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Simple Summary: In early-stage lung cancer surgery, determining the extent of resection relies on
microscopic examination of frozen sections (FSs), especially when the histology is unknown preoper-
atively. While optical coherence tomography (OCT) holds promise for instant lung cancer diagnosis,
grading tumors with OCT remains challenging. Our study proposes an interactive human–machine
interface (HMI) that integrates a mobile OCT system, deep learning, and attention mechanisms. The
interactive HMI can mark lesion locations on real-time images and perform tumor grading, aiding
clinical decisions. In a trial with twelve preoperatively indeterminate adenocarcinoma patients who
underwent thoracoscopic resection, the results of the presented HMI system outperformed frozen
sections, achieving an 84.9% overall accuracy compared to FSs’ 20%, showcasing the HMI’s potential
for rapid diagnostics and improved patient outcomes.

Abstract: The determination of resection extent traditionally relies on the microscopic invasiveness
of frozen sections (FSs) and is crucial for surgery of early lung cancer with preoperatively unknown
histology. While previous research has shown the value of optical coherence tomography (OCT)
for instant lung cancer diagnosis, tumor grading through OCT remains challenging. Therefore, this
study proposes an interactive human–machine interface (HMI) that integrates a mobile OCT system,
deep learning algorithms, and attention mechanisms. The system is designed to mark the lesion’s
location on the image smartly and perform tumor grading in real time, potentially facilitating clinical
decision making. Twelve patients with a preoperatively unknown tumor but a final diagnosis of
adenocarcinoma underwent thoracoscopic resection, and the artificial intelligence (AI)-designed
system mentioned above was used to measure fresh specimens. Results were compared to FSs
benchmarked on permanent pathologic reports. Current results show better differentiating power
among minimally invasive adenocarcinoma (MIA), invasive adenocarcinoma (IA), and normal tissue,
with an overall accuracy of 84.9%, compared to 20% for FSs. Additionally, the sensitivity and
specificity, the sensitivity and specificity were 89% and 82.7% for MIA and 94% and 80.6% for IA,
respectively. The results suggest that this AI system can potentially produce rapid and efficient
diagnoses and ultimately improve patient outcomes.
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1. Introduction

According to statistics from the American Cancer Society (ACS) in 2023 [1], lung cancer
ranks second in incidence among all cancers affecting both men and women, boasting the
highest mortality rate. However, most patients are in the advanced stages of treatment due
to the difficulty in the early diagnosis of lung cancer due to its discreet symptoms in the past.
A retrospective study found that lung cancer mortality correlated with the time interval
from diagnosis to the start of treatment significantly [2]. Thus, with the advancement
of imaging technology, more early-stage lung cancer with preoperatively indeterminate
histology is found, even incidentally [3]. These early-stage and small lung tumors make
rapid on-site intraoperative diagnoses crucial, as the histological grade influences surgical
strategies [4] and indirectly affects disease survival.

Presently, the gold standard of microscopic diagnosis is the formalin-fixed paraffin-
embedded section (FFPE), in which samples are extracted intraoperatively. Despite the
microscopic resolution of FFPE enabling a definite diagnosis, FFPE diagnosis takes a couple
of days to obtain results and thus is not applicable for instant diagnosis. As a substitute
for FFPE, a frozen section (FS) provides acceptable classification power for lung tumors.
The FS has been the standard and only intraoperative diagnostic tool for a long time [5].
Unfortunately, owing to the intrinsic limitations of FSs, the accuracy for grading lung
cancer presents constraints and is a matter of debate [6–8]. A microscopic examination
of intact tissue morphology is needed to achieve high differentiation power. However,
according to the literature reviewed, frozen sections still have certain risks of misleading
surgical procedures with an accuracy of 37~95% [4,7]. Developing an optional or assistant
method for intraoperative histologic diagnoses is always required. Optical coherence
tomography (OCT) was reported to permit real-time and depth-resolved images with
submicron resolution. OCT, being non-contact, non-invasive, and non-radiative entities,
is based on the principle of low coherence interferometry. Previous research verified
that OCT was a potentially promising tool for assisting lung tumor surgery [9,10]. OCT
could distinguish intraoperatively between cancerous and normal tissue on fresh ex vivo
specimens [9]. Furthermore, OCT could provide strengths of qualitative and additional
quantitative analysis for lung tumors [10]. This OCT technology can create compatible
images through instant scanning within seconds to minutes. Furthermore, digitalized
images make the differentiated diagnoses of instant images easier and optimized, as the
benefits of digitalized data can be processed through artificial intelligence (AI).

The power of AI has recently been reported with outstanding growth. The continu-
ous management of incoming data processed by AI increased sensitivity and decreased
mistakes. OCT imaging in combination with AI has also emerged for various types of
cancer [10–19]. For example, in the study of breast cancer, a deep neural network (DNN)
was used to perform real-time edge assessment in breast lumpectomy surgery, using AI
to identify the edge of breast cancer [10]. One of the more exciting articles uses reverse
active learning to diagnose breast cancer OCT images [18]. However, more trials still need
to discuss the contributions of this new technology to diagnoses of cancer-related lung
tumors. Accordingly, the current study is designed to explore the potential roles of the
combination of OCT and AI technology in tumor diagnoses.

2. Materials and Methods

This clinical trial for lung tumors did not entail direct human body intervention; all
tissue specimens remained confined within the hospital premises. The study was approved
by the Institutional Review Board (IRB) of Mackay Memorial Hospital, focusing exclu-
sively on primary lung tumor patients aged 20 to 80, with an explicit exclusion criterion
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for individuals with metastatic carcinoma or who had previously undergone targeted
therapy, systemic radiation therapy, or chemotherapy. The OCT cart was systematically
deployed during surgical procedures to practice clinical scenarios in the operating room.
Subsequently, ex vivo tissue samples excised from operations were utilized as the studied
subjects for this comprehensive research endeavor.

The surgical team promptly intraoperatively provided lesions and normal tissue
samples during the initial phase. The normal tissue was at least 20 mm away from
the maximal visible area of the lesion. These specimens served as the foundational el-
ements for establishing a comprehensive database. Each piece of tissue was approximately
4 mm × 4 mm × 4 mm and underwent rapid OCT-performed three-dimensional scanning
with image reconstruction. The scanning area was 2.4 mm × 2.4 mm. Any specimen could
be scanned multiple times at different angles to increase sample size diversity. This process
included a data access time of about several minutes. At the same time, the surgeon also
sent a small piece of the lesion specimen to the pathology department for an intraoperative
FS. It took about 20 min to wait for a preliminary diagnosis by the pathologist. As for the
final pathologic report, the definitive benchmarked diagnosis was available about a week
later. Regarding the pathologic diagnosis, adenocarcinoma in situ (AIS) is defined as a small
adenocarcinoma (≤3 cm) with a pure lepidic growth pattern while lacking any stromal,
lymphovascular, pleural, alveolar space invasion or necrosis. Minimally invasive adeno-
carcinoma (MIA) is defined as an adenocarcinoma (≤3 cm) with a predominant lepidic
pattern and ≤5 mm invasive component (such as acinar, papillary, solid, or micropapillary
patterns), whereas invasive adenocarcinoma (IA) is defined as an adenocarcinoma with an
invasive component measuring >5 mm in its greatest dimension.

As previously published [20], the customized SD-OCT system was employed in this
research. Figure 1 illustrates our experimental setup, characterized by a single-mode
fiber-based unbalanced Michelson interferometer configuration. The wavelength of the
light source emanates from broadband superluminescent diodes (SLDs) with an average
output power of 11 mW (cBLMD-S-371-HP2-SM-OI, Superlum, Carrigtohill, Ireland). The
laser’s wavelength is centered at 840 nm, with a full width at half maximum (FWHM) of
51.2 nm, thereby attaining a theoretically calculated axial resolution of 6.06 µm. The lateral
resolution, defined by the spot size measurement at the focal plane, approximates 10 µm
(in air). The A-line scanning rate achieves 20 kHz, and the spectral interference signals
are efficiently acquired by a commercially available spectrometer (Cobra-800-880, Wasatch
Photonics, Logan, UT, USA). These spectral signals are then seamlessly converted from
analog to digital (A/D) format using a personal computer.
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Figure 1. Schematic diagram of the SD-OCT. Red solid lines are the fiber path, black dotted lines are
the electric path, and the colored areas are near-infrared in free space. SLD-LS, superluminescent
diode light source; SMF, single-mode fiber; C, coupler; FC1 and FC2, fiber collimator; ND-filter,
neutral density filter; L1 and L2, achromat lens; M, mirror; S, sample platform; G1 and G2, galvano
scanners; DAQ, data acquisition (NI-6343, National Instruments); PSU, power supply; A/D converter,
analog-to-digital converter.
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In the fiber pathway, the only essential component is a 50/50 coupler (C). The light
emitted by the superluminescent diode (SLD) initially traverses through this coupler; after
that, the resultant twin beams propagate toward the reference and sample arms. In the
reference arm, the beam is collimated utilizing a fiber collimator (FC2) (F280APC-850,
Thorlabs Inc., Lafayette, CO, USA) incorporating an adjustable neutral density filter (ND-
filter) and achromatic lens (L1) (AC254-030-B-ML, Thorlabs Inc., Lafayette, CO, USA),
subsequently encountering reflection by a silver-coated mirror (M). As for the sample arm,
the beam traverses through a pair of precisely controlled galvanometric scanning mirrors
(G1 and G2) (6220H Series, Cambridge Technology Inc., Peachtree Corners, GA, USA).
These beams emanating from the reference and sample arms converge with each other at
C, thereby engendering interference signals and introducing them into the spectrometer.
The spectrometer comprises a transmission grating and a linear line scan camera featuring
2048 pixels. Ultimately, the data flow to our PC is facilitated through a Camera Link
connection. The hardware flowchart of the system was designed using a self-built LabVIEW
program. (LabVIEW 2016, National Instruments, Austin, TX, USA). Furthermore, the data
acquisition device (DAQ) (USB 6343, National Instruments Inc., Austin, TX, USA) adeptly
governs the precise movement of G1 and G2 to generate two-dimensional (2D) or three-
dimensional (3D) waveforms. The acquired data are then transmitted to the PC via a
Camera Link connection.

The practical frame rate is 20 frames per second (fps). In conditions where shot noise
predominates, the theoretically calculated sensitivity of this architecture is 110.3 dB. With an
ND-filter attenuation of 50 dB, the measured signal-to-noise ratio (SNR) is 40 dB, indicating
a current sensitivity of 90 dB. The scanning range covers 2.4 mm along both axes. G1
carries out 2000 line scans, each lasting 0.1 s, while G2 operates at 0.025 Hz, necessitating
40 s to complete a single C-scan volume. Consequently, 400 B-scan images (2D) were
amalgamated to construct a volumetric set (3D). As confirmed by the surgical team, we
conducted volumetric measurements at two distinct tissue sites: the lesion and the normal.

Overall processing was performed using the programming language Python v3.8,
harnessing the power of CUDA GPU acceleration on a high-performance Windows-based
computer boasting 16.0 GB of RAM, an Intel Core i5-7500 CPU, and an NVIDIA GeForce
GTX1660 GPU. The flowchart is shown in Figure 2. All raw data first underwent calibration
of k linearity and window cropping. Subsequently, to mitigate speckle noise, we generated
despeckled images by employing an averaging approach across seven adjacent B-scans
after translational registration. These images were then resized and normalized into the
size of 128 pixels (depth) × 218 pixels (width), corresponding to an actual scan range of
1.4 mm (depth) × 2.4 mm (width). The values were rescaled from 0 to 1 before importing
them into the training convolution neural network. Furthermore, data augmentation
was rigorously implemented by incorporating random combinations of width and height
shifting, shearing, zooming, and horizontal flipping. Notably, to safeguard the integrity
of the morphological features in the OCT images, the parameters governing shearing and
zooming were meticulously set at a conservative ratio of 0.1.

The current study’s neural network model structure aligns with our prior publica-
tion [21]; it is an attention-mechanism-based ResNet model for classifying brain tumor
tissue OCT images, rendering it a pertinent candidate for our lung tumor dataset. In the
realm of neural network design, the attention ResNet model comprises 14 layers featuring
six optimized residual blocks, as elucidated in Figure 3a. Notably, attention mechanisms
have been thoughtfully integrated into the final residual block, incorporating filter sizes
of 32 and 64. This augmentation ensures the attention mechanism remains fully engaged,
even when capturing rudimentary features. Furthermore, a supplementary attention path,
as depicted in Figure 3b, has been introduced. This design permits the attention mechanism
to gracefully attenuate during training if it struggles to discern more pertinent features.
The neural network effectively captures superior features when the Alpha (α) value ex-
ceeds zero. During the training phase, a batch size of 16 images was employed, and the
stochastic gradient descent (SGD) optimizer was selected with a learning rate of 0.0001 and
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a momentum value of 0.9. The activation function used Leaky ReLU, and the value was set
to 0.01 to prevent the output and input from showing a linear relationship. Furthermore,
the additional L2 regularization (weight 0.05) penalty term was used to avoid the overfit-
ting of the model and make the loss function smoother. Categorical cross-entropy, one of
the most commonly used loss functions, served as the criterion to evaluate optimization
performance, and the training process concluded when the validation data’s loss function
ceased to decrease for 15 consecutive epochs.
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Figure 3. Attention ResNet model architecture diagram [12]. (a) Neural network ResNet is designed
and (b) attention mechanism is added to improve training results. Yellow arrow: residual path. Green
arrow: attention path.

T-distributed stochastic neighbor embedding (t-SNE), a non-linear machine learn-
ing dimensionality reduction method, can maintain local structure during dimension-
ality reduction. It was proposed by Laurens van der Maaten and Geoffrey Hinton in
2008 [22]. Gaussian distribution with low-dimensional information through t-distribution
and Kullback–Leibler divergence (KLD) calculation are performed for the similarity of two
probability density functions and gradient descent to find the best solution. On the other
hand, gradient class activation mapping (grad-CAM), an innovation by R. R. Selvaraju [23],
is modified as classification decisions. Python v3.8, a cloud-based database saver to back
up collected patient data and associated information, and Matplotlib’s mouse-responsive
functionalities for unveiling individualized OCT characteristics within the t-SNE image are
also applied in the current study.
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3. Results

Twelve patients with a preoperatively indeterminate tumor underwent thoracoscopic
resection. Five patients permanently diagnosed with minimally invasive adenocarcinoma
(MIA) and seven with invasive adenocarcinoma (IA) were recruited in this study. The
specimens were extracted during the ordinal operations. Any specimen might be scanned
multiple times using OCT to increase the data. The recruitment details are listed in Table 1.
We divided the data into the training dataset and the testing dataset. All data separations
were based on individual patients to generalize the model applicability to unseen OCT
images, as shown in Table 2.

The overall accuracy derived from the confusion matrix stands at an impressive
84.9%, with individual class accuracy exceeding 80% for each category, demonstrating
an acceptable classification capability. Figure 4 shows the confusion matrix from our
model, including the number of pictures (Figure 4a) and normalized probability (Figure 4b).
Specifically, for MIA, the sensitivity and specificity are 89% and 82.7%, respectively, while
for IA, they are 94% and 80.6%.

Table 1. Recruitment information.

Patient Specimens
(Tumor/Normal) OCT Volumes Permanent

Diagnosis
Frozen
Section Data Splitting

A
4 5

IA * IA

Training

2 4 Training

B
3 3 Training

2 2 Training

C
3 3 Training

2 2 Training

D
2 2 Testing

2 2 Testing

E
2 2 Training

F
2 4 Testing

G
2 3 Training

H
1 1

MIA **

IA
Training

1 1 Training

I
2 4

MIA
Testing

1 2 Training

J
3 3

AIS ***
Training

2 2 Training

K
1 1

AIS
Training

1 1 Testing

L
5 9

IA
Training

2 2 Training

* IA, invasive adenocarcinoma; ** MIA, minimally invasive adenocarcinoma; *** AIS, adenocarcinoma in situ.
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Table 2. Data separation. The columns from left to right are diagnosis type, OCT training data, and
test data. The brackets are the number of C-scan groups, and the left side of the brackets is the total
number of B-scans.

Diagnosis Training Testing
OCT Volumes OCT Frames OCT Volumes OCT Frames

IA 16 12,120 6 3569
MIA 14 12,013 4 3069

NOR 1 14 13,225 4 3349
Total 44 37,358 14 9987

1 NOR, normal lung tissue.
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normalized probability. The sensitivities and specificities of MIA and IA were 89%, 82.7%, 94%, and
80.6%, leading to an overall accuracy of 84.9%.

Figure 5 shows the trend of changes concerning the epochs. We plot the learning curve
in the processing. Figure 5a shows the accuracy of training (red line) and testing (green
line) processing. The accuracy of the test data exhibited significant fluctuations initially,
stabilizing and converging starting from the 150 epochs. Furthermore, the loss curve of the
test data (blue) is slightly higher than that of the training data (yellow). It exhibits a gradual
plateauing trend over epochs, highlighting the stability of our model. In order to better
understand the model performance, the receiver operating characteristic (ROC) curves
of IA and MIA were calculated from the testing data, as shown in Figure 5b,c. The areas
under the curves (AUCs) were 0.99 and 0.96, showing excellent differentiation powers for
the targeted tumors. The AUC of the ROC curve reflects the comprehensive performance
of the model under different thresholds if the model can distinguish between positive and
negative classes well and maintain sensitivity and specificity under various thresholds.

Subsequently, we harnessed the capabilities of t-SNE in conjunction with OCT images
and grad-CAM to ascertain whether the model authentically fixates on the correct features
instead of background information (Figure 6). Within the t-SNE interface, the posteriorly
situated lighter-colored data points represent the training dataset, while the anterior darker-
colored data points signify the test dataset. Data points of matching hues on the t-SNE
image denote the same category, with a t-SNE perplexity parameter set to 35. The t-SNE
conclusively reveals that data points of similar colors coalesce into distinct clusters, with
only minor instances of overlapping with other categories. This affirms that our model
has undergone robust training and can effectively discriminate between the three types.
Misclassified data points will be discussed further in subsequent sections.
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and 0.96, respectively.
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Figure 6. Model performance visualization t-SNE diagram: (a) IA, (b) MIA, and (c) NOR OCT images
of lung tissue observed from a subjective point of view (top) paired with the grad-CAM diagrams
(bottom) that the model focuses on. White arrows show that NOR tissue has an abundance of dense
light spots.

Moreover, exploring the analysis of grad-CAM heatmaps, we examined the intricate
features extracted by our model within each histology-graded distinct category. In IA
images, we observe a phenomenon characterized by interrupted attenuation with discon-
tinuous reflection (Figure 6a). This feature is absent in MIA images. Remarkably, MIA
images show relatively formless homogeneity (Figure 6b). In the normal tissue images
(NOR), the model focuses on the tissue’s superficial regions, which show irregular and
dense spots (Figure 6c). However, the attenuation discontinuity in NOR appears randomly.

In addition to the reasonably good visual results obtained from t-SNE images, we
have also implemented an interactive t-SNE interface. When individual data points within
the interface are clicked on, the corresponding OCT image data are promptly retrieved
alongside a window presenting pertinent patient information and the related OCT image
data. In a separate interface, patient details such as name, chart number, gender, sample
number, volume number, and the number of B-scans, in addition to the neural network’s
classification probabilities and grad-CAM image, are presented. This feature affords us the
immediate capability to scrutinize and analyze our dataset. Furthermore, predictions for
the respective data points are provided beneath this window, with associated probabilities
and visual CAM images. Figure 6 vividly illustrates the interactive outcomes attained
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by selecting MIA (Figure 7a) and IA (Figure 7b) data points. These images conclusively
demonstrate the neural network’s adeptness at delivering precise predictions for both MIA
and IA cases, with the CAM images discerningly highlighting the relevant features of
interest rather than fixating on extraneous background information.
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4. Discussion

Both diagnoses and treatments in medicine are crucial in real-world practice. Lungs
are an organ of combined solid and luminal structures in the deep body. Specialists in
managing lung tumors, especially for minor conditions increasing incredibly slowly in
size, are faced with combined procedures of instant diagnostic judgments between benign
and malignant lesions and subsequent surgical treatments. Surgery is considered the
standard management for early-stage non-small-cell lung cancer, as small and early tumors
in the pulmonary parenchyma are hard to access through bronchoscopy for diagnosis [24].
Therefore, rapid on-site accurate diagnoses, as eagerly needed, provide essential data
for subsequent surgical strategies and are especially imperative in pulmonary oncology.
Currently, definite diagnosis of tumor entities in the microscopic spectrum can only be
supplied by pathologic procedures days after the surgery, leaving time-effective issues for
improvement. As a result, instant biopsy through FS reports becomes essential to approach
histological data; it is performed by the running duty-shifted pathologist, taking slices at
one location to determine a diagnosis. However, detailed incorrect results commonly exist
in particularly small lesions.

Compared with FSs, OCT provides continuous slice images with a range of around
2.4 mm × 2.4 mm. Generally, surgeons can distinguish the tumor area with bare eyes.
However, the final pathology must still confirm the invasive regions’ existence and detailed
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content. If the resected specimen for OCT scanning does not contain enough invasive parts,
the model may lead to misclassifications.

The evolutionary development of cell biology for lung adenocarcinoma is believed to
proceed sequentially through atypical adenomatous hyperplasia (AAH), adenocarcinoma
in situ (AIS), MIA, and overt IA [25,26]. Cancer cells sometimes take a long time to grow,
even up to several years. Improvements in the health environment and people’s medical
vigilance result in more and more clinical cases of early-stage cancer.

According to literature statistics, the five-year survival rate of early-stage cancer with
immediate treatment, especially before the MIA stage, can reach 100% [27]. An important
issue is the opposite considerations between the resection criteria extents required for
adequate tumor clearance and maximal preservation of lung volume to preserve better
pulmonary function. Both destruction and protection are considered crucial. Therefore,
surgical treatments according to the set reference based on histological grade played an
essential role and were required. Generally, the histologic MIA status of lung tumors
is considered the cut-off point for the extent of surgical resection. Beyond MIA, limited
resection with so-called sublobar resection was adequate and recommended [28]. Above
IA, however, extensive resection by lobectomy or more is often needed for sufficient cancer
clearance [24,28–31]. The current study shows better discrimination capability by OCT
integrated with AI (OCT-AI) compared to the traditional FSs. In addition, time saving is
another strength of the current electromechanical system (EMS). This OCT-AI can provide
data management within tens of seconds to a few minutes, while an FS usually needs at
least 30 min. Thus, such an efficient AI-integrated EMS would have the potential to be an
optional tool for rapid on-site diagnoses of preoperatively indeterminate tumors.

Although the current model achieves an accuracy rate of approximately 80%, mis-
classifications still exist, as with other tools. By scrutinizing the features contributing
to misclassifications in the CAM images, we can gain insights into the sources of error
(Figure 8). Figure 8a illustrates a scenario in which MIA is erroneously classified as IA,
while Figure 8b depicts IA being misclassified as MIA. In Figure 8a, the model princi-
pally directs attention to areas characterized by discontinuous attenuation (red arrow of
Figure 7a), a hallmark feature of IA in OCT images, as mentioned before. In Figure 7b,
the model fixates on relatively uniform regions (blue arrow of Figure 8b), resulting in a
misclassification as MIA. Notably, there are also structureless areas near the surface (blue
arrow of Figure 8a), indicative of MIA features, yet the model simultaneously focuses on
the regions of discontinuous attenuation below. Similarly, some dense spots (red arrow of
Figure 8b), the feature of IA, exist in Figure 8b. We infer that the simultaneous co-existence
of IA and MIA features would lead to misclassifications. However, the mistakes of such
conditions are very low, with a probability of around 4% (misclassification of IA) and 11%
(misclassification of MIA).

Tumor spread through air spaces (STAS) is prevalent in regular pathologic findings [32].
In the current study, specimens of normal tissue of around 20 mm or at least the size of
the lesions are provided for OCT scanning as a calibrated benchmark. Tumor resections
of at least 20 mm are commonly recommended for suspected malignancy, which was
the previously generally accepted safety margin [33,34]. The tumor margin distance is
a primary concern regarding local control. Therefore, the current study chose normal
tissue with a 20 mm distance or at least the size of the lesions for evaluation. STAS is
challenging to interpret in a frozen section specimen, and better accuracy is needed [35,36].
On the other hand, as shown in the confusion matrix in Figure 4, normal tissue images can
sometimes be erroneously categorized as IA. These conditions are observed to present in all
categories but are mostly misclassified in IA specimens. Through quantitative comparison,
IA and NOR determined by the OCT-AI system show a particular possibility of mixed
discrimination. However, the strengths of OCT-AI lie in the capability of calibrated accuracy
by self-promotion through extensive data collection. STAS in lung cancer has been reported
to have numerous associations with poor survival [29,36]. Thus, from the concept of
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treatment effectiveness, wide excision by lobectomy would be suggested if the OCT-AI
system reads specimens to be IA of small tumors.

Cancers 2023, 15, x FOR PEER REVIEW 11 of 15 
 

 

 
Figure 8. Image of neural network misclassification. (a) shows MIA being misjudged as IA, and (b) 
shows IA being misjudged as MIA. Red arrows mark the IA feature, while blue arrows point to the 
MIA feature. 

Tumor spread through air spaces (STAS) is prevalent in regular pathologic findings 
[32]. In the current study, specimens of normal tissue of around 20 mm or at least the size 
of the lesions are provided for OCT scanning as a calibrated benchmark. Tumor resections 
of at least 20 mm are commonly recommended for suspected malignancy, which was the 
previously generally accepted safety margin [33,34]. The tumor margin distance is a 
primary concern regarding local control. Therefore, the current study chose normal tissue 
with a 20 mm distance or at least the size of the lesions for evaluation. STAS is challenging 
to interpret in a frozen section specimen, and better accuracy is needed [35,36]. On the 
other hand, as shown in the confusion matrix in Figure 4, normal tissue images can 
sometimes be erroneously categorized as IA. These conditions are observed to present in 
all categories but are mostly misclassified in IA specimens. Through quantitative 
comparison, IA and NOR determined by the OCT-AI system show a particular possibility 
of mixed discrimination. However, the strengths of OCT-AI lie in the capability of 
calibrated accuracy by self-promotion through extensive data collection. STAS in lung 
cancer has been reported to have numerous associations with poor survival [29,36]. Thus, 
from the concept of treatment effectiveness, wide excision by lobectomy would be 
suggested if the OCT-AI system reads specimens to be IA of small tumors. 

In this era with many pieces of AI-based software, there are some considered suitable 
for applicable approaches for the current study, such as support vector machines (SVMs) 
and artificial neural networks (ANNs), including feedforward neural networks (FNNs), 
recurrent neural networks (RNNs), and convolutional neural networks (CNNs). In this 
study, a CNN’s convolutional computation was chosen, utilizing convolutional layers to 
learn features from data automatically [21]. We gave up using SVMs, ANNs, FNNs, and 
RNNs because there were defects of requiring manual feature extraction tasks and a lack 
of automatic learning of features from data. An attention-based ResNet model combined 
with a CNN was selected owing to the strengths of good classification performance for 
lung cancer. The advantages lay in that this combination reduced the need for extensive 
domain knowledge and experience and was less demanding in terms of raw data, as well 
as parameter tuning for good performance. CNNs are typically used in tasks related to 
computer vision, image classification, and image recognition and are particularly suitable 
for managing spatial data. 

The AI training process is like a complex matrix, and it is difficult to understand the 
learning details and interpretation basis intuitively. Therefore, it is necessary to use 
visualization tools to perform dimensional reduction. Standard methods are principal 
component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE). PCA 

Figure 8. Image of neural network misclassification. (a) shows MIA being misjudged as IA, and
(b) shows IA being misjudged as MIA. Red arrows mark the IA feature, while blue arrows point to
the MIA feature.

In this era with many pieces of AI-based software, there are some considered suitable
for applicable approaches for the current study, such as support vector machines (SVMs)
and artificial neural networks (ANNs), including feedforward neural networks (FNNs),
recurrent neural networks (RNNs), and convolutional neural networks (CNNs). In this
study, a CNN’s convolutional computation was chosen, utilizing convolutional layers to
learn features from data automatically [21]. We gave up using SVMs, ANNs, FNNs, and
RNNs because there were defects of requiring manual feature extraction tasks and a lack
of automatic learning of features from data. An attention-based ResNet model combined
with a CNN was selected owing to the strengths of good classification performance for
lung cancer. The advantages lay in that this combination reduced the need for extensive
domain knowledge and experience and was less demanding in terms of raw data, as well
as parameter tuning for good performance. CNNs are typically used in tasks related to
computer vision, image classification, and image recognition and are particularly suitable
for managing spatial data.

The AI training process is like a complex matrix, and it is difficult to understand
the learning details and interpretation basis intuitively. Therefore, it is necessary to use
visualization tools to perform dimensional reduction. Standard methods are principal
component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE). PCA
is a linear dimensionality reduction technique that may not capture complex, non-linear
relationships in the data as effectively as t-SNE. Others, such as locally linear embedding
(LLE), aim to preserve local linear relationships between data points. Isomap is suitable for
data with intrinsic non-linear structures but may be sensitive to noise and require careful
parameter tuning. In this study, t-SNE was employed for model visualization.

A module with non-linear machine learning dimensionality reduction, t-SNE, is used.
Simultaneously, a modified method designed by Laurens van der Maaten and Geoffrey
Hinton in 2008 was proposed [22]. The main idea is to approximate high-dimensional
information through Gaussian distribution and low-dimensional information through t-
distribution. Kullback–Leibler divergence (KLD) calculation is performed for the similarity
of two probability density functions and gradient descent to find the best solution. In
the current research, t-SNE was judiciously applied to scrutinize the distributions of data
emanating from diverse samples and elucidate their inherent properties. On the other hand,
gradient class activation mapping (grad-CAM) was systematically employed for compre-
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hensive model evaluation. Grad-CAM, an innovation pioneered by R. R. Selvaraju [23],
facilitates the mapping of regions within an image that significantly influences the model’s
classification decisions. This activation map is derived from gradient calculations to the out-
put concerning a given input image. In our specific application, grad-CAM was harnessed
to visualize the salient features prioritized by the trained model.

Validating the model’s training through result visualization is of paramount impor-
tance. However, even with excellent training outcomes, the practical utility for clinical
healthcare professionals often hinges on the involvement of engineers. Therefore, designing
an interactive human–machine interface (HMI) aims to make the user interface easily under-
stood and provide clinical personnel with real-time patient information, an assessment of
symptom severity, and an approximate lesion location [37–40]. An HMI enables clinicians
to formulate the quickest surgical strategies, ultimately improving patient outcomes.

The designed processing of the system involved the creation of the interface using
Python v3.8. A cloud-based database for backing up collected patient data and associated
information, which can be modified and expanded upon in the patient data section, was
created. After importing the dataset into the neural network for post-model training, classi-
fication probabilities of t-SNE and grad-CAM images were obtained. The Matplotlib plot-
ting library within Python provides an object-oriented application programming interface
(API) for embedding graphics into the application interface. Due to Matplotlib’s mouse-
responsive functionalities, clicking on individual points within the t-SNE image unveils its
OCT images. In a separate interface, patient details such as name, chart number, gender,
sample number, volume number, and the number of B-scans, in addition to the neural
network’s classification probabilities and grad-CAM image, are presented. This integrated
interface is engineered to provide a holistic depiction of the final classification results.

Interactive HMI implementation can provide a friendly and straightforward operat-
ing interface on the clinical terminal, whether the classification is correct or incorrect. In
addition, quantitative probabilities can provide suggestive data for surgeons with alterna-
tive diagnostic guidance. Figure 9 shows two misjudgments on the interactive HMI. The
model predicts three probabilities of MIA, IA, and NOR; the final prediction is the largest.
Although misclassification, as also exhibited by other diagnostic tools, existed in some
cases, the OCT-AI system provided the additional probability data of tumor categories, as
displayed on the left side of the interactive HMI, to be considered for decisional judgment
by the clinicians. Figure 9a illustrates an NOR from an IA patient erroneously categorized
as IA. Probabilities are IA: 66.04% and NOR: 33.96%. Figure 9b indicates the model assign-
ment of reasonably similar possibilities for both IA and MIA. Hypothetically, MIA and
IA exist simultaneously. This interface design can empower physicians to access detailed
probability information of misclassifications promptly, helping them make well-informed
decisions during surgical procedures.
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5. Conclusions

This study represents the first real-time clinical investigation of lung cancer tissue
using the AI-integrated OCT for grading classification. Our customized neural network
model can accurately classify normal tissue, MIA, and IA. Additionally, we have developed
an interactive HMI that allows clinicians to assess deep and detailed tumor information,
including digital data from OCT scans and, most importantly, visualized images and
available predictive probability assessment only by clicking on data points in t-SNE images.
Despite the current model’s high accuracy, some misclassifications still exist, indicating
spaces left for improvement. In the future, the authors aim to gather more data to enhance
the model’s reliability; incorporate features such as in situ cancer, precancerous lesions,
and benign conditions; and achieve a more comprehensive and nuanced classification
system. In summary, the current proposed method has the potential to enhance traditional
pathological examination, improve diagnostic efficiency, and assist patients with ensuring
appropriate treatment and better outcomes.
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