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Simple Summary: In this comprehensive review, we aimed to summarize the advances made by
artificial intelligence in the field of lung cancer screening, diagnosis, and management. We now
understand the utility of AI as a tool that can supplement physicians to improve the quality of care
provided, which is the core message of this review, along with the relevant literature supporting
the advances.

Abstract: Lung cancer remains one of the leading causes of cancer-related deaths worldwide, empha-
sizing the need for improved diagnostic and treatment approaches. In recent years, the emergence of
artificial intelligence (AI) has sparked considerable interest in its potential role in lung cancer. This
review aims to provide an overview of the current state of AI applications in lung cancer screening,
diagnosis, and treatment. AI algorithms like machine learning, deep learning, and radiomics have
shown remarkable capabilities in the detection and characterization of lung nodules, thereby aid-
ing in accurate lung cancer screening and diagnosis. These systems can analyze various imaging
modalities, such as low-dose CT scans, PET-CT imaging, and even chest radiographs, accurately
identifying suspicious nodules and facilitating timely intervention. AI models have exhibited promise
in utilizing biomarkers and tumor markers as supplementary screening tools, effectively enhancing
the specificity and accuracy of early detection. These models can accurately distinguish between
benign and malignant lung nodules, assisting radiologists in making more accurate and informed
diagnostic decisions. Additionally, AI algorithms hold the potential to integrate multiple imaging
modalities and clinical data, providing a more comprehensive diagnostic assessment. By utilizing
high-quality data, including patient demographics, clinical history, and genetic profiles, AI models
can predict treatment responses and guide the selection of optimal therapies. Notably, these models
have shown considerable success in predicting the likelihood of response and recurrence following
targeted therapies and optimizing radiation therapy for lung cancer patients. Implementing these AI
tools in clinical practice can aid in the early diagnosis and timely management of lung cancer and
potentially improve outcomes, including the mortality and morbidity of the patients.
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1. Introduction

Lung cancer is the second most common cancer in both males and females, with
the highest mortality worldwide, causing 21% of total cancer-related deaths [1]. Despite
current screening methods, diagnosing lung cancer at an earlier stage remains challenging,
accounting for a high mortality rate compared to all other cancer forms. Among the
cases diagnosed, only about 20% are diagnosed with stage I, and these statistics have not
changed for years [2]. Apart from the diagnosis, drawbacks in assessing the prognosis and
treatment options are challenges clinicians face [3]. Although there have been significant
advancements in immunotherapy and targeted treatment to treat lung cancer patients, the
efficacy remains erratic, and the response rate to these is highly variable [4]. Therefore, it
is necessary to look for earlier diagnostic tools for lung cancer, which are highly sensitive
and specific [5]. In 2017, a couple of studies [6,7] showed the importance of utilizing the
morphological features of pathological slides in diagnosing and prognosing lung cancer.
This was, therefore, able to highlight the importance of computer-aided image analysis in
lung cancer prognosis.

The notion of artificial intelligence (AI) was initially proposed by John McCarthy in
1956. It involves using computer systems and technology to replicate human-like intelligent
behavior and critical thinking abilities [8]. In the realm of medicine, AI is divided into
two main categories: virtual and physical. The virtual branch is further categorized into
machine learning (ML) and deep learning (DL) [9]. ML is the remarkable capability of a
system to learn from data autonomously without the need for explicit programming [10].
ML encompasses four primary categories of tasks: supervised, unsupervised, reinforce-
ment, and active learning [11]. Supervised learning entails utilizing input data with target
labels to identify a pattern. There are a variety of models for supervised ML, including
Bayesian inferences, decision trees, linear discriminants, support vector machines, logistic
regression, and artificial neural networks [12]. On the other hand, unsupervised learning
involves identifying patterns within the input data that have not been previously labeled.
Lastly, reinforcement learning involves training intelligent agents to improve their perfor-
mance [13]. DL is a subset of machine learning that utilizes multiple layers simultaneously
to achieve both feature selection and model fitting [14].

Over the past few years, there has been significant progress in the field of oncology,
particularly in the management of lung cancer. This progress includes the development of
better imaging and staging techniques, as well as the use of molecular markers to guide
patient-centered treatment [15,16]. AI allows for the analysis and interpretation of intricate
medical information, ultimately assisting in the diagnosis, treatment management, and
prediction of outcomes for various clinical cases [17]. In clinical oncology, including lung
cancer, there are currently multiple FDA approvals for AI applications [18]. Lung cancer’s
heterogeneity makes it a prime field for AI applications [19]. Numerous AI-based tools
have been created that are particularly useful for lung segmentation, nodule detection, and
characterization, which we aim to summarize in this article.

2. Methods

In our review, we examined all publications from 2012 to 2023 that were published in
the PubMed database. We explored the database using the following Medical Subject Head-
ing (MeSH) terms: artificial intelligence, machine learning, radiomics, deep learning, lung
cancer, lung cancer screening, lung nodule detection, lung nodule characterization, lung
nodule segmentation, lung cancer diagnosis, lung cancer staging, lung cancer treatment,
and treatment response. A total of 270 articles were found using the above keywords; we
excluded certain studies during the screening process based on the presence of duplicate
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records, as well as studies with titles or abstracts that were irrelevant to our research objec-
tive. In cases where full-text papers were not available, those studies were also omitted from
our review. We included a total of 69 papers in the composition of this narrative review with
relevant prospective, retrospective, and review papers, with the main emphasis on the use
and implementation of artificial intelligence in lung cancer. Five investigators, each with
distinct backgrounds and expertise, conducted a comprehensive literature review, offering
independent perspectives and resulting in a wide range of insights and interpretations.
The further framework of the review is described in the figure below (Figures 1 and 2)
(Figure S1).
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3. AI in Lung Cancer Screening

The National Lung Screening Trial (NLST) has revealed that early diagnosis among
the high-risk population has been shown to reduce the lung cancer death rate by 20% [20].
These compelling statistics underscore the urgent need for the development of highly
accurate screening methods and extensive patient education to promote early diagnosis
and ultimately improve the prognosis for those affected by this devastating disease. As of
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March 2021, according to the U.S. Preventive Services Task Force (USPSTF), individuals
aged 50 to 80 who have a history of smoking at least 20 packs of cigarettes and either smoke
currently or have quit within the past 15 years are advised to undergo yearly low-dose
computed tomography (LDCT) screenings for the detection of lung cancer. It is advised
to stop the screening process if a person has not smoked for 15 years or has a health issue
that significantly shortens their life expectancy or prevents them from having curative lung
surgery [21,22].

AI models have become an integral part of the lung cancer screening process and
can offer a range of benefits. These include minimizing the radiation exposure, accurately
detecting and categorizing lung nodules, personalizing screening schedules, and providing
LDCT interpretation in regions with a shortage of skilled radiologists [23]. Convolutional
neural networks (CNNs), a class of deep-learning artificial neural networks, has shown
promising results in predicting lung cancer risk by using visual imagery and clinical
information retrieved from electronic medical records (EMRs).

Numerous experimental studies have been undertaken to identify high-risk popula-
tions that can be explored further. Based on non-imaging data, CNNs have successfully
identified high-risk patients and predicted a 1-year lung cancer rate with excellent accu-
racy, demonstrated by an overall AUC—0.90 [24]. Among the models that used imaging
data, CXR-LC identified high-risk patients by relying solely on CXR findings and lim-
ited clinical data with an accuracy (AUC–0.755) comparable to the previous models like
PLCO(AUC–0.751) [25], whereas Sybil (a validated model) predicted a 6-year lung cancer
risk using a single LDCT scan data [26]. Another deep-learning CNN, LUMAS, predicted
the 1-year lung cancer risk using previous and recent CT scans with AUC—0.94 and suc-
cessfully outperformed radiologists [27]. These findings exhibit potential for large-scale
screening based on EMR data, and a path toward efficient screening strategies.

We will discuss the modalities of lung cancer screening with AI techniques under
two subheadings: imaging (nodule detection, segmentation, and characterization) and
non-imaging techniques. This overview aims to highlight AI’s significant contributions to
lung cancer screening, offering insights into the broad spectrum of AI applications within
the healthcare domain.

4. Imaging Techniques

LDCT is the gold standard for lung cancer screening, being the only modality shown
to have mortality benefits for lung cancer patients; however, advanced predictive models
are being developed, which combine CT images with innovative technologies such as AI
algorithms with improved accuracy. By harnessing the power of these imaging techniques
and integrating them into predictive models, researchers and clinicians were able to enhance
the screening process. These efforts have improved accuracy [28] and have enabled early
intervention for better patient outcomes. Several FDA-cleared AI tools have since become
available for nodule detection, characterization, and reporting [29]. Although an overview
of all the available tools is beyond this review’s scope, we aim to provide the status of AI in
nodule detection and nodule segmentation.

4.1. Nodule Detection

According to the Fleischner Society: A nodule on CT is a well or poorly defined
rounded or irregular opacity and can measure up to 3 cm in diameter. These nodules can
serve as early indicators of lung cancer and can be detected and characterized using CT
scans [30]. Interestingly, AI has comparable results to those of experienced radiologists;
their collective performance demonstrated greater accuracy in detecting pulmonary nod-
ules on CXR and LDCT scans. Although computer-aided diagnosis (CAD) and radiomics
have been traditionally used for lung cancer detection, a high false positive rate have been
a significant challenge. A novel CAD system using multi-view convolutional networks
(ConvNets) has shown a high detection sensitivity rate of 84.1% and 90.1% with one and
four false positive tests per scan, respectively [31]. Another randomized controlled trial
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involving 10,476 participants showed that the AI group, which used CAD, had higher detec-
tion rates (0.52%) of actionable nodules (Lung-RADS, category 4) compared to the non-AI
group (0.25%), along with improved detection of malignant nodules (0.15% vs. 0.0%) [32].
Nonetheless, DL techniques have proven to be superior at nodule detection and the pre-
diction of lung cancer risk [29]. Notably, these techniques have even been shown to
enhance the predictive value of digital chest tomosynthesis (DTS) in lung cancer detection
in nodules ranging from 5 and 8 mm in size (sensitivity—0.90, PPV—0.95) [33,34]. The
AI-RAD companion, a CNN prototype, could automatically detect pulmonary nodules
on LDCT with improved accuracy due to its high sensitivity (=1) and specificity (=0.708).
Furthermore, these outcomes contributed to an enhanced ability to predict lung cancer
(AUC—0.942) [35]. Another model, the DL-CADe system, was recognized for its higher
nodule detection rate (86.2% vs. 79.2%) per CT examination than that of a double reading
by two radiologists [33]. Additionally, the detection of pulmonary nodules using AI was
highest among standard-dose CT (AUC—0.989) compared to low-dose (AUC—0.983) and
very low-dose CT scans (AUC—0.970) [36]. A DL-based automatic detection algorithm
(DLAD) that detects malignant pulmonary nodules using CXR data has been developed
with radiograph classification and nodule detection performances of 0.92–0.99 (AUROC)
and 0.831–0.924 (JAFROC FOM), respectively [37], and findings have established the po-
tential of neural networks as a screening modality to complement conventional methods
among high-risk populations.

4.2. Nodule Segmentation and Characterization

Lung nodule characterization involves analyzing a nodule’s size, volume, and density
to determine whether it is benign or malignant. Although an LDCT scan is the most
common modality used for this purpose, AI algorithms have been found to measure these
variables accurately and to track the growth of lung nodules on follow-ups. Multi-scale
CNN models relying solely on raw nodule patches, without a proper definition of the
morphology, were developed to capture the nodule heterogeneity, and it has achieved
an 88.84% accuracy for nodule classification against noisy backgrounds [38]. AI-based
radiomics models, such as SVM-LASSO, outperformed Lung-RADS in the detection of
malignant nodules, utilizing two features: the bounding box anterior–posterior dimension
(BB-AP) and the standard deviation of the inverse difference moment (SD-IDM). These
models demonstrated an impressive accuracy of 84.6% (AUC—0.89). In contrast, Lung-
RADS achieved an accuracy of 72.2% (AUC—0.77) [39].

Nodule segmentation is an image analysis technique that distinguishes and outlines
lung nodules’ boundaries from the surrounding thoracic tissue. This allows us to accurately
measure the volume of the nodule, which is vital in determining its size. It also enables
the measurement of the nodule density or attenuation, aiding in the determination of
its composition and potential malignancy. This significantly enhances the test’s ability
to distinguish benign and malignant nodules, which further aids in making subsequent
treatment decisions. The manual segmentation of the nodules is tedious, and its semi or
full automation through training AI models has significantly improved the efficiency and
accuracy in characterizing the nodules detected. SD-Unet, a deep-learning model used
for biomedical segmentation, trained to classify the image voxels, resulted in improved
segmentation [40]. In addition to CNN models, Soliman et al. [40] developed a spatially non-
uniform joint 3D Markov–Gibbs random field (MGRF). This method effectively segmented
nodules by integrating two visual appearance submodels with an adjustable lung shape
submodel. It exhibited accurate results with a DICE similarity coefficient of 98.4 ± 1.0%
and 99.0 ± 0.5% upon validation with an external database [41].

Non-Imaging Techniques

The analysis of body fluids, generally blood, is a non-invasive method widely used
to detect biomarkers and tumor markers. This approach plays a crucial role in the com-
prehensive management of cancer patients, encompassing screening, diagnosis, treatment,
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and patient follow-up. Emerging as potential biomarkers for lung cancer screening are
autoantibodies, complement fragments, miRNA, tumor DNA, and serum proteins [42].
While these biomarkers show promise, their sensitivity and specificity remain limited,
classifying them as supplementary screening tools. This approach plays a vital role in iden-
tifying, managing, and keeping track of patients with cancer. Autoantibodies, complement
fragments, miRNA, tumor DNA, and serum proteins have emerged as potential biomarkers
for lung cancer screening [42]. Biomarkers are considered supplemental screening tools
due to their limited sensitivity/specificity. The utilization of predictive models that incor-
porate multi-biomarker panels, CT-scan images, and AI has proven to be a game-changer,
greatly enhancing both the specificity and accuracy in the early detection and diagnosis of
lung cancer.

In the test phase, the implementation of Artificial Neural Networks (ANNs) alongside
serum protein panels (β2-microglobulin, CEA, gastrin, CA125, NSE, sIL-6R, and three
metal ions: Cu2+/Zn2+, Ca2+, and Mg2+) demonstrated a commendable prediction rate
of 85%. Additionally, incorporating clinical parameters (such as symptoms, risk factors,
smoking, and kitchen environment) resulted in an increased prediction rate of 87.3% [43].
On combining the Pulmonary Nodules Artificial Intelligence Diagnostic System (PNAIDS),
which analyzes CT images, along with tumor markers (TM), the predictive models had the
highest specificity (96.1%), whereas integration with circulating abnormal cells has shown
to have a specificity of 94.1% [44]. These compelling findings signify the potential of these
approaches as novel screening tools for the early detection of lung cancer.

In conclusion, incorporating AI into lung cancer screening has enormous potential to
revolutionize early detection and enhance patient outcomes. However, further research
and integration of AI systems into clinical practice are required to ensure their safety,
reliability, and widespread adoption. This is possible by the ongoing advancements and
collaborations between the medical and AI communities.

5. AI in Lung Cancer Diagnosis

Lung cancer diagnosis primarily relies on a CT scan and tissue biopsy, which can
lead to misdiagnosis and omissions [45]. Enhancing the sensitivity and specificity of non-
invasive biomarkers is crucial. Factors like tumor location, pathology type, metastasis
presence, and complications make diagnosis challenging [46]. AI models have become an ef-
fective tool in lung cancer diagnosis, improving the accuracy, stability, and efficiency [45,47].
This review covers the applications of AI models in diagnostic imaging, pathology tests,
and biomarkers (Table 1).

Table 1. Studies showing the Diagnosis of lung cancer using AI models.

Author, Year Dataset AI Algorithm Outcomes Results

Ardila et al., 2019 [26] Low-dose CT scan Deep learning
algorithm Diagnosis of lung cancer AUC = 0.94

Delzell et al., 2019 [47] CT scan of
200 lung nodules Radiomics Verify nodules as benign

or malignant AUC = 0.72

Schwyzer et al.,
2018 [48] FDG-PET imaging Deep machine

learning

Diagnosis of lung cancer
using ultra-low-dose
PET scans

Sensitivity = 95.9%
Specificity = 98.1%

Liu et al., 2023 [44]

Images and
radiological features of
5251 patients from
14 studies

ANN
SVM Diagnosis of lung cancer Sensitivity = 87%

Specificity = 87%

Zheng et al., 2022 [49] CT images of
9 NSCLC studies

Radiomics
Deep learning

To diagnose whether patient
had NSCLC AUROC = 0.78

Sun et al., 2020 [50] Pure ground glass
nodules of 385 patients Radiomics Invasiveness prediction AUC = 0.77
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Table 1. Cont.

Author, Year Dataset AI Algorithm Outcomes Results

Feng et al., 2019 [51] Sub-solid nodules of
100 patients Radiomics

Differentiate minimally
invasive and invasive
adenocarcinoma

AUC = 0.912

Avanzo et al., 2020 [52] Nodules of low-dose
CT scan SVM

Differentiate
adenocarcinoma from
focal pneumonia

Accuracy = 87.6%

Aydin et al., 2021 [53] 301 lung cancer CT
scans CNN

Differentiate into squamous
cell, adenocarcinoma, and
small cell carcinoma

Sensitivity = 90%
Specificity = 44%

Chen et al., 2020 [54] CT radiomics of
69 lung cancer patients Radiomics Differentiate NSCLC

from SCLC AUC = 0.93

Yu et al., 2016 [7]
2480 histopathological
images of lung
adenocarcinoma

SVM
Random forest

Distinguish malignant
tumors from healthy tissue AUC = 0.81

Teramoto et al.,
2017 [55]

298 histopathologi-
cal images

Conventional deep
neural networks

Classified adenocarcinoma,
squamous cell carcinoma,
and small cell carcinoma

Accuracy = 89%,
60%, 70%
respectively

Coudray et al.,
2018 [56]

Pathological images of
adenocarcinoma

Conventional deep
neural networks

Predicted 10 most prevalent
genes in adenocarcinoma

Accuracy =
73.3%–85.6%

Flores-Fernandez et al.,
2012 [57]

Serum biomarkers of
63 lung cancer patients

Artificial neural
network modeling

Correctly classifying lung
cancer patients based on
biomarker panel

Correct classification
rate = 93.3%

SVM—support vector machine, ANN—artificial neural network, CNN—conventional neural networks, NSCLC—
non small cell lung cancer, SCLC—small cell lung cancer.

5.1. Diagnostic Imaging

It involves using CT and PET-CT (positron emission tomography-computed tomogra-
phy) of the chest to find an abnormal mass or tumor in the lung [45]. Screening using CT
scans takes time and is subject to variation between people. With the growing popularity
of AI, the medical field has recognized its impact in assisting the use of diagnostic imag-
ing [45]. Ardila et al. [26] developed a deep learning algorithm for detecting lung cancer
by low-dose CT scan and achieved a striking AUC of 94.4%. Another study examined the
CT scans of 200 lung nodules with an AUC of 0.72 [48]. Additionally, a study investigated
the use of ML for detecting lung cancer by FDG-PET imaging and achieved a sensitivity
of 95.9% and 91.5% and a specificity of 98.1% and 94.2% with standard dose and ultralow
dose, respectively. These findings indicate that ML modules may help detect lung cancer
even at a very low radiation exposure of 0.11 mSv [50]. In a meta-analysis by Liu, the
combined sensitivity, specificity, and sum of area under the combined subject operating
characteristic (SROC) curve of the AI-aided diagnosis system for lung cancer diagnosis
by using CT images were 87%, 87%, and 93%, respectively [44]. In another meta-analysis,
which included nine NSCLC studies, the pooled sensitivity and specificity were 78% and
71%, respectively, and the AUROC of radiomics was 0.78 (95% CI 0.73–0.83) [50].

A study by Sun [50] included 395 pure ground glass nodules (pGGNs) from 385 patients
who were randomly assigned to a training set (n = 277) and a validation set (n = 118). Based
on the radiomics, a nomogram was developed on the RAD score, margin, speculation, and
nodule size. The combined radiographic–radiomics model (AUC 0.77; 95% CI, 0.69–0.86)
predicted the invasiveness better than the radiographic model (AUC 0.71; 95% CI, 0.62–0.81)
in the validation set. This model may be used to evaluate invasive prediction in patients
with pGGNs [51]. To validate the efficiency of radiomics, another Chinese retrospective
study evaluated 100 patients with solitary sub-solid nodules confirmed pathologically with
either minimally invasive (MIA) or invasive adenocarcinoma (IAC). They constructed an
integrated model using CT-based findings like nodule size, shape, margins, and radiomic
signatures. This model showed good differentiation in the training set (AUC 0.943) and
validation set (AUC 0.912) [53]. From these findings, we conclude that machine-learning
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features can be integrated with CT-based subjective findings to improve the accuracy of
tumor differentiation and their invasiveness.

Another study, which included 301 lung carcinoma images from CT scans, correctly de-
tected lung cancer using convolutional deep neural network methods with 0.93 sensitivity,
0.82 precision, and a 0.87 F1 score. This CNN model further differentiated small cell lung
carcinoma, adenocarcinoma, and squamous cell lung carcinoma, with sensitivity, specificity,
and F1 scores of 0.90, 0.44, and 0.59, respectively [54]. Lastly, Saad et al. achieved an AUC
of 0.93 in differentiating NSCLC and peripherally located small cell lung cancer (SCLC) by
using radiomics [58]. Physicians rely on pathological analysis to reveal these phenotypic
variations, which require invasive methods such as biopsy and resection samples [7]. But
AI-mediated imaging can help detect subtypes, which is non-invasive and can assist in
starting early treatment.

5.2. Histopathological Diagnosis

This often refers to histological examination through bronchoscopy or percutaneous
puncture biopsy, the gold standard for lung cancer diagnosis. Manual reading is difficult
when assessing the pathological type of lung cancer because of the many subtypes. In
a study by Yu, they used 2480 histopathological images from squamous cell carcinoma
and adenocarcinoma of the lung and successfully differentiated malignant tumors from
healthy tissues with an AUC of 0.81 [7]. Teramoto et al. examined 298 images using deep
CNNs and classified adenocarcinoma, squamous cell carcinoma, and small cell lung cancer
with an accuracy of 89%, 60%, and 70%, respectively, which was higher than the accuracy
of cytotechnologists and pathologists [55]. In another prospective study, the prediction
model that included clinical information (age and smoking history), radiological features
of lung nodules (nodule diameter, nodule count, upper lobe location, malignant sign at
the nodule edge, and sub-solid status), and LDCT data from AI analysis and liquid biopsy
gave the best detection results in the training group (a sensitivity of 89.53%, specificity of
81.31%, the area under the curve [AUC] = 0.880). This can be applied to improve early lung
cancer diagnosis while sparing patients with benign features from harmful surgery [59].
AI-mediated histopathological diagnosis will increase pathologists’ productivity and will
significantly decrease misdiagnosis [46].

5.3. Biomarkers

The most common biomarkers predicting lung cancer are Rb, K-RAS, EGFR, c-MET,
TP53, ALK, and PDL1 [19,56]. Though several potential biomarkers have been identified,
their clinical utility remains limited because of a lack of consistency in diagnosis and
predicting prognosis. Now, AI-mediated proteomics is trying multiple biomarker panels
for the better detection of different types of lung cancer. Coudray et al. [56] anticipated
that specific gene mutations would modify the framework of lung cancer cells in the
section images; they predicted the ten most common mutant genes in adenocarcinoma
by training neural networks. Pathological images predicted six of them (KRAS, STK11,
TP53, EGFR, SETBP1, and FAT1) with an accuracy of 73.3–85.6% [60]. In another study,
Zhong et al. [60] measured the five most predictive antibody markers, tentatively, paxillin,
SEC15L2, BAC clone RP11-499F19, XRCC5, and MALAT1 in 23 stage 1 NSCLC patients
and 23 risk-matched control samples. All 46 samples were used as a training set and
were combined in a logistic regression model, yielding an AUC of 0.99, a 91.3% sensitivity,
and a 91.3% specificity [57]. A study tested a biomarker panel composed of Cyfra 21.1,
CEA, CA125, and CRP in 63 patients with lung cancer and 87 noncancer patients. This
panel correctly classified 135/150 subjects. In the training, validation, and testing phases,
the accurate classification rate of the lung cancer patients was 88.9%, 93.3%, and 90%,
respectively [60]. Furthermore, research has shown that using a diagnostic model on lung
cancer that includes human epidermis secreting protein 4 (HE4), secreting vascular cell
adhesion molecule-1 (sVCAM-1), sarcosine (TTR), apolipoprotein A2 (ApoA2), sarcosine
(TTR), in conjunction with the carcinogenic antigen CEA can greatly improve lung cancer
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detection accuracy. With a sensitivity of 93.33% and a specificity of 92.00%, this model
achieved an AUC value of 0.988, suggesting a strong prediction accuracy [46]. As there is no
universal biomarker panel for lung cancer, optimized panels must be tested and validated
in each population before being applied in the clinical setting [61]. These results imply
that deep learning algorithms may help pathologists detect cancer subtypes and genetic
mutations [60]. As a result, based on available data from various studies, AI recognition
technology may aid clinicians in screening and diagnosing early lung cancer [45].

6. AI in Lung Cancer Staging

Accurate staging of lung cancer can aid in creating the most appropriate treatment
strategies and prognosis. Non-small cell carcinoma can be staged from I through IV using
the clinical, radiological, and biopsy findings that are available, and small cell carcinoma is
divided into limited and extensive diseases [45,62,63].

Lung cancer is typically staged using the TNM (tumor, node, metastasis) classification.
The prompt staging of lung cancer requires imaging techniques including CT and PET.
Most lung cancers are typically detected at an advanced stage and may have a dismal
prognosis [64]. AI is adept at handling a sizable amount of computational and repetitive
labor work, making it suited for supporting medical professionals in assessing diseases
with a high visual component [65].

AI might accelerate the accurate staging of lung cancer and curb the time-consuming
tasks of reading pathology slides and CT scans. Using AI as a second reader for PET and CT
reading lessens the work required of radiologists and improves the nodule detection precision.

Lung cancer staging is dependent on the results of PET and CT scans. PET scanning
facilitates studying the extent of spread of metastatic cancer. A CT scan assists in determin-
ing the extent of local extension [66,67]. The accuracy of the results depends heavily on
the radiologist’s competence, and the CT pictures of lung nodules are complex. Manual
film interpretation often results in inaccurate or missing diagnoses, rendering early lung
cancer diagnosis more challenging. As a result, restricting the observation error is a crucial
tactic [68,69]. AI could help to solve these observational errors.

Using AI for image analysis may improve the tumor staging precision. CNNs can
predict the anatomical locations of metastatic lesions using the multiplanar reconstruc-
tion of PET and CT scans. The study demonstrated how the application of AI in image
processing could lead to more precise, early stage diagnoses and increase physicians’
effectiveness [19,66].

Based on the full CNN model, a researcher proposed a new model named DFCnet,
which is overall more accurate than the CNN model. Both CNN and DFCNet had overall
accuracy rates of 77.6% and 84.58%, correspondingly. The precision of the proposed
model for lung cancer stage detection and classification is demonstrated by experimental
data. These findings show the method’s potential for helping the physician precisely and
efficiently improve the cancer stage classification [69,70].

Implementing new AI base models and computational systems will certainly boost
the physician efficiency while managing lung cancer, and it will also assist in classifying
lung cancer staging and enhancing prognosis predictions.

7. AI in Lung Cancer Treatment

Recently, AI has been recognized as a potent ally in lung cancer treatment. AI models
like DL and radiomics have shown remarkable potential in assisting clinical decision-
making processes. They offer a quantitative interpretation of patients’ information and
could effectively navigate the dynamic nature, individual differences, and inherent hetero-
geneity associated with lung cancer [71] (Table 2).
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Table 2. Studies showing implementation of AI for treatment of lung cancers.

Study Dataset AI Methods Predicted Outcomes Performance
Metrics/Results

Coroller et al., 2016 [72] NSCLC Radiomics-based model Predicting pathologic complete
response to chemoradiation AUC: 0.61

Kureshi et al., 2016 [73] NSCLC Radiomics-based model Predicting response to
EGFR-TKI therapy AUC: 0.76

Tian et al., 2021 [74] NSCLC Radiomics and
deep learning

Predict response to PD-1 and
PD-L1 immunotherapy AUC: 0.71

Liu et al., 2018 [75] NSCLC and
SCLC WFO Feasibility in

treatment recommendation Consistency 65.8%

Kim et al., 2020 [76] NSCLC and
SCLC WFO Treatment concordance between

MDT and WFO Concordance 92.4%

Santos-Garcia et al.,
2004 [77] NSCLC Neural Network Predict postoperative

cardio-respiratory AUC: 0.98

Dercle et al., 2020 [78] NSCLC Radiomics-based model Treatment Sensitivity
of Nivolumab AUC: 0.77

Treatment Sensitivity
of Docetaxel AUC: 0.67

Treatment Sensitivity of Gefitinib AUC: 0.82

Zhang et al., 2021 [79] Adenocarcinoma Radiomics-based model Predicting EGFR mutation for
targeted therapy AUC: 0.84

Mu et al. 2020 [80] NSCLC Deep learning models Predicting EGFR mutation for
targeted therapy AUC: 0.83

NSCLC: non-small cell lung carcinoma, SCLC: small-cell lung carcinoma, MDT: multidisciplinary team; WFO: Wat-
son for Oncology; AUC: area under the curve.

AI in Treatment Recommendations

Lung cancer lesions are treated with surgical and non-surgical modalities like radiation,
chemotherapy, and immunotherapy. Radiotherapy plays a crucial role in lung cancer
treatment, and AI has shown promise in optimizing this modality. ML systems can utilize
high-quality data generated by radiotherapy systems, including CT scans and treatment
histories, to enhance radiation treatment planning. ML algorithms can optimize radiation
beam angles, predict dose–volume histograms, monitor radiation levels and toxicity, and
develop clinical decision support tools [73]. These integrative predictive models offer the
potential for personalized radiation treatments with improved safety and efficiency.

Luo et al. [6] suggested an integrated learning collaborative filtering technique in ML
to simplify the selection of therapeutic medications for individualized lung cancer therapy
and to identify possible drug candidates. Another approach, QUANIC, utilizes large-scale
multimodal and longitudinal data to develop personalized models for the immunotherapy
response and resistance in lung cancer [46].

Immunotherapy presents challenges in patient selection and predicting treatment re-
sponse. However, ML techniques, along with radiomics, have shown promise in improving
patient selection and predicting treatment outcomes by providing non-invasive insights
into the tumor and its microenvironment. ML algorithms have been employed to identify
the determinants of tumor immunogenicity and develop scoring schemes for predicting
the response to immune checkpoint inhibitors (CPIs). Additionally, predictive radiomic
features extracted from CT images have been used to predict treatment responses [73].
Kureshi et al. developed a data-driven model for predicting the tumor response to EGFR-
TKI therapy in advanced NSCLC patients. The model achieved a predictive accuracy of
76% by considering various factors, including clinical history, environmental risk factors,
and the EGFR mutation status. Additionally, Liu et al. developed a predictive model for
overall treatment recommendation with 65.8% consistency [73,75].

Radiomics, which involves a quantitative analysis of imaging features, has emerged as
a promising tool for predicting the individual responses to immunotherapy. By capturing
the tumor heterogeneity and immune infiltration from CT images, radiomics enables the
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development of radiomic signatures that are associated with the treatment response. ML
markers based on radiomics have successfully predicted immunotherapy responses in
patients with NSCLC. Integrating radiomics with DL further enhances its potential for
selecting responsive patients for immunotherapy [71].

AI has demonstrated its potential for enhancing the surgical risk prediction and
assisting in treatment decisions. IBM Watson for Oncology (WFO) is an AI system that
aids doctors in extracting crucial information from medical records, presenting relevant
evidence, and exploring treatment options. WFO has shown a high level of consistency
with the recommendations provided by the oncology committees, highlighting its value in
supporting multidisciplinary teams [46].

WFO was used in China and Korea to provide accurate treatment recommendations for
lung cancer patients. It showed high potential and concordance with the multidisciplinary
team (MDT) recommendations, particularly in the advanced stages of cancer [18,76]. How-
ever, there are distinct challenges in applying WFO between the USA and other countries
due to the variations in genetic mutation rates, treatment protocols, drug availability, and
coexisting diseases. Adapting WFO to regional-specific factors and individualized patient
information would optimize its applicability and improve the treatment consistency [76].

In addition to treatment recommendations, AI also has the potential to support drug
development by repurposing existing drugs for new uses and identifying potential drug
candidates for further investigation. In one study, a DL algorithm using transcriptomic
and chemical structures identified pimozide as a candidate for treating NSCLC, which
was validated in vitro. Another study used neural networks to predict the postoperative
outcomes in NSCLC patients, achieving high accuracy in predicting the cardio-respiratory
toxicity and postoperative complications. These findings demonstrate the value of AI in
drug development and patient risk assessment [78].

8. AI in Predicting Treatment Outcomes

AI has been shown to have the capacity to play a role in medical decisions by predicting
treatment responses, including survival and adverse events, and helping to choose a group
of patients to receive a specific treatment [19]. Dercle et al. reported that an AI model based
on the CT-based radiomic characteristics and random forest algorithm accurately predicted
the treatment response of various therapies like nivolumab, docetaxel, and gefitinib [81].

DL models have shown promising ability in identifying therapy response and progno-
sis. Specifically, these models have successfully predicted the EGFR mutation probability
and patient response to EGFR-tyrosine kinase inhibitors (TKIs) and CPIs. By accurately
identifying patients at different risks of progression, these AI models could aid in treatment
decision-making and improve patient outcomes [80,82,83].

Additionally, by identifying specific radiomic features associated with local failure, tu-
mor recurrence, and chemotherapy response, radiomics-based models can guide treatment
decisions and predict treatment outcomes [84]. Furthermore, integrating multi-omics data
through AI in precision medicine holds great promise. Radiomics-based AI models have
demonstrated the ability to predict PD-L1 expression levels by combining radiomic images
with clinical data. These models have also shown prognostic performance in predicting
progression-free survival and clinical benefit in immunotherapy candidates [85].

ML applications have also been used to predict early death following curative intent
chemoradiation and failure in early stage NSCLC patients treated with stereotactic body
radiation therapy, and this can be used to educate patients about possible treatments
and optimize care [73]. AI has also shown potential for incorporating serial imaging
data to track tumor changes over time. By leveraging DL methods and recurrent neural
networks (RNN), AI can analyze longitudinal data from post-treatment CT scans and
provide valuable insights into phenotypic characteristics and treatment response [86].



Cancers 2023, 15, 5236 12 of 16

9. Limitations and Future Perspectives

One of the limitations of AI is the lack of large datasets of clinical data to train the
model, which can hinder its performance. While public datasets like LIDC-IDRI and LUNA
16 are available, they have certain challenges, like data variability as they contain images
from limited centers and may not represent the entire population, a lack of clinical infor-
mation, and potential data annotation errors. AI-driven radiomics and DL could become
universal through collaboration among multiple healthcare institutions to create an inter-
personal, standardized dataset that includes diverse patient populations, various stages of
lung cancer, and longitudinal information. This can be a valuable resource for training AI
models and improving their generalizability. The standardization of real-world data (RWD)
is also an exciting step in the development and training of AI models since the FDA passed
the 21st Century Cures Act which has a comprehensive framework to use postapproval
data for newly approved drugs; however, with RWD being easily accessible and the lack
of data quality due to heterogeneity leading to difficulty in data interpretation, the lack
of reproducibility and replicability should be cautioned and considered before large-scale
implementation [51,87]. By reducing the inconsistencies and errors, this standardization
process will improve the reliability of AI and RWD applications and prove as an asset for
the large-scale use and better training of the AI model. There are challenges to implement-
ing AI in clinical practice, like a lack of resources and proper training and education among
healthcare professionals. Healthcare systems should implement substantial infrastructure
and training for all healthcare personnel to effectively use and interpret AI tools. In rapidly
evolving healthcare systems and workflows, these AI tools should be updated regularly
for seamless performance. Programming interfaces should be developed that allow AI
algorithms to integrate with EHR systems. This would enable the real-time data exchange
between AI tools and clinical systems, facilitating efficient decision-making for lung cancer
management. Regular feedback should be gathered from oncologists, radiologists, and
other specialists to refine the AI model’s performance. Meanwhile, ensuring patient privacy,
data security, data ownership, and compliance with regulations such as HIPAA can be
complex. A framework with clear guidelines for the acceptance and deployment of AI
models in healthcare should be established to ensure patient safety and ethical standards
in handling the data. Some of the predictions of AI in lung cancer treatment can be chal-
lenging for clinicians to interpret and extract meaningful insights from because of the
lack of transparency in explaining the rationale behind those decisions, which needs to be
addressed. Lastly, incorporating AI models to use clinical data in context with the imaging
findings to further guide the physician in clinical outcomes of the patient, aiding in shared
decision-making, remains a future prospect of AI in lung cancer management.

10. Conclusions

The emergence of AI has brought about a significant transformation in the manage-
ment of lung cancer. Its wide-ranging applications in screening, early diagnosis, treatment
selection, and prediction of treatment response offer promising possibilities for enhancing
patient outcomes and driving the progress of precision medicine. Despite AI’s remarkable
potential for lung cancer, it is crucial to acknowledge the challenges and limitations accom-
panying its implementation. Addressing the data quality, interpretability of models, and
ethical considerations becomes imperative to ensure the successful integration of AI into
clinical practice. By navigating these obstacles, we can unlock the full potential of AI and
pave the way for a more effective and personalized approach to lung cancer care.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers15215236/s1, Figure S1: Summary of Progress of Artificial
Intelligence in the Field of Lung Cancer.
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