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Simple Summary: In this review article, we describe the landscape of available treatments for
older and medically unfit patients with AML. We review the historical practice of AML treatment
in older adults before discussing the current standard of care therapies and future therapeutic
options. We highlight some of the challenges facing the care of older adults with AML including
underrepresentation in clinical trials and shed light on the importance of evaluating clinical outcomes
that are relevant to our patients and their values.

Abstract: Acute Myeloid Leukemia (AML) is an aggressive myeloid malignancy predominantly
affecting older adults. Despite the advancements in new therapies for AML, older and medically unfit
patients continue to suffer from poor outcomes due to disease-related factors such as the mutational
profile and patient-related factors such as comorbidities and performance status. In this review, we
discuss a spectrum of therapeutic options for older patients with AML starting with a historical
perspective and ending with therapies being investigated in clinical trials. We review the standard of
care treatment options including combination venetoclax and hypomethylating agents, in addition to
targeted therapies such as FLT3 and IDH inhibitors. Lastly, we shed light on challenges facing the
care of older adults and their representation in clinical trials.
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1. Background

Acute Myeloid Leukemia (AML) is predominantly a disease of older adults, with
a median age at diagnosis of 68 in the United States [1]. Standard treatment of newly
diagnosed AML in medically fit patients is intensive induction therapy using a combination
of continuous infusion cytarabine and an anthracycline, commonly known as the “7 + 3”
regimen [2–4]. The introduction of this regimen in the 1970s led to a drastic improvement
in overall survival (OS) for patients with AML, with long-term cure rates of 30–40% in
younger patients. However, in older and medically unfit patients, outcomes with intensive
therapy remain dismal, with higher incidence of treatment-related toxicities across different
disease risk groups, and 5-year survival rates less than 10–15% [5–7]. These patients are
thus treated with lower intensity regimens that, historically, have been less effective than
intensive regimens but spare patients the complications seen with intensive therapy.

Poor outcomes of intensive therapy in older AML patients are a result of patient-
specific and disease-specific factors. Older patients are more likely to have tp53 mutated
AML or secondary AML from antecedent myelodysplastic syndrome (MDS), prior exposure
to alkylating agents, and/or radiation therapy, making their disease difficult to treat [8–11].
They are also more likely to have unfavorable cytogenetics and higher rates expression
of multi-drug-resistant p-glycoprotein1, predisposing to resistance to chemotherapeutic
agents including anthracyclines [12–17].

The past two decades witnessed an influx of effective therapies with improved toxicity
profiles for older and unfit patients with AML [18–21]. In this review, we shed light on
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historical outcomes of lower-intensity AML treatments and then discuss current and future
therapeutic options available for patients who are older or unfit for intensive chemotherapy.

2. Historical Perspective and Review of Agents
2.1. Low-Dose Cytarabine (Ara-c)

Low-dose Ara-c (LDAC) has been incorporated into the care of older AML patients
since the 1970s [22,23]. LDAC exerts its effect mainly by cytotoxicity and inhibition of
DNA synthesis [24–26]. LDAC was compared to intensive chemotherapy in a phase III
randomized trial of AML patients older than age 65 [27]. The trial concluded that intensive
chemotherapy resulted in higher rates of complete response (CR, 52% vs. 32%) but was
associated with more frequent and severe infectious complications, increased transfusion
requirements, and longer hospital stays. Both groups had similar OS rates and duration
of remission. Several other reviews reported CR rates with LDAC ranging from 7% (in
patients older than 70) to 32% [28–30]. In a meta-analysis evaluating optimal dosing of Ara-
c in AML patients, LDAC was found to have no significant improvement in disease-free
survival or OS in patients with unfavorable cytogenetics [30].

In current practice, LDAC monotherapy in the first-line setting has been largely re-
placed by combination therapies that include a hypomethylating agent and the B-cell
lymphoma-2 (BCL2) inhibitor venetoclax [31]. This has been driven by the efficacy advan-
tage these regimens offer, especially in older, higher-risk populations that cannot tolerate
intensive chemotherapy. However, LDAC continues to be an option in combination with
other agents, as discussed below.

2.2. Hypomethylating Agents

DNA methylation silences tumor suppressor genes and is an important mechanism
of tumorigenesis [32]. Hypomethylating agents (HMAs) were initially used to re-induce
silenced genes in the treatment of myelodysplastic syndrome (MDS). The two approved
drugs for this indication, azacitidine (AZA) and decitabine (DAC), are analogues of the
naturally occurring nucleoside cytidine. Early studies using HMAs proposed that the
most desirable effect results from using lower doses of these drugs for longer durations to
inhibit DNA methylation, rather than using higher doses, which resulted in cytotoxicity
and inhibited cellular differentiation [33,34].

Both AZA and DAC were first studied in high-risk MDS patients and were shown
to improve OS and the reduce risk of progression to AML when compared to best sup-
portive care [35,36]. AZA was then compared to best supportive care, LDAC or intensive
chemotherapy in a randomized phase III trial of patients with high-risk MDS [37]. Patients
in the AZA arm had a significant improvement in OS compared to conventional thera-
pies [37–39]. In a subgroup analysis of patients who fit the WHO AML criteria (n = 113,
median age 70), AZA resulted in improved OS compared to the conventional therapy
group [40]. This led to a phase III trial comparing AZA to a conventional care arm, which
included either induction chemotherapy, LDAC, or supportive care in patients with AML
who were older than 65 years [41]. Patients in the AZA arm had longer OS at 10.4 months
(95% confidence interval [CI], 8.0–12.7 months) vs. 6.5 months in the supportive care
group (95% CI, 5.0–8.6 months), but no survival difference was observed when AZA was
compared to induction chemotherapy or LDAC. Additionally, overall response rates (ORR)
and CR rates were not different among the two groups. The most common AZA related
adverse events (AE) were nausea (27%), neutropenia (19%), and thrombocytopenia (17.4%).
Grade 3–4 hematological-treatment-related AEs were similar across treatment groups and
included febrile neutropenia (25%) and pneumonia (20.3%).

DAC was also studied in a phase III randomized trial of 485 older AML patients
with high-risk features, in comparison to physicians’ choice of treatment (LDAC or best
supportive care) [42]. The study showed a nonsignificant increase in median OS with
DAC (7.7 months; 95% CI, 6.2–9.2) compared to physician’s choice (5.0 months; 95% CI,
4.3–6.3). There was a significant improvement of CR and CR without platelet recovery
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(17.8% vs. 7.8%, respectively; p = 0.001). Both arms had similar grade 3–4 hematological
treatment-related AEs. A post hoc sensitivity analysis of the intent-to-treat population
completed after data maturation demonstrated a statistically significant survival advantage
at 2 years, with 14.9% (95% CI, 10.7–19.8%) in the DAC group compared to 9.9% (95% CI,
6.6–14.1%) in the control arm [43].

Overall, HMAs have efficacy in the first line for older patients with AML. Given
their manageable toxicities and dosing schedule that allows for outpatient administration,
HMAs are excellent partners to combine with other therapeutic classes.

2.3. Gemtuzumab Ozogamicin

Gemtuzumab ozogamicin (GO) is a humanized CD33 monoclonal antibody conjugated
to calicheamicin that cleaves double-stranded DNA at specific sequences [44]. CD33 is a
marker of normal hematopoietic progenitor cells and is expressed in over 90% of AML cells
but is not expressed on hematopoietic stem cells [45].

GO was first studied at doses of 9 mg/m2 every 2 weeks for two doses after the first
relapse [46–48]. Based on accumulating data of efficacy, GO was approved by the Food
and Drug Administration (FDA) for treatment of relapsed AML in patients above the age
of 60 in 2000. After this approval and subsequent uptake in GO use, numerous cases of
vaso-occlusive disease (VOD) and sinusoidal occlusive syndrome (SOS) were reported,
particularly when given at higher doses and in patients who went on to receive stem
cell transplantation within 3 months of GO administration [49–51]. Consequently, GO
was withdrawn from the United States market in 2010. GO was then studied at lower
fractionated doses as a single agent in a randomized-controlled phase III trial in comparison
to best supportive care [52,53]. The trial included AML patients older than 75 years or aged
61–75 with a WHO performance status of 1–2, and those who were unwilling to receive
standard chemotherapy. GO was given as a single induction course of 6 mg/m2 on day 1
and 3 mg/m2 on day 8. Patients who did not progress after induction could receive up to
eight monthly GO infusions of 2 mg/m2. The study reported a 1-year OS rate of 24.3% in
the GO group compared to 9.7% in the best supportive care group. The survival benefit
was largest in patients with high CD33 expression, favorable/intermediate risk disease and
in women. The authors reported similar serious AEs among both groups, with no excess
mortality in the GO group related to AEs.

In the relapsed/refractory setting, the Mylofrance-1 phase II study evaluated the
efficacy of 3 mg/m2 of GO on days 1, 4 and 7 during the first relapse of AML [54]. The
study showed a CR rate of 26%. At these doses, no grade 3–4 liver toxicity was seen. There
were also no cases of VOD observed after GO or after stem cell transplantation in patients
who received both GO and transplant. The study concluded that administration of GO in
fractionated doses is likely to have a more tolerable safety profile and efficacy than initial
high doses.

This series of studies suggests that higher doses of GO (9 mg/m2) result in high
incidence of hepatic toxicity and VOD in older patients, regardless of whether GO was
used as a single agent or in combination, and particularly in patients who undergo stem
cell transplantation. In contrast, at fractionated doses of 6 mg/m2 or less, GO is effective
as a single agent or in combination and results in manageable toxicities in both front-line
and relapsed settings in older patients. Efficacy is enhanced in patients with favorable risk
disease. Taken together, these findings have led to the use of GO as a salvage therapy in
older and unfit patients with relapsed AML without targetable mutations. The benefits of
efficacy with GO should be weighed against the risk of AEs including hepatic toxicity and
VOD, especially in patients who may undergo stem cell transplant.

2.4. Venetoclax

BCL-2 is an anti-apoptotic protein that is commonly expressed in hematologic ma-
lignancies and is associated with tumorigenesis and treatment resistance [55]. Venetoclax
is a selective oral BCL-2 inhibitor that has in vivo and in vitro activity against leukemic
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cells [56]. It was initially FDA approved in 2019 for treatment of patients with chronic
lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL). As discussed below,
venetoclax is typically used in combination with HMAs or other agents due to its synergistic
effects. As monotherapy, venetoclax has shown an ORR of 19% in older AML patients at a
dose of 800 mg daily [57]. Patients who had isocitrate dehydrogenase (IDH) mutant disease
had an even higher ORR of 33%, which has also borne out in future studies of venetoclax
in combination with HMA. Venetoclax carries a risk for tumor lysis syndrome in patients
with high disease burden; patients should be monitored closely either in the inpatient or
outpatient setting during the initial dose escalation period [58].

2.5. Summary of Approach Prior to Current Era

Before the introduction of combination venetoclax and HMA, which is currently the
standard of care for frontline treatment of older AML, frontline therapy for this population
consisted mainly of single-agent LDAC, HMA or supportive care. While less toxic than
standard induction therapy, these agents resulted in modest CR rates of 10–50%, with a
median survival of around one year [37,40–42]. Options for relapsed/refractory disease
included fractionated or low doses of GO and venetoclax, also with modest CR rates and
minimal survival benefit.

3. Current Approach
3.1. Combination Venetoclax and Hypomethylating Agents

In 2020, the FDA approved venetoclax in combination with HMA for frontline treat-
ment of AML in patients aged 75 and older and those who are unfit for induction chemother-
apy, based on the VIALE-A trial [31]. Since then, this has become the standard of care
for this population. This trial compared AZA alone to combination AZA and venetoclax
(target dose 400 mg daily) in previously untreated older AML patients, with a 60% of the
patient sample in each group older than age 75. There was a clear survival advantage for
combination therapy, with a median OS of 14.7 months vs. 9.6 months in the AZA alone
group (hazard ratio for death, 0.66; 95% CI, 0.52–0.85; p < 0.001). The combination also
resulted in a higher CR rate (36.7% vs. 17.9%; p < 0.001). Main AEs included nausea of
any grade (44% of combination group) and grade 3 or higher thrombocytopenia (45%),
neutropenia (42%) and febrile neutropenia (42%). Infections of any grade occurred in 84%
of the combination group and 67% of the AZA alone group, and serious AEs occurred
in 83% and 73%, respectively. A recent long-term follow-up study of VIALE-A, with a
median follow-up of 43 months, showed continued survival benefit for the AZA + veneto-
clax combination compared to AZA alone [59,60]. Emerging real-world studies provide
additional evidence of benefit outside the controlled clinical trial environment. Real-world
data from 230 older or unfit adults with AML who received HMA with venetoclax showed
an ORR of 72% in patients receiving HMA + venetoclax and 46% in patients receiving HMA
alone. The study showed a median OS of 11 months in patients receiving combination
and 9 months in patients receiving HMA alone [61]. Another real world study of 112 older
patients receiving venetoclax–HMA combination reported a median OS of 15 months [62].

3.2. Combination Venetoclax and LDAC

Venetoclax has also been studied in combination with LDAC in a phase III trial that
included 211 patients randomized to receive either combination venetoclax with LDAC
or LDAC with placebo [63]. The venetoclax target dose was 600 mg daily and LDAC was
given at 20 mg/m2 subcutaneously on day 1 to day 10 of all cycles. The median age for
the study population was 76, with over half of the patients in each group older than 75.
Secondary AML was more frequent in the venetoclax arm. The incidence of grade 3 or
higher hematological AEs including thrombocytopenia and febrile neutropenia was higher
in the venetoclax group; however, this did not result in a significant difference in the rate of
treatment discontinuation between groups. After a median follow up of 12 months, the
median OS was 7.2 in the combination group compared to 4.1 months in the LDAC alone
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group, with an adjusted hazard ratio of 0.67. CR and CR with incomplete count recovery
(CRi) were also significantly higher in the combination group (48% vs. 13%). In subgroup
analyses of patients with somatic mutations in TP53, IDH, FMS-like tyrosine kinase 3 (FLT3)
or Nucleophosmin-1 (NPM1), combination venetoclax and LDAC resulted in a CR rate
of 57% in patients with IDH1 mutated AML, consistent with data seen in other studies
showing increased benefit of venetoclax in IDH mutant disease. Combination venetoclax
and LDAC is currently FDA approved for first line therapy in adults older than 75 years and
those who are unfit to receive intensive chemotherapy. This regimen has not been compared
head-to-head with the current standard of care of combination HMA + venetoclax; thus,
no clear conclusions can be made regarding the superiority of either regimen. In practice,
combination LDAC and venetoclax is often reserved for patients with disease progression
on or after HMA or who may not be able to tolerate further HMA treatment.

3.3. Hedgehog Inhibitors

Glasdegib is a selective small-molecule oral inhibitor of Smoothend, a protein in-
volved in regulating the hedgehog pathway that is implicated in CD34 + AML [64]. In a
phase II trial, patients with newly diagnosed AML who were not candidates for intensive
chemotherapy were randomized to receive either combination glasdegib (oral 100 mg daily)
and LDAC (20 mg subcutaneously BID for 10 days in a 28-day cycle) or LDAC alone [65].
The combination demonstrated superior median OS of 8.8 months compared to 4.9 months
with LDAC alone. CR rates were also higher at 17% in the combination group compared to
2.3% in patients receiving LDAC. The incidence of grade 1–2 cytopenia was higher in the
combination group, though the incidence of grade 3–4 AEs was comparable between both
groups. QT prolongation was observed in 5% of patients receiving glasdegib. Based on
this data, glasdegib received FDA approval in 2018 to be used in combination with LDAC
in previously untreated AML in older or unfit patients. This regimen has also not been
compared head-to-head with venetoclax + HMA combinations; thus, the superiority of ei-
ther approach cannot be concluded. Regardless, this regimen may be an option for patients
who have progressed on venetoclax and/or HMA or have poor tolerance to either agent.

4. Targeted Therapies
4.1. IDH Mutant AML

Ivosidenib is a small molecule inhibitor of IDH1, which is mutated in 6–16% of
patients with AML [66,67]. Early phase trials using ivosidenib in relapsed IDH1 mutant
disease showed an ORR of 41.6%, with 30.4% of patients achieving CR/CRi. The median
duration of response was 6.5 months. The main observed grade 3 or higher AEs were QT
prolongation (7.8% of patients), differentiation syndrome (3.9%), and anemia (2.2%) [19].
Ivosidenib was then studied in the frontline setting in combination with AZA in a phase
III trial that compared the combination regimen to AZA alone [68]. Ivosidenib was given
orally at 500 mg daily, and AZA was given at 75 mg/m2 for 7 days in a 28-day cycle. At a
median follow-up of 12.4 months, the study showed improved event-free survival in the
combination group at 37% compared to 12% in the AZA group, with an increased OS of
24 months in the combination compared to 7.9 months in the AZA only group. While the
control arm in this study was not the current standard of care regimen (venetoclax + HMA),
it led to the first approval for ivosidenib in the first line setting in patients with AML. In
patients with IDH1 mutated AML, ivosidenib is currently FDA approved as monotherapy
for newly diagnosed and relapsed/refractory AML in patients with IDH1 mutations who
are older than 75 years of age or unfit for intensive chemotherapy.

Olutasidenib is another IDH1 inhibitor that has been recently approved in relapsed/
refractory IDH1 mutated AML. The pivotal trial included 147 patients with a median age of
71 and showed an ORR of 48% and a median duration of response of 11.7 months. Fifty-six-
day transfusion independence was achieved in 34% of patients. Grade 3–4 treatment-related
AEs included febrile neutropenia and anemia (20% each), thrombocytopenia (16%), and



Cancers 2023, 15, 5409 6 of 16

neutropenia (13%). Differentiation syndrome was observed in 14% of patients, with 9%
being grade ≥ 3 and 1 fatal case reported [69].

Enasidenib is a small molecule inhibitor of IDH2 that is approved for use in re-
lapsed/refractory AML. This approval was based on an early phase trial of enasidenib
at a dose of 100 mg daily, which showed an ORR of 40.3% with a median response dura-
tion of 5.8 months and median OS of 19.7 months [20]. Grade 3–4 AEs included indirect
hyperbilirubinemia in 12% of patients and differentiation syndrome in 7% of patients.

It is noteworthy that venetoclax has pronounced efficacy in IDH mutant AML [70]. A
pooled analysis of patients enrolled in the VIALE-A phase III trial and the phase Ib trial
of venetoclax + AZA in AML showed that patients harboring mutations in IDH1/2 had
a higher benefit from receiving the venetoclax combination compared to AZA alone [71].
The CR rate was higher in the combination venetoclax + AZA group (IDH1 mutant: 66.7%;
IDH2 mutant: 86%) compared to the AZA alone group (IDH1 mutant: 9.1%; IDH2 mutant:
11.1%). This also translated into an OS benefit of 24.5 months in the IDH1/2 mutated
patients when receiving venetoclax + AZA.

Both venetoclax + HMA and ivosidenib + HMA combinations resulted in OS im-
provements in the first-line setting compared to HMA alone [18,68]. There have been no
trials comparing either combination head-to-head; thus, both remain viable options in
this setting. Future studies on the ideal sequencing of these agents in IDH-mutant AML
are warranted.

4.2. FLT3 Mutated AML

FLT3 mutations occur in 18–31% of cases of adult AML [72,73]. Data supporting the
use of FLT3 inhibitors in the first line setting in older or unfit adults are limited. Midostaurin
and quizartinib are approved in combination with intensive therapy for first-line treatment
of FLT3 mutated AML based on results from the RATIFY and QuANTUM trials [21,74].
In the RATIFY trial, the addition of midostaurin to intensive therapy improved overall
and event-free survival; however, the trial did not include patients older than the age of
60. The QuANTUM study showed improvement in OS with the addition of quizartinib to
intensive therapies and included patients up to the age of 75; however, a post hoc analysis
showed that this benefit was limited to patients under the age of 60 [74,75]. Additionally,
the presence of FLT3 internal tandem duplication (ITD) confers resistance to venetoclax-
based therapies, which is included in most standard of care regimens for older or unfit
adults [76]. Therefore, the role of FLT3 inhibitors with intensive therapies in older or unfit
adults remains limited. In patients with ITD or tyrosine kinase domain mutated FLT-3,
gilteritinib has been approved in the relapsed/refractory setting as monotherapy. In a
phase III trial, FLT-3 mutated AML patients were randomized to receive gilteritinib orally
at 120 mg daily in a 28-day cycle versus physician’s choice chemotherapy [77]. The median
age for patients enrolled in the trial was 62 (range 19–85). After a median follow-up of
17.8 months, median OS was 9.3 months in the gilteritinib group compared to 5.6 months in
the chemotherapy group. This improved OS was also seen in subgroup analyses evaluating
patients with higher allelic ratios (>0.7 as specified by the trial) and in patients with primary
refractory AML, for whom OS was 10.4 months in the gilteritinib group vs. 6.9 months
in the chemotherapy group. Patients who received chemotherapy had a higher incidence
of AEs in general, except for elevations in liver aminotransferase levels that was seen in
the gilteritinib group. The most common treatment-related AEs were febrile neutropenia,
occurring in 9.3% of patients, and QT prolongation, seen in 4.9% of patients. Gilteritinb is
currently a standard of care option for relapsed FLT-3 mutated AML. Promising data are
emerging to suggest the use of FLT3 inhibitors in doublets or triplets in combination with
low intensity regimens as described below.



Cancers 2023, 15, 5409 7 of 16

5. Future Directions
5.1. Anti-CD47 Inhibitors

CD47 is a transmembrane protein that serves as a ligand for signal regulatory protein
alpha (SIRPa), which is generally found on phagocytic cells such as macrophages [78].
When activated, CD47 results in the inhibition of phagocytosis of cells and the production
of a “don’t eat me signal” on tumor cells [79,80]. In studies on mouse models, CD47 was
highly expressed in AML stem cells and was associated with the presence of FLT3-ITD
mutations. In human AML, higher expression of CD47 was associated with poor clinical
outcomes including shorter event-free and overall survival [81]. Thus, anti-CD47 antibodies
have emerged as a potential therapeutic class in AML, with several early phase clinical
trials reporting the safety of this class of drugs.

When used as monotherapy, CD47 inhibitors resulted in significant toxicity and low
response rates in phase I trials [82]. This may be due to the low potency of those agents
in increasing apoptosis, in addition to concerns for decreased selectivity to tumor cells, as
CD47 are expressed on normal tissue cells as well.

To further enhance their pro-apoptotic effect, anti-CD47 antibodies were studied in
combination with AZA, which upregulates the expression of calreticulin and increases
phagocytosis of malignant AML cells [83]. A phase Ib trial studied combination magrolimab
(5F9), a first-in-class anti-CD47 antibody, and AZA in adults with newly diagnosed AML
who are unfit for intensive chemotherapy and high-risk MDS patients [84]. The study
included 52 patients, 65% of whom had TP53 mutated disease. The most common treatment-
related AEs were anemia (31% of patients), fatigue (19%), hyperbilirubinemia, neutropenia,
thrombocytopenia, and nausea, each occurring in less than 20% of patients. Importantly,
the study reported an ORR of 65%, with 44% of patients achieving CR and 12% achieving a
CRi. The combination is now being studied in phase III trials (ENHANCE) in comparison
to AZA and venetoclax in treatment-naïve AML and MDS (NCT04313881).

5.2. Menin Inhibitors

Menin is an essential protein that serves as a cofactor for KMT2A binding to HOX gene
promoters, which results in leukemogenesis in patients with NPM1 or KMT2A rearranged
leukemia [85,86]. Preclinical studies demonstrated the efficacy of menin inhibitors as
monotherapy and in combination with other classes of agents inhibiting BCL2, CDK6
and BET inhibitors [87]. An ongoing first-in-human clinical trial is evaluating the safety
and efficacy of menin inhibitor KO-539 (ziftomenib) in patients with relapsed/refractory
AML (NCT04067336). SNDX-5613 (revumenib) is another potent, selective inhibitor of
the menin-KMT2A interaction that is currently being studied in the phase I Augment-101
trial. A recent update on results after enrolling 66 patients with relapsed/refractory AML
reported a dose limiting toxicity of grade 3 asymptomatic QTC prolongation [88]. Other
AEs included grade 2 differentiation syndrome in 16% of patients, and grade 3–4 diarrhea,
cytopenia, fatigue and tumor lysis syndrome. Future studies will investigate these agents
in combination with standard of care for previously untreated AML with NPM1 mutations
and KMT2A rearrangement in older patients.

5.3. Triplet Therapies

Combination therapies have advanced to the forefront of AML therapy in older adults
due to the complementary mechanisms of action that combinations can achieve. The future
of AML therapies will include triplet combinations that add agents to the standard of care
HMA + venetoclax, with careful attention paid to minimizing toxicity.

The combination of venetoclax, cladribine (CLAD) and LDAC alternating with AZA
was studied in older unfit patients in a phase II trial of 60 patients [89]. The induction
regimen included intravenous CLAD on days 1–5 combined with subcutaneous LDAC on
days 1–10. Venetoclax was given at a target dose of 400 mg daily. Consolidation cycles
included alternating cycles of either (1) a shorter duration of CLAD (days 1–3), LDAC
on days 1–10 and alternating cycles of venetoclax or (2) AZA once daily on days 1–7.
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The regimen achieved impressive response rates with a composite CR rate of 93% and
84% of patients achieving MRD negativity. Grade 3–4 AEs were common, with 55% of
patients having febrile neutropenia and 23% developing pneumonia. After 22.1 months of
follow-up, the median OS has not been reached.

In IDH1 mutant AML, triplet therapy has also showed promise. Results from a phase
IB/II study of ivosidenib with AZA and venetoclax that included 25 patients with MDS and
newly diagnosed or relapsed/refractory AML with IDH1 mutations showed an ORR of
92% and a composite CR rate of 84% [90]. The 1-year OS was 62%. Grade 3–4 AEs included
neutropenia in 28% of patients and pneumonia in 24%.

In FLT3 mutated AML, both doublet and triplet combinations have shown promise. In
a study of 54 patients with relapsed/refractory AML, combination gilteritinib and veneto-
clax yielded a CR rate of 74.5% at 1-year follow-up, with a median OS of 10 months [91]. A
triplet combination with gilteritinib, venetoclax and AZA was studied in a phase I/II study
of older and unfit patients with FLT-3 mutated AML in the frontline and relapsed/refractory
setting [92]. Of the 11 previously untreated patients, the combination resulted in an ORR of
100%. The relapsed/refractory population included 15 patients, for whom ORR was 67%
and median OS was 10.5 months. Given myelosuppression as the dose-limiting toxicity
in 3 patients who received gilteritinib 120 mg, 80 mg was chosen as the recommended
phase II dose. In a phase II trial, FLT3 inhibitors (midostaurin, gilteritinib or sorafenib)
were combined with 10 days of DAC and venetoclax in newly diagnosed and previously
treated AML patients. The composite CR rate was 92% in newly diagnosed patients and
62% in previously treated patients. After 14.5 months of follow-up, median OS was not
reached in the newly diagnosed population and was 6.8 months in the previously treated
population. The most frequent grade 3 or 4 AEs were febrile neutropenia in 40% of patients,
neutropenia in 36% of patients, infections in 32% of patients and tumor lysis syndrome
in 16% of patients [92]. In the frontline setting, the phase III LACEWING trial comparing
gilteritinib combined with AZA to AZA monotherapy in newly diagnosed unfit patients
with AML was stopped early due to futility after an interim analysis showed no significant
change in the primary outcome, OS [93].

6. Discussion

Therapies for adults with AML who are older or unfit to receive intensive chemother-
apy have evolved over the past five decades. Treatment options have become more effi-
cacious and personalized, with little compromise in safety. We propose a personalized
approach to treatment in this population that is guided by disease and patient characteris-
tics (Figure 1). Table 1 summarizes select key studies that led to FDA approval in older or
unfit adults with AML.

After initial diagnosis and determination of urgency of treatment initiation, efforts
should be made to identify molecular alterations early, particularly those with therapeutic
targets such as FLT3, IDH1 and IDH2. In most situations, the combination of HMA
and venetoclax will be the preferred first-line treatment given robust data on safety and
efficacy [18,31,59,94,95]. Cytopenias often complicate treatment with this regimen and
can be managed with transfusion support, treatment breaks or even dose interruptions
in venetoclax [96]. Dose reductions of venetoclax are often necessary to mitigate drug
interactions with CYP3A inhibitors such as antifungal agents [97]. Additionally, patients
with a high risk of tumor lysis syndrome need to be monitored closely while ramping up
venetoclax. In IDH1 mutant AML, combination ivosidenib and venetoclax is an alternative
first-line or subsequent-line treatment option [68]. Patients receiving IDH inhibitors should
be monitored for differentiation syndrome [98]. In FLT3 mutated AML, gilteritinib is an
option for relapsed/refractory disease. Patients receiving gilteritinib should be monitored
for cytopenias, differentiation syndrome, hepatic toxicity and QTC prolongation [99,100].
Both combination venetoclax + LDAC and combination glasdegib + LDAC are approved
in the first-line setting and may be reasonable options for patients who progress on first-
line HMA + venetoclax and have no targetable mutations. GO remains an option for
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relapsed/refractory disease as a single agent or in combination; however, concerns have
been raised regarding tolerability and hepatic toxicity. At the time of relapse, reassessing
with repeat molecular studies can identify new alterations that could be targetable by
available agents or clinical trials. The utilization of real-world data can provide more
representative data on outcomes and toxicity in populations not reflected in the controlled
clinical trial environment such as patients with low performance status or patients residing
in rural areas.
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Table 1. Data from clinical trials leading to FDA approvals for current therapies for AML in older or
unfit adults. AZA: Azacitidine. OS: overall survival. CR: complete response, CRi: complete response
with incomplete count recovery. DAC: Decitabine. LDAC: low-dose cytarabine.

Study Regimen n Median Age Clinical Activity Indication

DiNardo CD et al. [31] Venetoclax + AZA 431 76 Median OS 14.7 months
CR + CRi 66.4%

Newly diagnosed AML in patients older than
75 years, or who have comorbidities
precluding induction chemotherapy

DiNardo CD et al. [18] Venetoclax + AZA or
DAC 145 74 Median OS 17.5 months

CR + CRi 73%

Newly diagnosed AML in patients older than
75 years, or who have comorbidities
precluding induction chemotherapy

Wei AH et al. [63] Venetoclax + LDAC 211 76 Median OS 7.2 months
CR + CRi 48%

Newly diagnosed AML in patients older than
75 years, or who have comorbidities
precluding induction chemotherapy

Cortes JE et al. [65] Glasdegib + LDAC 132 77 Median OS 8.8 months
CR 17%

Newly diagnosed AML in patients older than
75 years, or who have comorbidities
precluding induction chemotherapy

IDH mutated AML

Montesinos P et al. [68] Ivosidenib + AZA 146 76 Median OS 24 months
CR 38% First-line in IDH1-mutated AML

de Button S et al. [69] Olutasidenib 153 71 Median OS 11.6 months In relapsed or refractory IDH1-mutated AML

Stein EM et al. [20] Enasidenib 239 67 Median OS 9.3 months
CR 19.3% In relapsed or refractory IDH2-mutated AML

FLT3 mutated AML

Perl AE et al. [77] Gilteritinib 371 Median OS 9.3 months
CR + CRi 34% In relapsed or refractory FLT3 mutated AML
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Despite these improvements in available treatment options, the care of older and
unfit adults with AML continues to face challenges that hinder long-term survival in this
population. First, the field does not have a clear definition of “older” and “unfit” patients.
Age alone is a flawed predictor of response and toxicity, as age is rarely the only factor
contributing to outcomes. Select older adults with AML can be considered for allogenic
hematopoietic stem cell transplant (Allo-SCT). Retrospective data showed that Allo-SCT
in patients aged 60–77 was associated with longer 5-year overall survival compared to
patients receiving consolidative chemotherapy despite higher initial treatment-related
mortality in the group receiving allo-SCT [101]. In addition to disease and biological factors,
comorbidities and the performance status play key roles in predicting the response to
therapy and tolerability. In an analysis of outcomes for patients older than 70 years in the
Center for International Blood and Marrow Transplant Research, the hematopoietic cell
transplant specific comorbidity index, strength of the conditioning regimen, and type of
donor significantly affected mortality in this population [102]. Geriatric assessment tools are
more effective than provider assessment in identifying candidates for intensive therapy and
predicting response and survival [103,104]. Expanded utilization of geriatric assessment
tools in both clinical practice and clinical trials is needed to identify the appropriate
treatment intensity and regimen for each patient. Second, older adults are generally under-
represented in clinical trials due to restrictive eligibility criteria, physician attitudes about
patient fitness to participate in a trial, and other social and health barriers [105]. In a survey
that assessed attitudes of older adults with cancer toward clinical trial participation, the
three highest ranking factors that encouraged trial participation were a recommendation
from an oncologist, a chance that the patient may feel better due to the trial treatment, and
a chance that the study would help other cancer patients [95]. This emphasizes the value
of designing trials with meaningful clinical outcomes that focus on quality of life, as it is
a key factor that patients use to evaluate treatment success. Third, both physicians and
investigators need to identify clear goals of therapy when treating older and unfit patients.
Despite improved outcomes with the newer regimens and agents discussed here, these
approaches are not curative. As such, these therapies are given continuously until disease
progression or intolerable toxicity. Providers must therefore have ongoing risk–benefit
discussions with patients regarding toxicities and goals of treatment to guide treatment
duration. Finally, financial toxicity due to cost of treatment, adjunctive treatments and
services to manage side effects, transportation and time off work for patients and their
caregivers must be considered throughout treatment to minimize the overall burden cancer
patients face.

7. Conclusions

In conclusion, the care of older and unfit adults must be personalized. In addition to
disease-specific factors that guide the selection of targeted therapies, care of these patients
must be grounded in an appropriate assessment of fitness to receive therapy, functional,
cognitive, and social factors, as well as patients’ goals of care. A comprehensive assessment
of our patients and their needs is essential to providing the best care and improving
outcomes that matter the most to our patients.
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Abbreviations

AE Adverse event
Allo-SCT Allogenic Hematopoitic Stem Cell Transplant
AML Acute Myeloid Leukemia
AZA Azacitidine
BCL-2 B-Cell Lymphoma-2
CLAD Cladribine
CR Complete response
Cri Complete response with incomplete count recovery
DAC Decitabine
FDA Food and Drug Administration
FLT3 FMS like tyrosine kinase
HMA Hypomethylating Agent
IDH Isocitrate dehydrogenase
LDAC Low-dose Ara-c
MDS Myelodysplastic Syndrome
ORR Objective Response Rate
OS Overall Survival
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