulted in increased levels of KLF5 in both control and KrasG12D mutant mice.
Furthermore, it led to numerous ADM and PanIN lesions and extensive fibrosis in the KRAS mutant
mice. In contrast, pancreata with Klf5 loss (with or without KrasG12D) failed to develop ADM, PanIN,
or significant fibrosis. Furthermore, the deletion of Klf5 reduced the expression level of cytokines
and fibrotic components such as Il1b, Il6, Tnf, Tgfb1, Timp1, and Mmp9. Notably, using ChIP-PCR,
we showed that KLF5 binds directly to the promoters of Il1b, Il6, and Tgfb1 genes. In summary, the
inactivation of Klf5 inhibits ADM and PanIN formation and the development of pancreatic fibrosis.

Keywords: Krüppel-like factor 5; Kirsten rat sarcoma viral oncogene homolog; pancreatic intraep-
ithelial neoplasia; acinar-to-ductal metaplasia

1. Introduction

Pancreatitis (acute and chronic) is a major gastrointestinal disorder, with acute pancre-
atitis being one of the most frequent causes of gastrointestinal-related hospitalization [1,2].
Acute pancreatitis is caused by acute injury to acinar cells, characterized by aberrant en-
zyme synthesis in the acinar cells, followed by the inhibition of enzyme secretion, increased
inflammation, and transient damage to the tissue. Chronic injury, with continuous in-
flammation, increased activity of stellate cells, fibrosis, and atrophy of acinar cells, can
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progress to pancreatic intraepithelial neoplasia, a precursor to pancreatic cancer [3–10].
During chronic pancreatitis, recurrent injury to the pancreatic acinar cells due to premature
activation of pancreatic enzymes results in the autodigestion of pancreatic parenchyma.
Subsequently, proinflammatory mediators promote immune cell infiltration [11,12]. In addi-
tion, injured pancreatic acinar cells and immune cells produce cytokines and growth factors
such as IL-1, IL-6, IL-8, TGF-β, TNF-α, PDGF, and VEGF that simulate pancreatic stellate
cells (PSCs). In turn, activated PSCs produce autocrine factors (mainly PDGF, TGF-β, IL-1,
IL-6, and Endothelin-1) that support their active profibrotic state. These factors mediate
extensive extracellular matrix remodeling, including the deposition of collagen fibers with
progressive fibrosis and stiffening of the tissue, creating an environment supportive of the
evolution of neoplasia [13–20].

KRAS is mutated in more than 90% of pancreatic cancers [21]. It is well-established that
progression from the normal pancreas to pancreatic cancer is initiated by a point mutation
in the KRAS gene, followed by mutation(s) in tumor suppressor genes such as CDKN2A,
TP53, and DPC4 [22–25]. Importantly, mutations in KRAS are often found in early/pre-
neoplastic lesions resulting from chronic pancreatitis [26,27]. Elevated KRAS levels in
pancreatic acinar cells with a persistent inflammatory injury during chronic pancreatitis
lead to fibrosis and early neoplasia and increase the likelihood of developing pancreatic
cancer [28–31].

Krüppel-like factor 5 (KLF5) is a member of the specificity proteins and Krüppel-
like factor (KLF) family of transcription factors that are characterized by a triple-zinc
finger DNA-binding domain at the carboxyl termini [32]. KLF5 can promote proliferation,
embryonic stem cell self-renewal, cell survival, and differentiation [33–39]. Notably, KLF5
plays an essential role in the physiology and pathophysiology of extensive regions in the
digestive tract, including the oral mucosa, esophagus, liver, stomach, and small and large
intestines [40]. KLF5 mediates the activity of pathways which are central to inflammation
and/or carcinogenesis, such as MAPK, PI3K, TCF/β-catenin, and NFkB, and, conversely, is
regulated by these pathways [36,41–46]. It is an essential mediator of tumor development
and progression [47].

KLF5 is overexpressed in pancreatic ductal adenocarcinomas (PDACs) compared to
normal tissue. It was identified as a pro-oncogenic factor using an RNA interference-based
functional screen in pancreatic cancer cell lines [48,49]. Importantly, data generated by the
TCGA research network showed a strong negative correlation between KLF5 positivity
and patient survival [50]. Our previous study showed that KLF5 is expressed in most
human PDACs and the mouse model of oncogenic KRAS-induced PanIN formation [51].
Furthermore, we showed that inhibition of Klf5 reduced the proliferation of pancreatic can-
cer cells in vitro and reduced tumor growth in a xenograft model of pancreatic cancer [51].
We observed that KLF5 is not expressed in normal pancreatic acinar cells, but its levels
increased in foci undergoing ADM or PanIN transformation. We demonstrated that KLF5
is necessary and sufficient for a step-wise progression from acinar cells to ADM to PanIN
during acute injury to the pancreas independently of KRAS mutation [51].

Here, we demonstrate the role of KLF5 in chronic injury and its role in regulating
the pancreatic microenvironment during chronic pancreatitis development. To this end,
we employed an animal model with inducible deletion of Klf5 or activation of KrasG12D

mutant in pancreatic acinar cells combined with repeated injection of cerulein to mimic
chronic pancreatitis. Our results showed that the deletion of Klf5 (with or without KrasG12D)
from pancreatic acinar cells inhibits the development of chronic injury-mediated ADM
and PanIN. In addition, the levels of DNA damage and cell proliferation were significantly
reduced without Klf5. Notably, qPCR data showed that the deletion of Klf5 from pancreatic
acinar cells reduced the expression levels of multiple proinflammatory and profibrotic
factors. Furthermore, ChIP-PCR demonstrated that KLF5 directly binds to the promoters of
Il1b, Il6, and Tgfb1. In summary, we showed that KLF5 plays a vital role in mediating ADM
and PanIN of chronic pancreatitis by regulating the inflammatory response of acinar cells.
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2. Materials and Methods
2.1. Animal Studies

All mice were housed in the Division of Laboratory Animal Resources (DLAR) at
Stony Brook University. All studies involving mice have been approved by the Stony
Brook University Institutional Animal Care and Use Committee (IACUC) and main-
tained on a 12:12 h light-dark cycle. The DLAR facility has optimized conditions, in
terms of well-regulated temperature, humidity, and light settings, to ensure a stable, re-
producible environment for animal growth. Mice with the following genotypes were
used in this study: Ptf1aCreERTM;Rosa26tdTomato/+, Ptf1aCreERTM;Rosa26tdTomato/+;KrasG12D,
Ptf1aCreERTM;Rosa26tdTomato/+;Klf5fl/fl, and Ptf1aCreERTM;Rosa26tdTomato/+;KrasG12D;Klf5fl/fl. All
mice were maintained on a mixed background. We employed 8- to 12-week-old and gender-
matched mice in this study. To induce Cre-mediated recombination, we performed three
intraperitoneal injections of tamoxifen dissolved in corn oil every other day in week 1
(Sigma-Aldrich, St. Louis, MD, USA, T5648; 3 mg/injection). Corn oil-injected mice were
used as controls. Chronic pancreatitis was induced one week after the first tamoxifen
injection using I.P. injections of 100 µL cerulein (BACHEM, Bubendorf, Switzerland, H3220)
at 50 µg/kg of body weight in DPBS (Fisher Scientific, Hampton, NH, USA, 21-031-CV) six
times a day, three times a week, for four weeks. DPBS-injected mice were used as controls.
Pancreatic tissues were collected three days after the last cerulein or DPBS injection. Blood
samples were collected three days after the last injection via superficial temporal vein
sampling in a Micro sample tube Serum Gel (Sarstedt, Nümbrecht, Germany, 41.1378.005).
The tubes were centrifuged at 10,000× g for 10 min at room temperature, kept at 4 ◦C, and
shipped for analysis.

2.2. Histology

Pancreatic tissues were fixed overnight in 10% neutral buffered formalin (Azer Scien-
tific, Morgantown, PA, USA, CUNBF-5G), transferred into 70% ethanol, processed using
an automated processor, and paraffin-embedded in the Histology Research Core at Stony
Brook Cancer Center. Five-micron thick histologic sections of the pancreas were used for
all stains. Images were captured using a Nikon Eclipse 90i microscope (Nikon, Melville,
NY, USA).

2.2.1. Hematoxylin and Eosin Stain (H&E)

FFPE slides were de-paraffinized in xylene and rehydrated in a decreasing series of
ethanol baths (100%, 95%, 70%). Then, they were stained with Hematoxylin Gill solution
(Sigma-Aldrich, St. Louis, MD, USA, GHS332-1L) and Eosin Y solution (Sigma-Aldrich, St.
Louis, MD, USA, HT110216). Sections were dehydrated in a series of ethanol baths (70%,
95%, 100%), cleared in xylene, and mounted with Richard-Allan Scientific® Cytoseal™
X.Y.L. Mounting Medium (Fisher Scientific, Hampton, NH, USA, 8312-4). The tissues were
assessed by Dr. Jela Bandovic (Department of Pathology, Renaissance School of Medicine
at Stony Brook University) using previously established criteria [52,53].

2.2.2. Alcian Blue Stain

The stain was performed according to the manufacturer’s protocol (Vector Laborato-
ries, Newark, CA, USA, H-3501). Briefly, FFPE pancreas sections were de-paraffinized, then
hydrated in deionized water, immersed in acetic acid, washed, and immersed in Alcian
blue solution for 15 min at 37 ◦C in acetic acid. After rinsing with distilled water, the slides
were counterstained in Nuclear Fast Red, dehydrated, cleared in xylene, and mounted with
Richard-Allan Scientific® Cytoseal™ X.Y.L. Mounting Medium (Fisher Scientific, Hampton,
NH, USA, 8312-4).

2.2.3. Immunohistochemistry and Immunofluorescence

FFPE slides were de-paraffinized in xylene, rehydrated in a series of ethanol baths
(100%, 95%, 70%), and stained as described previously [51]. The slides were incubated
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with primary antibodies overnight at 4 ◦C with a gentle shake. Primary antibodies: anti-
KLF5 (R&D Systems, Minneapolis, MN, USA, AF3758), anti-KRT19 (Developmental Studies
Hybridoma Bank, Iowa City, IA, USA, TROMAIII), anti-Amylase (Santa Cruz Biotechnology,
Dallas, TX, USA, sc-46657), anti-α-SMA (Abcam, Cambridge, United Kingdom, ab124964).
The secondary antibodies were applied for 1 h at room temperature. Betazoid DAB (Biocare
Medical, Bronx, NY, USA, Cat. BDB2004L) was used for immunohistochemical detection.
The slides were dehydrated, cleared in xylene, and mounted with Richard-Allan Scientific®

Cytoseal™ X.Y.L. Mounting Medium (Fisher Scientific, Hampton, NH, USA, 8312-4). The
slides for immunofluorescent detection were counterstained with Hoechst (ThermoFisher
Scientific, Bohemia, NY, USA, H3569) and covered with Fluoromount™ Aqueous Mounting
Medium (Sigma-Aldrich, St. Louis, MD, USA, F4680).

2.2.4. Fibrosis Assessment

Masson’s Trichrome staining was performed at the Research Histology Core Labora-
tory in the Department of Pathology at Stony Brook University. The pancreatic sections
were stained with a Picro Sirius Red Stain Kit (Abcam, Cambridge, United Kingdom,
ab150681) according to the manufacturer’s instructions. The staining, polarized imaging,
and analysis were performed in the laboratory of Dr. Rosenberg (Department of Pathology,
Johns Hopkins University).

2.3. TMA Analysis

Human tissue microarrays BBS14011 and BIC14011a containing de-identified human
PDAC tumor samples were purchased from US Biomax, Inc. (Derwood, MD, USA). Human
normal-pancreatic tissues and human PDAC tissues were obtained from Stony Brook
Medicine Biobank (Stony Brook, NY, USA). T.M.A. arrays and tissues obtained from Stony
Brook Medicine Biobank were stained with antibodies against KLF5 (Section 2.2.3).

2.4. Isolation of tdTomato-Positive Cells

Pancreata were collected and dissociated with collagenase D (Sigma-Aldrich, St. Louis,
MD, USA, 11088858001) in HBSS (Fisher Scientific, Hampton, NH, USA, 14170161) and
incubated at 37 ◦C with shaking. HBSS with 5% FBS (Peak Serum, Inc., Wellington, CO,
USA, PS-FB3) was used to stop the reaction, and the cell suspension was passed through
a 500 mm nylon mesh following a 100 mm cell strainer. After centrifugation, the cell
pellet was re-suspended in 1 mL of DPBS (Fisher Scientific, Hampton, NH, USA, 21-031-
CV) with 2% FBS. The cell sorting was based on a tdTomato-positive signal at the Stony
Brook Research Flow Cytometry Laboratory facility using a FACSAria IIIu Cell Sorter (B.D.
Biosciences, Franklin Lakes, NJ, USA).

2.5. Gene Expression Analysis by Quantitative RT-PCR and qPCR Array

According to the manufacturer’s instructions, RNA was extracted using a PureLink RNA
Mini Kit (ThermoFisher Scientific, Bohemia, NY, USA, 12183018A). Primers against mouse Il1b
(Mm00434228_m1), Il6 (Mm00446190_m1), Tgfb1 (Mm01178820_m1), Tnf
(Mm00443258_m1), Mmp9 (Mm00442991_m1), Timp1 (Mm01341361_m1), Col1a1
(Mm00801666_g1), Acta2 (Mm00725412_s1), and Hprt1 (Mm03024075_m1) were purchased
from ThermoFisher Scientific (Bohemia, NY, USA,). cDNA was prepared using a SuperScript®

VILO™ cDNA Synthesis Kit (ThermoFisher Scientific, Bohemia, NY, USA, 11754-050). Analy-
sis was performed with Applied Biosystems TaqMan™ Gene Expression Master Mix (Ther-
moFisher Scientific, Bohemia, NY, USA, 43-690-16) using QuantStudio3 (ThermoFisher Sci-
entific, Bohemia, NY, USA) per standard protocols. Observed CT values were then used to
calculate fold change using the 2−∆∆Ct relative quantification method. Mouse Hprt1 was used
as the housekeeping control gene.
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2.6. Cell Lines, Reagents, and Cell Culture

HEK 293T cell line was purchased from the American Type Culture Collection (ATCC)
and cultured according to ATCC instructions. Plasmids encoding Il1b promoter fused to
mCherry (MPRM39757-PM02), Il6 promoter fused to mCherry (MPRM38977-PM02), and
Tgfb1 promoter linked to mCherry (MPRM41918-PM02) were purchased from GeneCopoeia
(Rockville, MD). EGFP-N1 is a plasmid that originated from Takara-Bio (San Jose, CA, USA),
and the plasmid pcDNA3.1HA-KLF5 construct was generated in our laboratory. HEK 293T
cells were transfected with pEGFP-N1 and each promoter clone using Lipofectamine 2000
Transfection Reagent (ThermoFisher Scientific, Bohemia, NY, USA, 11668027) according
to the manufacturer’s protocol. EGFP and mCherry signals were read using a microplate
reader (Spectramax3 Molecular Devices LLC, San Jose, CA, USA) with SoftMax Pro software
(version 7).

2.7. Chromatin Immunoprecipitation In Vitro and In Vivo

ChIP-PCR was performed using SimpleChIP Enzymatic Chromatin IP Kit (Cell Sig-
naling, Danvers, MA, USA, Cat. # 9003). The KLF5 binding sites were predicted using
JASPAR software (version 2022) [54]. For in vitro, HEK 293T cells transfected with plasmids
encoding Il1b promoter linked to mCherry (MPRM39757-PM02), Il6 promoter linked to
mCherry (MPRM38977-PM02), and Tgfb1 promoter linked to mCherry (MPRM41918-PM02)
were fixed with formaldehyde, and DNA was digested with Micrococcal nuclease. For
in vivo, we used frozen pancreas tissues and a modified protocol [55]. Briefly, snap-frozen
tissues were put on a glass slide with 1% FA in PBS (40 µL), finely minced, and after 15 min,
transferred to a new tube, and incubated in the total volume of 1 mL of 1% FA in PBS
at room temperature for 10 min. The reaction was stopped with the addition of glycine
and incubation at room temperature for 10 min. The tissues were washed three times
using PBS with Protease and Phosphatase inhibitors. The tissues were suspended in ChIP
buffer A (Cell Signaling, Danvers, MA, USA, Cat. # 9003), disrupted with tips by going up
and down 50 times, and incubated on ice for 10 min. After this step, the manufacturer’s
protocol was followed. Digested protein-DNA was incubated with an anti-KLF5 antibody
(Abcam, Cambridge, United Kingdom, ab137676) and precipitated using Protein G-coated
magnetic beads. Rabbit IgG and Anti-Histone 3 antibodies were used as negative and
positive controls, respectively. PCR was run using primer sets specific to the potential
binding site: Il1b primer set 1 (forward primer: CCTTGACTTCCAGGGATTAGAAA and
reverse primer: GCAGAAGTGAAGAGCTGTGA), Il1b primers set 2 (forward primer:
TCAGGGTAGCAATAGCCTCT and reverse primer: CCTTGGGTTAACTGATTTCACAAC,
Il6 primer set 1 (forward primer: AATAAGGTTTCCAATCAGCCCC and reverse primer:
ACAGACATCCCCAGTCTCATA), Tgfb1 primer set 1 (forward primer: CCACGCTAA-
GATGAAGACAGTG and reverse primer: CCTGGCTGTCTGGAGGAT), and Tgfb1 primer
set (forward primer: GTTGGTCACCGGCTTTAGTAG and reverse primer: GGGCACT-
GTCTTCATCTTAGC). DNA products were separated on 2% agarose gel, and images were
taken with NUGenius (Syngene, Frederick, MD, USA).

2.8. Mouse Cytokine Array

The Proteome Profiler Mouse XL Cytokine Array (R&D Systems, Minneapolis, MN,
USA, Cat. # ARY028) was used to assess cytokines. Frozen pancreatic tissues were sus-
pended in pre-chilled samples in lysis buffer (RIPA buffer, VWR, Radnor, PA, USA, Cat. #
8990, with 100× Halt Protease and Phosphatase inhibitor cocktail (ThermoFisher, Bohemia,
NY, USA, Cat. # 78440). The tissues were homogenized with a rotor-stator homogenizer
and sonicated three times at 10 s in sonicator QSonica. The extracts were then centrifuged at
10,000× g for 10 min at 4 ◦C and the supernatant was transferred to a new tube. Protein con-
centration was measured using BCA assay. The cytokine array procedure was performed
according to the manufacturer’s instructions. Cytokine arrays were developed and scanned
on a c400 imaging system (Azure Biosystems, Dublin, CA, USA, Cat. # c400). Individual
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dots were inspected for qualitative differences between groups, and quantification was
performed using Fiji imaging software (version 2.15.0) [56].

2.9. Statistics

The analysis of in vitro and in vivo experiments was performed with t-test and One-
way ANOVA tests with a value of p < 0.05 considered significant. This analysis used
GraphPad Prism version 10 for macOS (GraphPad Software, version 10.1.0, www.graphpad.
com, accessed on 1 August 2023).

3. Results
3.1. KLF5 Protein Expression Is Increased in Chronic Pancreatitis

We have previously shown that KLF5 is not present in the normal murine pancreas in
pancreatic acinar cells [51]. Additionally, Diaferia et al. showed that KLF5 staining is absent
in the normal human pancreas [57]. To confirm these results, we stained normal human and
mouse pancreata and showed a lack of KLF5 staining in pancreatic acinar cells and positive
staining for KLF5 in human PDAC specimens (Supplementary Figure S1). To assess the
levels of KLF5 in chronic pancreatitis specimens, we stained human tissue microarrays
(Figure 1). Here, we showed increased levels of KLF5 within the non-neoplastic epithelial
component of pancreatic tissues from patients with chronic pancreatitis (Figure 1).
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Figure 1. Representative immunohistochemistry images of KLF5 expression in the pancreas of chronic
pancreatitis patients (magnification 10×).

3.2. Inactivation of Klf5 in Pancreatic Acinar Cells’ Reduced Evolution to ADM and PanIN in
Chronic Pancreatitis

To investigate whether KLF5 is induced, during the progression of chronic pancre-
atitis, to pre-neoplastic states, we employed a mouse model with inducible deletion of
Klf5 and/or activation of KRASG12D mutant in combination with repetitive pancreatic
injury induced by cerulein. H&E-stained tissues of Ptf1aCreERTM;Rosa26tdTomato/+ and
Ptf1aCreERTM;Rosa26tdTomato/+;KrasG12D mice treated with cerulein for one, two, three, and
four weeks showed significant pancreatic damage compared to control mice (mice treated
with PBS for four weeks) (Figure 2). Over the course of four weeks of cerulein treatment,
pancreata from Ptf1aCreERTM;Rosa26tdTomato/+ presented with characteristics of ADM com-
pared with more extensive ADM and PanIN formation in pancreata from
Ptf1aCreERTM;Rosa26tdTomato/+;KrasG12D mice (Figure 2). Notably, pancreatic tissues of mice
with Klf5 deleted from pancreatic acinar cells show minimal epithelial changes (Figure 2). In
addition, pathology assessment confirmed the accumulation of pancreatic damage (edema,
necrosis, infiltration of inflammatory cells, loss of pancreatic ducts, ADM, neoplasia) in the
Ptf1aCreERTM;Rosa26tdTomato/+ and Ptf1aCreERTM;Rosa26tdTomato/+;KrasG12D. However, the in-
activation of Klf5 significantly decreased pancreatic damage (Figure 3). We demonstrated a
significant decrease in ADM and inflammatory infiltration in mice bearing a deletion of Klf5
compared to appropriate controls (Figure 3B,E). Ptf1aCreERTM;Rosa26tdTomato/+;KrasG12D mice
had increased levels of PanIN compared to other genotypes (Figure 3C). The edema levels
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were slightly increased in Ptf1aCreERTM;Rosa26tdTomato/+ and Ptf1aCreERTM;Rosa26tdTomato/+;
KrasG12D upon chronic injury as compared to mice with Klf5 deletion (Figure 3D). Addition-
ally, Ptf1aCreERTM;Rosa26tdTomato/+ and Ptf1aCreERTM;Rosa26tdTomato/+;KrasG12D mice had in-
creased loss of pancreatic ducts while Ptf1aCreERTM;Rosa26tdTomato/+;Klf5fl/fl and Ptf1aCreERTM;
Rosa26tdTomato/+;KrasG12D;Klf5fl/fl mice did not (Figure 3F). Following four weeks of pancre-
atic injury with cerulein, we assessed amylase and lipase levels in the serum in Ptf1aCreERTM;
Rosa26tdTomato/+ and Ptf1aCreERTM;Rosa26tdTomato/+;Klf5fl/fl mice. Amylase and lipase levels
were increased in the blood of Ptf1aCreERTM;Rosa26tdTomato/+ mice treated with cerulein
compared to Ptf1aCreERTM;Rosa26tdTomato/+;Klf5fl/fl mice where an increase was not apparent
(Figure 3G,H).
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Scale bar = 200 µm.
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Figure 3. Deletion of Klf5 in pancreatic acinar cells reduces injury during chronic pancreatitis in
a murine model of this disease. Ptf1aCreERTM;Rosa26tdTomato/+, Ptf1aCreERTM;Rosa26tdTomato/+;Klf5fl/fl,
Ptf1aCreERTM;Rosa26tdTomato/+;KrasG12D, and Ptf1aCreERTM;Rosa26tdTomato/+;KrasG12D;Klf5fl/fl mice were
treated with cerulein or PBS for four weeks. CER—cerulein. (A) Quantification of pancreatic damage
score per pancreas after cerulein treatment (n = 6). (B) ADM scores, (C) mPanIN score, (D) edema,
(E) inflammatory infiltration, (F) loss of pancreatic ducts per pancreas from female mice after cerulein
treatment. * p < 0.05, *** p < 0.001, and **** p < 0.0001 using one-way ANOVA test (Data represent
mean ± S.D.). Quantification of serum amylase (G) and lipase (H) from cerulein-treated and PBS-
treated mice (n = 3). *** p < 0.001 by t-test (Data represent mean ± S.D.).

Pancreatic epithelial KLF5 expression during chronic pancreatitis was assessed by
immunohistochemistry (IHC). KLF5 expression was increased in the ADM structures in
Ptf1aCreERTM;Rosa26tdTomato/+ mice, and in the ADM and PanIN structures of Ptf1aCreERTM;
Rosa26tdTomato/+;KrasG12D mice after repetitive injury. KLF5 was not detected in the respective
Klf5 knockout mice and the PBS-treated mice (Figure 4).
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ERTM;Rosa26tdTomato/+;KrasG12D mice upon cerulein treatment, while relatively absent in the re-
spective control mice. 

Figure 4. KLF5 levels are increased in the murine model of chronic pancreatitis. Immunohistochemi-
cal analysis of KLF5 expression in pancreatic tissues from female mice of indicated genotypes and
treatments. Scale bars = 200 µm. Arrows show examples of KLF5-positive staining.

3.3. Inactivation of Klf5 Reduces ADM and PanIN Formation in Chronic Pancreatitis

To assess the progression of ADM, we performed amylase (pancreatic acinar cell
marker) and KRT19 (pancreatic ductal marker) co-staining on pancreata from mice with
all four genotypes after PBS and cerulein treatment. Pancreatic tissue obtained from
Ptf1aCreERTM;Rosa26tdTomato/+ mice treated with cerulein showed co-staining of amylase and
KRT19 in injured pancreatic acinar cells confirming metaplastic changes (ADM) (Figure 5
and Supplementary Figure S2A). This increase was also observed in the Ptf1aCreERTM;
Rosa26tdTomato/+;KrasG12D mice upon cerulein treatment, while relatively absent in the re-
spective control mice.
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Figure 5. Genetic inactivation of Klf5 inhibits the transformation of acinar cells to ADM follow-
ing chronic injury. Multicolor immunofluorescence (IF) analysis of amylase (green), Keratin-19
(red), and nuclei (Blue) in pancreatic tissues from mice of indicated genotypes and treatments.
Scale bar = 200 µm.

To assess the degree of PanIN formation, we used Alcian blue to highlight mucin-
producing cells. We did not observe distinct Alcian blue-positive staining in Ptf1aCreERTM;
Rosa26tdTomato/+ mice, suggesting that, after four weeks of chronic injury, ADM is the preva-
lent phenotype in these mice. However, in Ptf1aCreERTM;Rosa26tdTomato/+;KrasG12D mice,
there was a significant increase in Alcian blue-positive cells after chronic injury compared
to other conditions (Figure 6 and Supplementary Figure S2B). These results suggest that
the deletion of Klf5 from pancreatic acinar cells prevents ADM and PanIN formation upon
chronic injury to the pancreas. In addition, we showed that incomplete deletion of Klf5 from
pancreatic acinar in Ptf1aCreERTM;Rosa26tdTomato/+;Klf5fl/fl mice results in PanIN formation at
a four-week time point (Figure 6, stain marked with an asterisk).
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Figure 6. Genetic inactivation of Klf5 inhibits PanIN formation following chronic injury. Al-
cian blue staining counterstained with Nuclear Fast Red of pancreatic tissue from mice of in-
dicated genotypes and treatments. Scale bar = 200 µm. * marks positive Alcian blue stain in
Ptf1aCreERTM;Rosa26tdTomato/+;Klf5fl/fl mice.

3.4. Klf5 Inactivation Reduces Fibrosis in Chronic Pancreatitis

Activation of pancreatic stellate cells is one of the phenomena of chronic pancreatitis
which leads to modifications of the pancreatic tissue’s microenvironment and the devel-
opment and progression of fibrosis [11,12,16,17,19]. To detect the levels of fibrosis, we per-
formed several stains: alpha-SMA [58], Masson’s trichrome [59], and Sirius Red [60]. Pancre-
atic tissues from both, Ptf1aCreERTM;Rosa26tdTomato/+;Klf5fl/fl and Ptf1aCreERTM;Rosa26tdTomato/+;
KrasG12D;Klf5fl/fl mice were negative. Myofibroblasts activation was assessed using an
alpha-SMA stain. We observed significant alpha-SMA staining in the pancreatic tissue of
the Ptf1aCreERTM;Rosa26tdTomato/+ cerulein-treated mice (Figure 7 and Supplementary Fig-
ure S2C). The majority of alpha-SMA-positive cells are localized near KRT19-positive ductal
cells. There is diffuse staining of alpha-SMA in the pancreas of Ptf1aCreERTM;Rosa26tdTomato/+;
KrasG12D. In contrast, almost no alpha-SMA staining was detected in mice with deleted
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Klf5 in pancreatic acinar cells. We quantified the percentage of tissue stained with alpha-
SMA (Supplementary Figure S2C), confirming minimal staining in mice with deleted
Klf5 compared with abundant staining in Ptf1aCreERTM;Rosa26tdTomato/+ and Ptf1aCreERTM;
Rosa26tdTomato/+;KrasG12D mice.
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Figure 7. Genetic inactivation of Klf5 in vivo suppresses pancreatic stellate cell activation. Repre-
sentative images of multicolor immunofluorescence (IF) analysis of alpha-SMA (green), Keratin-19
(red), and nuclei (Blue) in pancreatic tissues from mice of indicated genotypes and treatments.
Scale bar = 200 µm.

Masson’s trichrome staining confirmed a high level of fibrosis in Ptf1aCreERTM;
Rosa26tdTomato/+;KrasG12D mice treated with cerulein, focal collagen in Ptf1aCreERTM;
Rosa26tdTomato/+-treated mice with cerulein, and no significant staining in pancreatic tis-
sues mice with inactivated Klf5 in pancreatic epithelial cells in the setting of Ptf1aCreERTM;
Rosa26tdTomato/+ and Ptf1aCreERTM;Rosa26tdTomato/+;KrasG12D mice (Figure 8 and Supplemen-
tary Figure S2D). These results were confirmed with Picro Sirius Red, which demonstrated
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scarce collagen I/III in Ptf1aCreERTM;Rosa26tdTomato/+ pancreatic tissue obtained from mice
treated with cerulein, and a significant production of both collagens in Ptf1aCreERTM;
Rosa26tdTomato/+;KrasG12D mice treated with cerulein using bright field and polarization
microscopy (Supplementary Figure S2E). These results confirm that KLF5 is critical in
developing injury-related pancreatic fibrosis.
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Figure 8. Genetic inactivation of Klf5 in vivo suppresses fibrosis. Representative images of Masson’s
trichrome stain of mice of indicated genotypes and treatment. Scale bar = 200 µm.

3.5. KLF5 Regulates the Expression of Cytokines and Inflammatory Markers in Chronic
Pancreatitis

First, to examine whether the inactivation of Klf5 affects gene expression of inflamma-
tory and fibrotic markers in response to chronic pancreatitis at the RNA level, we collected
the whole pancreas from Ptf1aCreERTM;Rosa26tdTomato/+ and Ptf1aCreERTM;Rosa26tdTomato/+;
Klf5fl/fl mice after treatment with either PBS or cerulein. The results showed that the lev-
els of Il6, Il1b, Tgfb1, Tnf, Mmp9, Timp1, Col1a1, and Acta2 are increased in Ptf1aCreERTM;
Rosa26tdTomato/+ mice treated with cerulein as compared to PBS-treated mice (Supplementary
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Figure S3A). In contrast, these markers were not significantly increased in Ptf1aCreERTM;
Rosa26tdTomato/+;Klf5fl/fl mice after cerulein treatment compared to control mice (PBS-treated)
(Supplementary Figure S3B). A direct comparison of the expression levels of the afore-
mentioned markers showed that all but Tnf were significantly reduced in Ptf1aCreERTM;
Rosa26tdTomato/+;Klf5fl/fl mice after cerulein treatment as compared to all controls (Figure 9A).
To assess the impact of KLF5 on the inflammatory markers in pancreatic acinar cells,
we isolated tdTomato-positive cells from Ptf1aCreERTM;Rosa26tdTomato/+ and Ptf1aCreERTM;
Rosa26tdTomato/+;Klf5fl/fl mice treated with either PBS or cerulein. The tdTomato-positive cells
were sorted, and RNA was isolated as described in the Materials and Methods section. We
assessed the levels of Il6, Il1b, Tgfb1, and Tnf. The levels of these markers are increased in
pancreatic acinar cells Ptf1aCreERTM;Rosa26tdTomato/+ mice treated with cerulein but not in
Ptf1aCreERTM;Rosa26tdTomato/+;Klf5fl/fl cerulein-treated mice as compared to PBS-treated mice
(Supplementary Figure S3C,D). A direct comparison between these mice showed that the
deletion of Klf5 from pancreatic acinar cells significantly reduced their expression upon
chronic injury (Figure 9B).

3.6. KLF5 Binds to Il1b, Il6, and Tgfb1 Promoters In Vitro and In Vivo

To determine whether KLF5 directly induces Il1b, Il6, and Tgfb1 promoters’ activity,
we assessed these promoters’ relative activity levels upon Klf5 overexpression in HEK
293T cells. Our results showed that their activity is significantly induced in HEK 293T
cells transfected with Klf5-expressing plasmid compared to control cells (Figure 9C). We
searched for potential KLF5 binding sites in 1.5 kb sequences upstream of the translation
start site of Il1b, Il6, and Tgfb1 genes using the JASPAR database [54]. The result showed
two adjacent potential binding sites in the Il1b and Il6 promoter regions and three potential
binding sites in the Tgfb1 promoter region (Figure 9D). We then performed a ChIP-PCR
assay using HEK 293T cells transfected with Klf5-overpressing plasmid and each promoter
plasmid. Twenty-four hours after transfection, an anti-KLF5 antibody was used to pull
down bound DNA, and PCR was performed using primer sets designed for the potential
binding sites. The results showed that KLF5 binds to the promoters of Il1b, Il6, and Tgfb1
genes. Due to the proximity of both potential binding sites to the Il1b promoter, we could
not distinguish between them. Therefore, we used two primers to confirm our results
(Figure 9E). Similarly, two KLF5-binding sites in the Il6 promoter were too close to be
distinguished (Figure 9E). In the case of the Tgfb1 promoter, we could not differentiate
between two KLF5-binding sites located in the distal part of the promoter. Furthermore,
we performed a ChIP-PCR assay using pancreata from Ptf1aCreERTM;Rosa26tdTomato/+ and
Ptf1aCreERTM;Rosa26tdTomato/+;Klf5fl/fl mice treated with cerulein for one week (Figure 10).
Our results showed that KLF5 binds to the endogenous promoters of Il1b, Il6, and Tgfb1
upon chronic injury. At the same time, in mice with Klf5 deleted from their pancreatic acinar
cells, we could not pull down either of the promoters. In the in vivo model, we pulldown
only one tentative KLF5-binding site in the Tgfb1 promoter. Taken together, we showed
that KLF5 could directly bind to Il1b, Il6, and Tgfb1 promoters and increase their activity.
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Acta2 in the whole pancreatic tissues from mice of indicated genotypes and treatments. ** p < 0.01, 
*** p < 0.001, **** p < 0.0001, from one-way ANOVA test (Data represent mean ± S.D.). (B) qRT-PCR 
results of gene expression of Il6, Il1b, Tgfb1, and Tnf in tdTomato-positive cells originated from pan-
creatic tissues from mice of indicated genotypes and treatments. * p < 0.05, ** p < 0.01 from one-way 
ANOVA test (n = 3, data represent mean ± S.D.). (C) Relative activity of Il1b, Il6, and Tgfb1 promoters. 
HEK 293T cells were co-transfected with control plasmid or plasmid encoding KLF5 and either of 
the promoters. Twenty-four hours after transfection, the activity of the promoters was measured. ** 
p < 0.01, *** p < 0.001, **** p < 0.0001 by t-test (n = 6, Data represent mean ± SD). (D) Predicted binding 
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Figure 9. KLF5 regulates the expression of inflammatory and fibrotic markers during chronic pan-
creatitis. (A) qRT-PCR results of gene expression of Il6, Il1b, Tgfb1, Tnf, Mmp9, Timp1, Col1a1, and
Acta2 in the whole pancreatic tissues from mice of indicated genotypes and treatments. ** p < 0.01,
*** p < 0.001, **** p < 0.0001, from one-way ANOVA test (Data represent mean ± S.D.). (B) qRT-PCR
results of gene expression of Il6, Il1b, Tgfb1, and Tnf in tdTomato-positive cells originated from
pancreatic tissues from mice of indicated genotypes and treatments. * p < 0.05, ** p < 0.01 from
one-way ANOVA test (n = 3, data represent mean ± S.D.). (C) Relative activity of Il1b, Il6, and
Tgfb1 promoters. HEK 293T cells were co-transfected with control plasmid or plasmid encoding
KLF5 and either of the promoters. Twenty-four hours after transfection, the activity of the promoters
was measured. ** p < 0.01, *** p < 0.001, **** p < 0.0001 by t-test (n = 6, Data represent mean ± SD).
(D) Predicted binding sites (yellow) for KLF5 in sequence 1.5 kb upstream of the translation start
site of the Il1b, Il6, and Tgfb1 promoters using the JASPAR database. T.S.S.—transcription start site.
(E) PCR amplification of site-specific sequences of DNA. Product of ChIP from Il1b, Il6, and Tgfb1
promoters using an anti-KLF5 antibody.
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Figure 10. KLF5 binds to the promoters of Il6, Il1b, and Tgfb1 during chronic pancreatitis. PCR am-
plification of site-specific sequences of DNA. Product of ChIP-PCR from (A–D) Il1b, Il6, and Tgfb1 
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Figure 10. KLF5 binds to the promoters of Il6, Il1b, and Tgfb1 during chronic pancreatitis. PCR
amplification of site-specific sequences of DNA. Product of ChIP-PCR from (A–D) Il1b, Il6, and Tgfb1
promoters using an anti-KLF5 antibody.

3.7. Deletion of the Klf5 in Pancreatic Acinar Cells Impacts Inflammatory Response in
Chronic Pancreatitis

Chronic pancreatitis is described as a progressive inflammatory disease. Our re-
sults showed that deletion of the Klf5 in pancreatic acinar cells reduces the level of injury
to pancreatic acinar cells and the development of fibrosis compared to wild-type mice
or mice with activated KRASG12D mutation. To assess the impact of KLF5 on the in-
flammatory response, we performed multiplex mouse cytokine array using pancreata
from Ptf1aCreERTM;Rosa26tdTomato/+ and Ptf1aCreERTM;Rosa26tdTomato/+;Klf5fl/fl mice treated
with cerulein for four weeks. Our results showed that six proteins are differentially ex-
pressed between compared samples. Chemokine (C-C motif) ligands: 6, 11, and 21 (CCL6,
CCL11, CCL21, respectively), and Coagulation factor III/Thromboplastin (CD142) levels
are reduced, while Adiponectin (ARCP30) and Regenerating Family Member 3 Gamma
(RG3G) are slightly increased in Ptf1aCreERTM;Rosa26tdTomato/+;Klf5fl/fl mice compared to
Ptf1aCreERTM;Rosa26tdTomato/+ mice upon cerulein treatment. (Figure 11A,B). In summary,
deletion of the Klf5 in pancreatic acinar cells reduces inflammatory response upon chronic
injury to the pancreas.
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4. Discussion

In this study, we showed that KLF5 is essential during the development and progres-
sion of chronic pancreatitis. We demonstrated that KLF5 levels are increased in the pancreas,
originating from patients with chronic pancreatitis and from a murine model of chronic
pancreatitis (Figures 1 and 4). Notably, we showed that deletion of the Klf5 in pancreatic
acinar cells by itself or in the context of KRASG12D mutant inhibits chronic pancreatitis
development (Figures 2 and 3 and Supplementary Figure S2). In our studies, we used two
genetic models, Ptf1aCreERTM;Rosa26tdTomato/+ and Ptf1aCreERTM;Rosa26tdTomato/+;KrasG12D

mice, in combination with repetitive injury caused by intraperitoneal injections of cerulein.
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Owing to the Ptf1a promoter, these mice expressed the CreERTM recombinase in pan-
creatic acinar cells. Upon tamoxifen treatment, KrasG12D expression is activated through
CreERTM-loxP recombination only in the adult pancreatic acinar cells. Following an in-
duction regimen of intraperitoneal injections of tamoxifen or vehicle (corn oil) every other
day for 6 days, the Ptf1aCreERTM;Rosa26tdTomato/+;KrasG12D and Ptf1aCreERTM;Rosa26tdTomato/+

(control) mice were subjected to chronic pancreatic insult by repeated 6-hourly intraperi-
toneal injections of cerulein or PBS, three days a week, for four consecutive weeks. This
regimen led to the development of mild chronic pancreatitis with pancreatic histology in
Ptf1aCreERTM;Rosa26tdTomato/+ control mice with preserved pancreatic acinar cells, ADM,
and scarce fibrosis. Notably, in Ptf1aCreERTM;Rosa26tdTomato/+;KrasG12D mice, the same injury
regimen led to the development of advanced chronic pancreatitis with early neoplasia, as
characterized by extensive fibrosis and insufficiency of pancreatic exocrine functions [5,61].
In our studies, the pancreatic tissues of Ptf1aCreERTM;Rosa26tdTomato/+;KrasG12D mice treated
with cerulein are almost entirely fibrotic and devoid of pancreatic acinar cells, and thus, the
levels of amylase and lipase are almost non-existent. Therefore, we only assessed the levels
of these enzymes in Ptf1aCreERTM;Rosa26tdTomato/+ and Ptf1aCreERTM;Rosa26tdTomato/+;Klf5fl/fl

mice treated with PBS and cerulein. Our results showed that the amylase and lipase levels in
Ptf1aCreERTM;Rosa26tdTomato/+ mice treated with cerulein are slightly increased compared to
PBS-treated mice. In addition, the inactivation of Klf5 significantly reduced serum amylase
and lipase levels in our model (Figure 3G,H). This could be because we collected samples
for enzyme analysis three days after the final injection of cerulein or PBS and, thus, allowed
the tissue to resolve from the acute injury. In most cases of human pancreatitis and murine
models of chronic pancreatitis with extensive fibrosis, the levels of these enzymes are not
changed or reduced [62,63]. However, under mild conditions, it has been previously shown
that levels of both enzymes can be increased in the murine model of chronic pancreatitis
and then decreased as the disease progresses [64–67].

Our previous study showed that KLF5 is crucial for ADM and PanIN formation during
acute injury and spontaneous PanIN formation upon singular KRASG12D activation [51].
Here, we demonstrate that KLF5 is necessary for the development of ADM and PanIN
lesions during recurrent pancreatic injury. Deletion of the Klf5 in pancreatic acinar cells by
itself or in the context of KRASG12D mutant and in combination with recurrent injury reduces
the development of ADM and PanIN lesions (Figures 5 and 6 and Supplementary Figure S2).
KLF transcription factors have been previously shown to play an essential role in acute
pancreatitis development and progression. Similarly to the inhibition of Klf5, the inactivation
of Klf4 in the setting of the acute injury to the pancreas and the presence of KRASG12D

mutation led to reduced levels of ADM and PanIN [68]. Conversely, Klf4 overexpression
induced ADM and caused an increase in the ductal markers’ expression [68]. Furthermore,
KLF4 and KLF5 have been shown to play a crucial role in pancreatic carcinogenesis and
regulate processes such as proliferation and epithelial-to-mesenchymal transition [51,69–71].
These studies suggest that KLF4 can regulate ADM and PanIN formation processes during
chronic pancreatitis, utilizing similar mechanisms as in acute injury.

The microenvironment of chronic pancreatitis tissues is characterized by massive fibro-
sis. In healthy pancreatic tissues, pancreatic stellate cells are in quiescent status. However,
during chronic injury, injured pancreatic acinar cells and immune cells produce multiple
factors that cause the activation of pancreatic stellate cells and lead to fibrosis [10,16,18,19].
Masson’s Trichome, Sirius Red, and alpha-SMA stains in Ptf1aCreERTM;Rosa26tdTomato/+

showed a slight development of fibrosis, and, in Ptf1aCreERTM;Rosa26tdTomato/+;KrasG12D, a
major remodeling of the pancreatic tissue that is characterized by fibrosis [72]. Our data
show that the inactivation of Klf5 significantly repressed stellate cell activation and fibro-
sis formation in the control mice and the context of activated KRASG12D (Figures 7 and 8
and Supplementary Figure S2C–E). Furthermore, our in vitro and in vivo studies indi-
cate that KLF5 regulates the expression levels of cytokines and fibrotic components such
as Il6, Il1b, Tgfb1, Tnf, Col1a1, Acta2, Timp1, and Mmp9 (Figure 9 and Supplementary
Figure S3) when analyzing whole pancreatic tissues from in Ptf1aCreERTM;Rosa26tdTomato/+
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and Ptf1aCreERTM;Rosa26tdTomato/+;Klf5fl/fl mice treated with cerulein as compared to ap-
propriate controls. The decreased levels of fibrosis are probably secondary effects of the
deletion of Klf5 from pancreatic acinar cells. Indeed, isolation of pancreatic acinar cells
(tdTomato-positive cells) showed decreased levels of markers (Il6, Il1b, Tgfb1, Tnf ) com-
monly expressed by injured pancreatic acinar cells [17,73–80]. As multiple publications
show that KLF5 regulates Tnf expression, we focused on investigating the activation of
Il6, Il1b, and Tgfb1 by KLF5 [81,82]. Our results showed that overexpression of Klf5 leads
to increased activity of the promoters of the genes above. We have provided evidence
that KLF5 directly binds to the specific sites in their promoters in vitro and in vivo and
drives their expression (Figures 9 and 10). Chronic pancreatitis is characterized by high
levels of inflammation and progressive fibrosis and is often called fibroinflammatory dis-
ease [83,84]. Here, we showed that the deletion of Klf5 results in decreased levels of several
vital chemokines, such as CCL6, CCL11, and CCL21 (Figure 11). Studies showed that CCL6
plays an essential role in the pathogenesis of pulmonary fibrosis, and its levels have been
previously shown to increase upon chronic pancreatitis. CCL6 is a chemoattractant for
macrophages, monocytes, and T cells [85–87]. CCL11 (eotaxin) was demonstrated to attract
multiple immune cells such as eosinophils, neutrophils, and Th2 lymphocytes; however,
in the context of IL5, it has been previously shown that eosinophils increase upon chronic
injury to the pancreas [88,89]. Notably, CCL11 activation was demonstrated as a result
of Toll-Like Receptor 9 (TLR9) activation in PDAC development and progression [90].
CCL21 induces CD133+ pancreatic cancer, stem-like cell metastasis, and the migration of
pancreatic tumor cells [91,92]. Interestingly, the cytokine analysis identified CD142, a pan-
creatic embryonic progenitor marker, as being decreased upon Klf5 deletion during chronic
injury (Figure 11). CD142 increased during dedifferentiation of pancreatic acinar cells that,
afterward, transdifferentiated to duct-like cells [93]. Studies by Araki and colleagues have
shown that exogenous adiponectin was protective in acute pancreatitis in mice fed with a
high-fat diet [94]. In multiple studies, adiponectin is anti-inflammatory, and its deficiency
increases the inflammatory response in various mouse models [95,96]. On the other hand,
mice with deleted Klf5 showed increased levels of REG3G. REG3G provides defense against
bacterial activity in the gut. It is protective against colitis, diabetic wound healing, and
alcohol-induced fatty liver disease by suppressing epithelial inflammation [97]. However,
its role in pancreatitis has yet to be well studied. One study showed that exogenous delivery
of REG3G contributes to the progression of chronic pancreatitis towards neoplasia [98]. At
the same time, another study showed that it ameliorates pancreatic β-cell dysfunction in
mice [99]. Previous publications demonstrated that Cre recombinase activity is increased
in female mice compared to male mice [37,100] and that tamoxifen treatment may have
a different effect on female and male mice [101–104]. Despite the differences in response
to the tamoxifen between female and male mice, we demonstrated similar results in both
experimental groups and, thus, presented them together.

5. Conclusions

In summary, our results support the role of KLF5 in developing ADM and PanIN
lesions in chronic pancreatic injury and provide evidence that the deletion of Klf5 from pan-
creatic acinar cells reduces remodeling in the pancreatic microenvironment. Moreover, we
showed that KLF5 directly regulates and binds to the promoters of Il1b, Il6, and Tgfb1, and
simultaneously, its deletion results in decreased levels of multiple inflammatory and fibrotic
markers in Ptf1aCreERTM;Rosa26tdTomato/+;Klf5fl/fl and Ptf1aCreERTM;Rosa26tdTomato/+;KrasG12D;
Klf5fl/fl mice after repetitive injury. An in-depth understanding of the role of KLF5 dur-
ing the progression of pancreatic injury may become attractive for the development of
therapeutics for chronic pancreatitis treatment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15225427/s1, Figure S1. Representative IHC images of
KLF5 stain in human and mouse pancreas; Figure S2. Genetic inactivation of Klf5 in vivo suppresses
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ADM, PanIN, and pancreatic stellate cells activation and fibrosis; Figure S3. KLF5 regulates the
expression of inflammatory and fibrotic markers during chronic pancreatitis.
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