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Simple Summary: Despite extensive efforts to identify cell-free circulating biomarkers for lung
cancer, none have yet achieved clinical adoption. Recent evidence suggests that blood cell-derived
molecules play significant roles in tumorigenesis and may serve as potential diagnostic biomarkers.
In this study, we perform microRNA (miRNA) profiling on three primary blood cell types: red blood
cells (RBCs), peripheral blood mononuclear cells, and neutrophils, comparing samples from lung
cancer patients to healthy controls. We identify distinct miRNA signatures for each cell type and
observe significant differences between patient and control cohorts. We show for the first time that
RBC-miRNAs have potential as novel biomarkers for lung cancer. By constructing diagnostic panels
based on cell-specific miRNAs, we demonstrate that integrating miRNAs from multiple cell sources
offers superior diagnostic accuracy than relying on a single cell type.

Abstract: Background: Despite extensive endeavors to establish cell-free circulating biomarkers
for lung cancer diagnosis, clinical adoption remains elusive. Noteworthy, emergent evidence sug-
gests the pivotal roles of red blood cells (RBCs) and their derivatives in tumorigenesis, illuminating
potential avenues for diagnostic advancements using blood cell-derived microRNAs (miRNAs).
Methods: We executed microarray analyses on three principal blood cell types—RBCs, peripheral
blood mononuclear cells (PBMCs), and neutrophils—encompassing 26 lung cancer patients and
26 healthy controls. Validation was performed using droplet digital PCR within an additional cohort
comprising 42 lung cancer and 39 control cases. Results: Our investigation unearthed distinct miRNA
profiles associated with lung cancer across all examined blood cell types. Intriguingly, RBC-miRNAs
emerged as potential novel biomarkers for lung cancer, an observation yet to be documented. Impor-
tantly, integrating miRNAs from disparate blood cell types yielded a superior diagnostic accuracy
for lung cancer over individual cell-type miRNAs. Subsequently, we formulated three diagnostic
panels, adeptly discerning non-small cell lung cancer, adenocarcinoma, and squamous cell carcinoma,
maintaining consistency across various disease stages. Conclusion: RBC-derived molecules introduce
novel cancer biomarkers, and exploiting miRNA profiles across varied blood cell types unveils a
promising frontier for lung cancer’s early detection and histological classification.

Keywords: biomarkers; red blood cells; miRNAs; lung cancer; diagnosis

1. Introduction

Analysis of cell-free, tumor-derived molecules in the plasma or serum of blood samples
offers a non-invasive approach to the diagnosis, prognosis, and evaluation of therapeutic
efficacy in cancer. microRNAs (miRNAs) function as either tumor suppressors or onco-
genes whose aberrations are associated with various malignancies. Significant endeavors
have been undertaken to identify cancer biomarkers through the detection of circulating
extracellular miRNAs originating from tumors [1]. However, challenges persist in the
advancement of cell-free biomarkers for cancer. For example, suboptimal miRNA recovery
rates, potential contamination from hemolysis, and inconsistencies stemming from the
processing and sourcing of cell-free miRNAs can lead to varying or conflicting diagnostic
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results [2]. The situation is further complicated by the diverse states in which miRNAs are
present in the blood, whether bound to proteins like Argonaute complexes and lipoproteins,
or enclosed in cellular fragments like exosomes and microvesicles [2–6]. In addition, the
cell-free-based biomarkers are limited by the low sensitivity attributed to the scarcity of
tumor-derived molecules in the bloodstream, especially during early cancer stages. More-
over, while plasma or serum offers crucial information, it represents only a portion of
the intricate matrix that makes up blood, thus constraining the sensitivity of potential
biomarkers. Recent studies have shown that various cells within the bloodstream can
quickly adapt to stress by modulating the levels of signaling molecules and play pivotal
roles in tumorigenesis [7]. For example, leukocytes actively produce and react to a variety
of cytokines, which can either amplify or dampen inflammatory processes, crucial events
in the oncogenic pathway [8]. Platelets are a rich reservoir of cytokines and growth factors
and have emerged as potential diagnostic and therapeutic targets for cancer [9]. We have
demonstrated that miRNAs associated with peripheral blood mononuclear cells (PBMCs)
and neutrophils possess diagnostic potential for lung cancer [10,11].

Among the different types of blood cells, red blood cells (RBCs), primarily known
for their role in respiratory gas exchange, constitute the most abundant cell type in the
human body. Despite their prevalence, the role of RBCs in cancer has been surprisingly
underexplored [7]. Because of this, along with their high hemoglobin content—which
is often viewed as a contaminant in biomarker research—RBCs are considered “junk
cells” and discarded in the development of cell-free biomarkers [12–15]. Recent studies
suggest that RBCs, via galectin-4, can directly interact with tumor cells, altering their
membrane protein composition and influencing their interactions with platelets throughout
carcinogenesis [16–20]. RBCs, using Toll-like receptor 9 on their surface, can attach to
cell-free or pathogenic DNA, initiating innate immune responses and inflammation during
tumor development and progression [21–25]. Furthermore, changes in RBC indices and
oxygen-dependent nitric oxide have been linked to malignancies [26–29]. In addition, RBCs
may harbor DNA fragments and assimilate DNA bearing tumorigenic mutations from
cancer cells or tissues through cell-to-cell contact [22]. Moreover, recent studies suggest that
RBCs may reach the tumor microenvironment, where intratumor RBCs promote tumor cell
proliferation and growth, potentially inducing an immunosuppressive state [30]. It is also
proposed that metabolite-induced immunosuppressive functions of RBCs could be initiated
within the tumor microenvironment, which plays a crucial role in cancer development
and progression [31]. Given that RBCs possess a notably abundant and diverse set of
miRNAs compared with many human cells, investigating their role in tumorigenesis could
offer pivotal insights into the mechanisms of carcinogenesis, possibly identifying new
biomarkers for the disease.

In this study, we simultaneously analyzed miRNA profiles from RBCs, PBMCs, and
neutrophils of lung cancer patients and controls. We identified unique miRNA signatures
for each cell type, with marked differences between both groups. We showed for the first
time that RBC-miRNAs have the potential as novel biomarkers for lung cancer. Using these
insights, we developed diagnostic panels combining miRNAs from different cell types,
enhancing diagnostic efficacy over using single-cell-type miRNAs.

2. Materials and Methods
2.1. Patient Cohorts and Specimens

Our research received approval from the Institutional Review Board of the University
of Maryland Baltimore. From our pool of participants, we recruited 68 individuals with non-
small cell lung cancer (NSCLC), with a breakdown as follows: 17 at stage I, 13 at stage II,
17 at stage III, 18 at stage IV, and 3 cases with unknown stages. Among the NSCLC patients,
there were two dominant types: adenocarcinoma (AC) and squamous cell carcinoma (SCC).
Additionally, we enrolled 65 smokers who had not been diagnosed with any form of cancer.
Our pool of non-cancerous smokers exhibited various lung conditions: granulomatous
inflammation (29 individuals), nonspecific inflammatory changes (19 individuals), and
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lung infections (17 individuals). Aimed at delineating miRNA expression profiles in blood
cells, we utilized specimens from 26 individuals diagnosed with NSCLC and an equal
number of smokers, forming our exploratory set. Within this subset, we meticulously
mitigated potential confounding by matching cases and controls on several pertinent
variables, including the number of subjects in each group, sex, race, and smoking history
(Table 1). For the validation phase, we used the remaining samples from 42 NSCLC patients
and 39 smokers without cancer (Table 1).

Table 1. Characteristics of NSCLC patients and cancer-free smokers in the exploratory set and
validation set.

An Exploratory Set A Validation Set

NSCLC cases
(n = 26)

Controls
(n = 26)

NSCLC cases
(n = 42)

Controls
(n = 39)

Age 66.73
(SD 11.25)

65.782
(SD 10.39) Age 65.38

(SD 10.23)
64.74

(SD 10.26)
Sex Sex

Female 9 9 Female 12 11
Male 17 17 Male 30 28
Race Race
AAs 11 11 AAs 26 25
WAs 16 16 WAs 16 14

Smoking pack-years
(median) 32.7 30.9 Smoking pack-years

(median) 33.8 31.2

Pulmonary
nodule size (mm)

21.26
(SD 10.25)

6.72
(SD 3.58)

Pulmonary
nodule size (mm)

20.25
(SD 11.38)

6.63
(SD 3.97)

Stage Stage
Stage I 7 Stage I 10
Stage II 5 Stage II 8
Stage III 8 Stage III 9
Stage IV 6 Stage IV 12

Unknown 3
Histological type Histological type
Adenocarcinoma 15 AC 26

SCC 11 SCC 16

Abbreviations: NSCLC, non-small cell lung cancer; AC, adenocarcinoma; SCC, squamous cell carcinoma; SD,
standard deviation.

2.2. Isolation and Processing of Blood Cells

Blood samples were collected into ethylenediaminetetraacetic acid (EDTA) anticoagu-
lant tubes (Becton, Dickinson, Franklin Lakes, NJ, USA) to inhibit clotting and subsequently
diluted with phosphate-buffered saline (PBS) (Sigma-Aldrich, St. Louis, MO, USA) at a
1:1 ratio. These diluted samples were delicately layered over Ficoll–Paque in centrifuge
tubes, ensuring no mixing occurred with the Ficoll solution. Upon centrifuging at roughly
500× g for 30 min at room temperature, distinct layers emerged: the topmost being plasma,
followed by PBMCs in the buffy coat, Ficol–Paque in between, and a mix of RBCs and
neutrophils at the base. To isolate RBCs, the bottom layer, which consisted of both RBCs
and neutrophils, was gently siphoned, with the densest RBCs settling at the very end. The
buffy coat was directly pipetted to collect PBMCs into a fresh tube. To isolate neutrophils,
the remaining section of the bottom layer (post-RBC extraction) was combined with 3 parts
of cold PBS and then centrifuged at 300× g for 10 min at 4 ◦C. The resulting pellet was mo-
mentarily resuspended in a hypotonic solution to remove any lingering RBCs, followed by
the infusion of a 1.8% saline solution. After another centrifugation, the now neutrophil-rich
pellet was reconstituted in PBS.
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2.3. Assessment of Purity of Isolated RBCs, PBMCs, and Neutrophils

We used magnetic-activated cell sorting (MACS) technology to evaluate the purity
of the isolated RBCs, PBMCs, and neutrophils. RBCs were resuspended in MACS buffer
(Miltenyi Biotec. San Ramon, CA, USA) and incubated with magnetic beads coated with
antibodies against glycophorin A, a distinctive RBC marker, as per the manufacturer’s
guidelines for MACS kits (Miltenyi Biotec). For PBMC validation, the isolated PBMCs were
similarly resuspended in MACS buffer and treated with beads conjugated to antibodies
specific for CD3 (T cells) and CD19 (B cells). In the case of neutrophils, they were resus-
pended in MACS buffer and exposed to beads coated with CD66b antibodies, a specific
neutrophil marker. The purity of each isolated cell type was determined using flow cytom-
etry (Becton, Dickinson), as described in previous research [32]. Controls, including cells
without labels (assessing non-specific binding) and cells tagged with unrelated antibodies
(acting as negative controls), were consistently integrated into the experiments.

2.4. RNA Isolation

RNA was isolated from cell samples using methodologies detailed in our prior
works [10,11]. We evaluated the purity and concentration of the isolated RNA using
OD260/280 readings on a dual-beam UV spectrophotometer (Eppendorf AG, Hamburg,
Germany), aiming for an optimal ratio between 1.8 and 2.0. The integrity of the RNA
samples was assessed using capillary electrophoresis with the RNA 6000 Nano Lab-on-a-
Chip kit and a Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA). Only RNA
samples with integrity numbers exceeding 7 were considered for subsequent analyses.

2.5. Real-Time PCR-Based Microarray Analysis of miRNAs

The examination of miRNA expression profiles within blood cells was performed by Ex-
iqon Services (Exiqon, Denmark), following the methodologies as previously outlined [10,11].
Briefly, 6 µL of RNA underwent reverse transcription in 30 µL reactions, using the miRCURY
LNA™ Universal reverse transcription (RT) miRNA PCR, Polyadenylation, and cDNA
synthesis kit (Exiqon). The synthesized cDNA was then diluted 100-fold and assayed in
10 µL PCR reactions, consistent with the miRCURY LNA™ Universal RT miRNA PCR
protocol. Each miRNA underwent a singular qPCR assay on the miRNA Ready-to-Use
PCR, Human Panel I, utilizing the ExiLENT SYBR® Green master mix. Control reactions,
devoid of the template during the reverse transcription, were executed and profiled akin
to the samples. The amplifications were undertaken within a LightCycler® 480 Real-Time
PCR System (Roche, San Francisco, CA, USA) in 384-well plates. Amplification curves
were derived using the quantification cycle (Cq) values, which subsequently served as
relative quantifiers for the assayed genes. To normalize the data, we used the average
of assays detected in the samples, calculated as (average–assay Cq). We then used the
statistical methods delineated in the subsequent statistical analysis section to identify genes
differentially expressed between NSCLC patients and cancer-free smokers.

2.6. Droplet Digital PCR (ddPCR) Analysis of miRNAs

We conducted ddPCR evaluations of the miRNAs, adopting the protocols as previously
described [33–36]. In brief, from each sample, 1 µL of RNA was subjected to RT using
the TaqMan miRNA RT Kit (Applied Biosystems, Foster City, CA, USA) and gene-specific
primers, producing the corresponding cDNA. The specific primers used for the ddPCR
evaluation of miRNAs are cited in our previous studies [37–39]. A 20 µL reaction mixture,
composed of 5 µL cDNA solution, 10 µL Supermix, and 1 µL of the Taqman primer/probe
mix, was introduced into a cartridge containing Droplet Generation Oil (Bio-Rad, Hercules,
CA, USA). Subsequently, the cartridge was positioned within the QX100 Droplet Generator
(Bio-Rad). The resulting droplets were methodically transferred to a 96-well PCR plate and
subjected to PCR amplification using the T100 thermal cycler (Bio-Rad). Leveraging the
count of positive reactions and Poisson’s distribution, a direct and reliable quantification of
the original target concentration was ascertained.
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2.7. Statistical Analysis

To detect differentially expressed miRNAs between lung cancer patients and cancer-
free controls in the exploratory set, we used the following parameters to determine sample
size: a permissible false positive rate of 1.0, an anticipated fold difference of 2.0 between
normal and tumor samples, a standard deviation of 0.7 for gene measurements on a base-
two logarithmic scale, and an intended power of 80%. With the inclusion of 372 miRNAs in
the array, a total of 26 specimens per group were deemed necessary to meet the stipulated
statistical criteria. Subsequent to this, to validate and develop miRNA marker panels
for distinguishing between cancer patients and controls, we used the Receiver Operator
Characteristic (ROC) curve with an emphasis on the Area Under the Curve (AUC) for
sample size determination. With an established AUC of H0 at 0.5 (representing our null
hypothesis), and under the alternative hypothesis of H1, a minimum of 28 subjects in
each category was requisite to discern a noteworthy difference, aiming for an AUC of
0.75 against an AUC of 0.5, ensuring 80% power at a 5% significance level. Consequently,
our sample composed of 42 NSCLC patients juxtaposed with 39 cancer-free controls suf-
fices to provide robust statistical power for biomarker development. Microarray data
were analyzed using the Kruskal–Wallis test or the Mann–Whitney U test. A False Dis-
covery Rate (FDR)-adjusted p-value of less than 0.05 was considered significant. Further
refinement of miRNA analysis was undertaken using the Least Absolute Shrinkage and
Selection Operator (LASSO) method, aiming to pinpoint the most efficacious combination
of miRNAs for diagnostic biomarker panels. The selected miRNA panel was subjected
to Pearson’s correlation analysis, ensuring the mitigation of collinearity. The diagnostic
efficacy of the chosen miRNA sets underwent rigorous examination using multivariate
binary logistic regression, paired with ROC and AUC evaluations, thereby elucidating
predictive algorithms, sensitivities, and specificities. Relationships between miRNAs and
variables such as age, sex, race, smoking pack years, and cancer stages were determined
using multivariate analysis of variance.

3. Results
3.1. Isolation and Purification of Blood Cells and RNA Samples

From the 135 blood samples collected, we effectively isolated three distinct cell types:
RBCs, PBMCs, and neutrophils. Flow cytometry analysis confirmed that the purity of these
isolated cell types exceeded 95%. Moreover, the RNA extracted from these cell populations
was of high purity, evidenced by a 260/280 ratio ranging between 1.8 and 2.0. The quality
of the RNA was also superior, with an RNA integrity number consistently ≥ 7.

3.2. Distinct miRNA Patterns Can Differentiate among Various Blood Cell Types

Among the 372 mature human miRNAs present on the Exiqon qPCR-based miRNA
array, an average of 212 miRNAs were detected per sample across the three different cell
populations, as they exhibited a Cq value of <37. Fifty of the miRNAs exhibited significant
differential expression (an FDR-adjusted p-value of less than 0.05) across the three cell
populations from cancer-free smokers (Figure 1 and Table S1).
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Figure 1. A heatmap showcasing the differential expression of the 50 miRNAs with the most
significant standard deviation across three distinct cell populations from the cancer-free smokers.
The color gradient moves from green (denoting down-regulation) to black (indicating no change) and
culminates in red (highlighting up-regulation). The results of normalized dCq values were analyzed
using the Kruskal–Wallis test. A False Discovery Rate (FDR)-adjusted p-value of less than 0.05 was
considered significant. Each row corresponds to a specific miRNA, while each column signifies a
unique sample.

3.3. Distinct Cell-Specific miRNA Profiles Associated with Lung Cancer Patients

In RBCs of NSCLC patients, a differential expression was observed for six miRNAs
(FDR-adjusted p-values < 0.05) compared with cancer-free smokers (Figure 2A and Table 2).
Particularly, miR-93-5p and miR-449b-5p were expressed at elevated levels, whereas miRs-
29c-3p, 15a-5p, 449a, and 148a-3p showed reduced levels relative to controls. In PBMCs,
three miRNAs exhibited varied expression levels (all p < 0.05) in NSCLC patients as
compared with cancer-free smokers (Figure 2B and Table 2). Of the miRNAs, miRs-576-3p
and 19b-3p were found at higher levels, while miR-29b-3p showed a decreased expression
in NSCLC patients (p < 0.05). In neutrophils, differential expression was noted for three
miRNAs in NSCLC patients in comparison with cancer-free smokers (all p < 0.05), as
detailed in Figure 2C and Table 3. Specifically, miRs-423-3p and 574-3p were at heightened
levels, and miR-26a-2-3p was present at a diminished level relative to the controls.
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Figure 2. Heatmaps displaying unique miRNA profiles for each cell population, comparing lung
cancer patients to cancer-free controls. The color gradient transitions from green (down-regulation)
to black (no change) and culminates in red (up-regulation). Expression data rely on normalized
dCq values. The Mann–Whitney U test was used for statistical analysis, with significance set at
an FDR-adjusted p-value of <0.05. Within the heatmap, each row signifies a unique miRNA, while
columns denote individual samples. Labels (A–C) indicate miRNA changes in RBCs, neutrophils
(Neu), and PBMCs, respectively, across the 26 cancer-free smokers and 26 lung cancer patients.

Table 2. The 12 miRNAs found to be significantly differential expressed in three cell populations of
lung cancer patients with cancer-free controls. The results were analyzed using the Mann–Whitney U
test with an FDR-adjusted p-value of less than 0.05.

miRNAs Mean Expression
(Controls)

Mean Expression
(Cancer Patients)

Mann–Whitney U
Statistic

FDR-Adjusted
p-Value

RBC miR-93-5p 0.922 1.529 41 <0.001

RBC miR-449b-5p −0.585 0.370 116 <0.001

RBC miR-29c-3p −0.585 −0.145 189 0.006 *

RBC miR-15a-5p 2.039 −1.041 10 <0.001 *

RBC miR-449a 2.431 −1.299 0 <0.001 *

RBC miR-148a-3p 2.728 −1.701 0 <0.001 *

Neutrophil miR-423-3p −0.464 1.550 75 <0.001

Neutrophil miR-574-3p −0.255 1.014 2 <0.001

Neutrophil miR-26a-2-3p 0.926 −0.454 6 <0.001 *

PBMC miR-576-3p −0.754 1.476 16 <0.001

PBMC miR-19b-3p −0.105 1.219 126 <0.001

PBMC miR-29b-3p 1.739 −0.528 0 <0.001 *

*, the miRNA was significantly decreased in expression in lung cancer patients compared with cancer-free
smokers.
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Table 3. The nine observed miRNA changes detected using ddPCR in an additional 42 cases and
39 controls, consistent with the miRNA array data. The results were analyzed using the Mann–
Whitney U test with an FDR-adjusted p-value of less than 0.05.

miRNAs Mean Expression
(Controls)

Mean Expression
(Cancer Patients)

Mann–Whitney U
Statistic

FDR-Adjusted
p-Value

RBC miR-93-5p 38.443 52.000 474 0.009

RBC miR-449b-5p 0.016 0.022 631 0.008

RBC miR-29c-3p 3.930 3.030 561 0.014 *

RBC miR-15a-5p 151.015 112.129 506 0.003 *

PBMC miR-576-3p 0.045 0.056 576 0.021

PBMC miR-19b-3p 24.834 27.016 515 0.004

PBMC miR-29b-3p 8.220 6.855 438 0.001 *

Neutrophil miR-574-3p 0.605 0.790 532 0.010

Neutrophil miR-26a-2-3p 0.031 0.019 * 397 0.003 *

*, the miRNA was significantly decreased in expression in lung cancer patients compared with cancer-free
smokers.

3.4. Distinct miRNA Profiles in Cell Types for Differentiating Lung Cancer from Controls

To validate our miRNA array findings, we utilized ddPCR, a different technique,
on a separate cohort comprising 42 lung cancer patients and 39 controls. Each of the
12 miRNAs produced at least 10,000 droplets in each sample well, ensuring an effective
ddPCR “reading” for absolute gene quantification. This established that all 12 miRNAs
could be consistently measured using the ddPCR technique.

From these 12 miRNAs, 9 exhibited changes in line with the miRNA array data
(Table 3). Among the eight ncRNAs, PBMC miR-19b-3p displayed an association with the
age of the subjects (p = 0.045) (Table S2). RBC miR-15a-5p, PBMC miR-19b-3p, neutrophil
miR-26a-2-3, and neutrophil miR-574-3p showed a significant association with patient
gender (all p < 0.05) (Table S2). RBC miR-29c-3p, PBMC miR-19b-3p, and PBMC miR-29b-3p
were related to race (p = 0.005). Additionally, PBMC miR-29b-3p and neutrophil miR-26a-
2-3p were associated with the histology of lung cancer (p < 0.05) (Table S2). Nonetheless,
these miRNAs did not exhibit any relationships with other patient attributes, smoking
history and size of pulmonary nude, or tumor stages (Table S2).

We used logistic regression and a backward elimination approach to identify specific
miRNA biomarkers of the cell types for lung cancer. In RBCs, three miRNAs (miRs-93-5p,
29C-3p, and 449-5p) were identified, which, used in combination, produced an AUC of
0.76 for the diagnosis of lung cancer, being significantly higher than that of any single one
of the miRNAs (Figure 3A, Table 4 and Table S3) (p < 0.05). As a result, the analysis of the
three RBC miRNAs produced 77.42% sensitivity and 68.29% specificity for the diagnosis of
NSCLC. Furthermore, four miRNAs, including miRs-15a-5p, 93-5p, 29C-3p, and 449-5p,
were identified as a panel of biomarkers that diagnosed AC with 0.84 AUC, producing a
sensitivity of 87.50% and specificity of 80.49% for the diagnosis of AC (Figure 3B, Table 4
and Table S3). In addition, miRs-93-5p, 29c-3p, and 15a-5p, and 449b-5p in RBCs were
identified as a panel of biomarkers for SCC with 0.7363 AUC, 71.43% sensitivity, and 80.49%
specificity (Figure 3C, Table 4 and Table S3).
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Figure 3. Receiver Operating Characteristic (ROC) curve analysis for panels of miRNAs in dif-
ferentiating NSCLC patients from cancer-free smokers. The ROC curve showcases the diagnostic
performance of these biomarker panels, with the Area Under the Curve (AUC) indicating their overall
diagnostic accuracy. (A) A panel of RBC miRNA biomarkers for detecting NSCLC. (B) A panel of RBC
miRNA biomarkers for diagnosing AC. (C) A panel of RBC miRNA biomarkers for diagnosing SCC.
(D) A panel of PBMC miRNA biomarkers for diagnosing NSCLC. (E) A PBMC miRNA biomarker
(miR-29b-3p) for diagnosing AC. (F) A panel of PBMC miRNA biomarkers for diagnosing SCC. (G) A
panel of neutrophil biomarkers for diagnosing NSCLC. (H) A neutrophil miR-26a-2-3p for diagnosing
AC. (I) Integrated panel of biomarkers for diagnosing NSCLC. (J) Integrated panel of biomarkers for
diagnosing AC. (K) Integrated panel of biomarkers for diagnosing SCC.
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Table 4. The diagnostic values of the individual panels and the integration for lung cancer.

AUC, % (95% CI) Sensitivity, % (95% CI) Specificity, % (95% CI)

A panel of three RBC miRNA
biomarkers for NSCLC 0.76 (0.64 to 0.87) 77.42% (58.90% to 90.41%) 68.29% (51.91% to 81.92%)

A panel of four RBC miRNA
biomarkers for AC 0.84 (0.72 to 0.96) 87.50% (61.65% to 98.45%) 80.49% (65.13% to 91.18%)

A panel of four RBC miRNA
biomarkers for SCC 0.74 (0.57 to 0.90) 71.43% (29.04% to 96.33%) 80.49% (65.13% to 91.18%)

A panel of three PBMC miRNA
biomarkers for NSCLC 0.75 (0.63 to 0.86) 70.59% (52.52% to 84.90%) 65.79% (48.65% to 80.37%)

A PBMC miRNA biomarker for AC 0.73 (0.59 to 0.86) 57.14% (28.86% to 82.34%) 67.44% (51.46% to 80.92%)

A panel of three PBMC miRNA
biomarkers for SCC 0.85 (0.72to 0.97) 72.73% (39.03% to 93.98%) 86.49% (71.23% to 95.46%)

A panel of two neutrophil miRNA
biomarkers for NSCLC 0.69 (0.57 to 0.82) 64.10% (47.18% to 78.80%) 63.64% (45.12% to 79.60%)

A neutrophil miRNA biomarker for AC 0.74 (0.61 to 0.87) 53.33% (26.59% to 78.73%) 66.67% (50.45% to 80.43%)

Integrated panel of biomarkers
for NSCLC 0.87 (0.79to 0.96) 8056%, (63.98% to 91.81%) 83.33% (67.19% to 93.63%

Integrated panel of biomarkers for AC 0.90 (0.79 to 1.00) 85.00% (62.11% to 96.79%) 86.49% (71.23% to 95.46%)

Integrated panel of biomarkers for SCC 0.95 (0.89 to 1.00) 81.82% (48.22% to 97.72%) 89.19% (74.58% to 96.97%)

In PBMCs, three miRNAs (miR-576-3p, 19b-3p, and 29b-3p) used in combination
yielded an AUC of 0.7452, which was significantly higher than that of any single one
of the miRNAs (Figure 3D, Table 4 and Table S3) (p < 0.05). As a result, this panel of
biomarkers could diagnose lung cancer with a sensitivity of 70.59% and a specificity of
65.79%. Furthermore, miR-29b-3p used alone in PBMCs could detect AC with 0.7266 AUC,
producing a sensitivity of 42.86% and a specificity of 67.44% (Figure 3E and Table 4). In
addition, the three PBMC miRNAs (miRs-576-3p, 19b-3p, and 29b-3p) were developed as
a panel of PBMC miRNA biomarkers with an AUC of 0.85 in distinguishing SCC cases
from controls (Figure 3F and Table 4). Subsequently, the panel of the three PBMC miRNA
biomarkers had 72.73% sensitivity and 86.49% specificity for SCC (Table 4).

In neutrophils, when used in combination, two miRNAs (miR-26a-2-3p and miR-574-3p)
displayed an AUC of 0.6919 (Figure 3G and Table 4) (p < 0.05). Consequently, the combined
use of the two miRNAs generated 64.10% sensitivity and 63.64% specificity for the detection
of NSCLC (Table 4). Furthermore, using neutrophil miR-26a-2-3p alone had an AUC of
0.75 in distinguishing AC cases from controls with 53.33% sensitivity and 66.67% speci-
ficity (Figure 3H and Table 4). However, no miRNA tested in neutrophils could efficiently
distinguish SCC cases from controls with an AUC.

3.5. Integrated miRNAs from Distinct Blood Cell Types Exhibit Synergistic Effects on Lung
Cancer Detection

We used logistic regression models with a constraint approach to determine whether
combining miRNAs from distinct blood cell types enhances lung cancer diagnosis. An
integrated panel of biomarkers including two RBC miRNAs (miRs-93-5p and 29c-3p), two
PBMC miRNAs (miRs-576-3p and 19b-3p), and two neutrophil miRNAs (miRs-26a-2-3p
and 574-3p) produced a greater AUC (0.87) than did the individual cell type biomarker
(p < 0.05) (Figure 3I and Table 4). The integrated panel of biomarkers had a sensitivity of
82.86% and a specificity of 78.38% for the diagnosis of lung cancer (Table 4).

Furthermore, four RBC miRNAs (miRs-93-5p, 29c-3p, and 15a-5p, and 449b-5p) and
one neutrophil miRNA (miR-26a-2-3p) were identified as an integrated panel that had
an AUC of 0.90 for the diagnosis of AC with 85.00% sensitivity and 86.49% specificity
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(Figure 3J and Table 4). In addition, three RBC miRNAs (miRs-29c-3p, 15a-5p, and 449b-5p),
three PBMC miRNAs (miRs-576-3p, 19b-3p, and 29b-3p), and one neutrophil miRNA
(miR-26a-2-3p) used in combination produced 0.9495 AUC with 81.82% sensitivity and
89.19% specificity for the detection of SCC (Figure 3K and Table 4). These integrated panels
of biomarkers had no association with the stage of lung cancer, and patients’ age, race,
gender, smoking history, and size of pulmonary nodule (all p > 0.05).

4. Discussion

Lung cancer remains the foremost cause of cancer-related deaths, with NSCLC consti-
tuting 85% of all lung cancer incidences, predominantly composed of AC and SCC. Early
detection can decrease mortality [40]. Substantial endeavors have been undertaken to
advance cell-free plasma miRNAs as diagnostic biomarkers for lung cancer. This includes
research spearheaded by Zaporozhchenko et al., as well as our own investigations [34,39,41].
However, none have been adopted in clinical settings due to challenges such as suboptimal
miRNA recovery rates from plasma or serum and variability in cell-free miRNA sources.
Blood cell-derived miRNAs, with their rich and stable source, might sidestep these obsta-
cles. It is posited that blood cells could contribute to tumorigenesis through both direct
and indirect pathways. In this present study, we delineated the miRNA profiles of RBCs
from both cancer patients and controls, revealing that RBC-centric miRNAs could serve
as novel biomarkers for lung cancer, which was previously unreported. Simultaneously,
we profiled the miRNAs of PBMCs and neutrophils, contrasting them with RBCs, and
identified unique blood cell-specific miRNAs linked to lung cancer. Harnessing this knowl-
edge, we crafted cell-type-specific miRNA panels as promising biomarkers for diagnosing
lung cancer. Moreover, a holistic approach—integrating miRNA data from various blood
cells—outperformed individual biomarker panels in diagnosing NSCLC. Our tailored
diagnostic panels also proved highly effective for detecting both AC and SCC. Importantly,
these biomarker panels worked well across different stages of NSCLC and for various sizes
of lung nodules. These biomarkers hold the potential for early-stage detection of NSCLC
and offer improved classification of specific types.

These blood cell miRNAs identified as potential biomarkers may have pivotal roles
in lung tumorigenesis. For instance, miR-93-5p is linked to enhanced cell proliferation,
migration, and a poor prognosis in lung cancer [42]. The miR-449 family impacts NSCLC
development by targeting IL-6 and affecting the JAK2/STAT3 signaling pathway [43]. The
miR-29 family advances lung cancer progression through the AMPK/mTOR signaling
pathway by negatively regulating MTFR1 [44], while miR-15a-5p inhibits metastasis and
lipid metabolism in NSCLC [45]. Interestingly, miR-148a-3p, found to be significantly
down-regulated in lung tissues, can hinder lung adenocarcinoma progression by targeting
MAP3K9 [46]. Other miRNAs, such as miR-576-3p, miR-19b-3p, and miR-29b, are asso-
ciated with migration inhibition, tumor progression facilitation, and modulation of lung
cancer progression, respectively [46–48]. Moreover, miR-423-3p and miR-574-5p are tied
to tumor growth promotion in lung adenocarcinoma [49,50]. Lastly, miR-26a-2-3p aug-
ments the metastatic capability of lung cancer cells via the AKT pathway [51]. Especially
given that RBCs might play intricate and crucial roles in cancer development, it is vital to
consistently investigate how these miRNAs affect tumorigenesis within the framework of
RBC regulation.

In this study, we adhered to the National Cancer Institute’s Early Detection Research
Network biomarker guidelines [52], which emphasize the importance of confirming and
validating miRNAs detected with array-based platforms using alternative methods that
are more reliable and cost-effective. We used ddPCR for the validation of miRNAs initially
identified with the array-based platform. We selected ddPCR due to its enhanced reliability
and cost-effectiveness, making it a commonly utilized technique for analyzing genetic
changes associated with cancer. Notably, ddPCR eliminates the need for internal control
genes, as required by array techniques, and additionally enables precise quantification of
miRNA copy numbers per microliter. Although a deeper understanding of miRNA stability
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and normalization processes remains essential, this methodology may offer the potential to
address the challenges linked to array techniques and present a cost-effective avenue for
early cancer detection.

Intriguingly, the present study reveals significant associations among specific miRNAs
and factors such as age, gender, race, and histology in the context of lung cancer (Table S2).
Particularly, PBMC miR-19b-3p’s association with subject age suggests its potential value in
understanding age-related variations in lung cancer. Elevated miRNA expression in differ-
ent age groups might lead to tailored diagnostic and therapeutic approaches. Additionally,
RBC miR-15a-5p, PBMC miR-19b-3p, neutrophil miR-26a-2-3, and neutrophil miR-574-3p,
displaying gender-related associations, raise intriguing possibilities for gender-specific
considerations in lung cancer. Tailored screening strategies for male and female subjects
may enhance early detection. Moreover, the associations among RBC miR-29c-3p, PBMC
miR-19b-3p, and PBMC miR-29b-3p with race underscore the importance of recognizing
potential racial disparities in lung cancer and miRNA profiles. This highlights the need
for diversity-sensitive diagnostic and therapeutic strategies. Furthermore, associations
between PBMC miR-29b-3p and neutrophil miR-26a-2-3p and lung cancer histology suggest
distinct miRNA expression patterns among different subtypes, potentially guiding subtype-
specific diagnostic and treatment approaches. However, validation using further studies
is essential to confirm the clinical utility of these miRNAs as biomarkers. Additionally,
elucidating the underlying biological mechanisms will be critical for effective translation
into clinical practice.

While our findings are promising, our study has several limitations. First, our chosen
array specifically targets only 372 miRNAs to determine differentially expressed miRNAs
in the blood cells of NSCLC patients, potentially overlooking key lung cancer-associated
miRNAs that are not present on the platform or not reliably measurable with our method.
Utilizing a more comprehensive tool, such as whole-genome next-generation sequencing,
may unveil new cell-type-specific miRNA signatures for NSCLC, thus refining the miRNA-
based assay for lung cancer. Second, this study’s sample size is modest, and the samples are
sourced from clinically diagnosed hospital patients, not fully representing heavy smokers
typically screened for early lung cancer detection. It underscores the need to validate these
biomarkers in a comprehensive, multisite lung cancer screening trial. Third, although
miRNA profiles across various blood cell types offer promise as innovative diagnostic
tools for early lung cancer detection, it is imperative to concurrently compare cell-based
miRNAs with cell-free plasma miRNAs. This comprehensive approach is essential for the
development of a unified diagnostic strategy for lung cancer. Furthermore, while our study
was conducted with a validated cohort size to ensure the robustness of the biomarkers,
it is also necessary to conduct a thorough examination of the factors influencing miRNA
variation in blood cells, explore potential sources of intrinsic variation, and provide detailed
insights into the methods used to control for confounding variables.

5. Conclusions

In summary, our research uncovered distinctive miRNA profiles across various blood
cell types, notably in RBCs, revealing significant disparities between cancer patients and
control groups. Furthermore, we developed diagnostic panels integrating cell-specific
miRNAs, which potentially offer superior diagnostic precision over individual cell-type
miRNAs. However, thorough subsequent studies are imperative to authenticate these
initial findings.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15225312/s1. Table S1. Among the three cell populations
of cancer-free smokers, fifty miRNAs showed marked differences in expression; Table S2. Associations
between the eight miRNAs and clinical and demographic data, analyzed using Pearson’s correlation
coefficients; Table S3. Diagnostic performances of individual miRNAs and combined miRNA panels
for the detection of lung cancer, as measured using AUC analysis.
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