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Simple Summary: Artificial intelligence (AI) has seamlessly integrated into the medical field, espe-
cially in diagnostic imaging, thanks to ongoing AI advancements. It is widely used in various medical
applications. In the context of breast cancer (BC), machine learning and deep learning are extensively
employed for automating diagnosis, segmenting relevant data, and predicting pre-treatment tumor
response to new adjuvant chemotherapy (NAC). Recent research has shown promising results with
deep learning algorithms in BC diagnosis, accurately identifying specific features, demonstrating
AI’s potential to enhance BC diagnosis and analysis precision and efficiency. Additionally, uti-
lizing non-ionized modalities, apart from ionized mammograms, has a substantial impact on the
diagnosis process.

Abstract: Breast cancer stands out as the most frequently identified malignancy, ranking as the fifth
leading cause of global cancer-related deaths. The American College of Radiology (ACR) introduced
the Breast Imaging Reporting and Data System (BI-RADS) as a standard terminology facilitating com-
munication between radiologists and clinicians; however, an update is now imperative to encompass
the latest imaging modalities developed subsequent to the 5th edition of BI-RADS. Within this review
article, we provide a concise history of BI-RADS, delve into advanced mammography techniques,
ultrasonography (US), magnetic resonance imaging (MRI), PET/CT images, and microwave breast
imaging, and subsequently furnish comprehensive, updated insights into Molecular Breast Imaging
(MBI), diagnostic imaging biomarkers, and the assessment of treatment responses. This endeavor
aims to enhance radiologists’ proficiency in catering to the personalized needs of breast cancer
patients. Lastly, we explore the augmented benefits of artificial intelligence (AI), machine learning
(ML), and deep learning (DL) applications in segmenting, detecting, and diagnosing breast cancer,
as well as the early prediction of the response of tumors to neoadjuvant chemotherapy (NAC). By
assimilating state-of-the-art computer algorithms capable of deciphering intricate imaging data and
aiding radiologists in rendering precise and effective diagnoses, AI has profoundly revolutionized the
landscape of breast cancer radiology. Its vast potential holds the promise of bolstering radiologists’
capabilities and ameliorating patient outcomes in the realm of breast cancer management.
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1. Introduction

Breast cancer (BC) stands as a significant global health concern, emerging as the most
commonly diagnosed cancer and holding the fifth rank among the leading causes of cancer-
related deaths worldwide [1]. Diverse risk factors contribute to the variable likelihood
of BC, encompassing factors such as advanced age, tobacco exposure, obesity, usage of
hormonal therapy or oral contraceptives, breast density, genetic mutations, and familial
history of BC [2]. Predominantly, genetic mutations linked to breast cancer involve the
BRCA1/2 genes.

Imaging plays a vital role in detecting, staging, assessing response, and detecting early
recurrence in patients with BC [3]. The use of standardized terminology and structured
reporting allows radiologists to convey their findings clearly and succinctly in breast
imaging to referring physicians [4]. A critical foundation in this context is the Breast
Imaging Reporting and Data System (BI-RADS), developed by the American College
of Radiology (ACR). However, an updated and comprehensive strategy is necessary to
incorporate these cutting-edge techniques, as new imaging modalities have emerged since
the publication of the 5th edition of BI-RADS.

In this review article, we delve into a concise narrative alongside updates on the
Breast Imaging Reporting and Data System (BI-RADS) lexicon, exploring advanced mam-
mography techniques, ultrasonography (US), and magnetic resonance imaging (MRI). The
discussion encompasses a range of recent and valuable imaging modalities that have gained
prominence subsequent to the latest BI-RADS 5th edition, significantly enhancing breast
cancer (BC) diagnosis. This progress underscores the need for their seamless integration
in forthcoming BI-RADS updates. This review further presents current insights into BC
molecular subtypes, molecular breast imaging (MBI), and diagnostic imaging biomarkers.
The subsequent focus shifts to diverse treatment strategies and the precise evaluation of
treatment responses. Alongside these imaging advancements, the revolutionary potential
of artificial intelligence (AI) in breast cancer detection and treatment comes to the fore.
The remarkable capacity of AI algorithms to analyze extensive image datasets, discerning
subtle patterns imperceptible to the human eye, holds transformative promise. Radiologists
stand to augment precision, efficiency, and overall diagnostic capabilities in breast cancer
through AI utilization. This comprehensive review accentuates the supplementary value
brought forth by AI applications in BC diagnosis and management.

2. Search Methodology

This study provides a concise overview of BI-RADS history, advanced mammography
techniques, ultrasonography (US), magnetic resonance imaging (MRI), diagnostic imag-
ing biomarkers, the assessment of treatment response, and various AI-based methods
for breast cancer diagnosis and detection. The methodology involved a comprehensive
search strategy that aimed to identify relevant studies, reports, and resources pertinent to
breast cancer. The number of papers focusing on breast cancer imaging has experienced
a significant increase. In this context, our concentration lies in the sphere of recent breast
cancer research conducted within the past decade. A manual examination was conducted
on English-language articles and research papers published prior to July 2023, utilizing elec-
tronic databases such as Embase, WebofScience, PubMed, and Google Scholar. The search
encompassed terms such as “breast cancer” and “BI-RADS”, as well as “detection”, “diag-
nosis”, and “management”, combined with either “machine learning”, “ML”, “artificial
intelligence”, “AI”, “deep learning”, or “DL”. A prerequisite for inclusion was the status of
being an original research article either published, accepted for publication, or available
online in English. Studies involving considerations of sex or age were incorporated.
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3. BI-RADS Overview

In this section, we will provide an overview of the various versions of BI-RADS, the
assessment categories and recommendations within BI-RADS, as well as introduce the
BI-RADS lexicon.

3.1. Updates of BI-RADS

To delineate breast imaging findings and outcomes, radiologists employ a standard-
ized system known as BI-RADS. Initially introduced by the American College of Radiology
(ACR) in 1992 to address inconsistencies in mammography reporting, subsequent editions
of BI-RADS were published in 1995, 1998, and 2003 [5]. The current 5th edition of BI-RADS
was released in February 2014 and was updated through collaboration between breast
imaging radiologists and specialized clinicians focused on breast health [6]. It has evolved
from a simple mammography lexicon to a comprehensive lexicon encompassing mam-
mography, ultrasound (US), and magnetic resonance imaging (MRI). Lexical descriptors
were formulated to account for both benign and malignant lesions, eliminating ambiguity
and enhancing communication with referring clinicians [7]. Structured BI-RADS reports
provide assessment categories, encompassing breast density, description of findings, and
management recommendations [8,9].

3.2. BI-RADS Assessment Categories and Recommendations

The assessment categories provide estimates of the likelihood of malignancy in breast
lesions and offer management recommendations for each category. Although the BI-
RADS categories and recommendations remain unchanged in the 5th edition, they are
now decoupled and can exist independently. This modification allows for flexibility in
management recommendations while retaining precise medical assessments based on
imaging findings [8]. Categories 0, 1, and 2 are applied during screening mammography,
ultrasound, and MRI, yielding similar consequences. Categories 3, 4, and 5 are assigned
after a comprehensive diagnostic imaging assessment (Table 1).

Table 1. Assessment categories and guidance in the 5th edition of BI-RADS. ACR and SBI stand for
American College of Radiology and Society of Breast Imaging, respectively [8].

Category Description Recommendation

0

Incomplete assessment:

a. further examination is required
b. comparison films requested

a. Supplementary assessment with mammography,
US, or less frequently MRI; after accomplishment
of workup, further final category is offered.

b. Comparison can only be applied when it is nec-
essary to obtain a final assessment.

1 Negative: negative assessment Screening within 1 year (per SBI and ACR recommen-
dations); no expected malignancy.

2 Benign findings: to express a benign lesion that has no
malignant possibility

Screening within 1 year (per SBI and ACR recommen-
dations); similar to category 1. Category 1 is favored
over category 2 whenever suitable to avoid patient and
clinician anxiety and requesting unnecessary imaging
examinations after the description of benign findings.

3

Probably benign finding: debatable category applied
when a finding is nearly definitely benign but preferred
to have a short interval follow-up; unlikely to demand
biopsy. It holds a risk of malignancy up to 2%.

Short interval follow-up examinations (classically
6 months) for 24–36 months is recommended. Stabil-
ity established at the end of follow-up is considered
benign, thus the finding is relocated category 2.
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Table 1. Cont.

Category Description Recommendation

4

Suspicious abnormality: finding not classic for malig-
nancy, >2% to <95% chance of malignancy. On US and
mammography, it split into:

• 4A (low suspiciousness of malignancy, >2% to
10%),

• 4B (moderate suspiciousness of malignancy, >10%
to 50%),

• 4C (high suspiciousness of malignancy, >50% to
<95%)

Intervention is essential, better to be image-guided tis-
sue biopsy to create a pathologic diagnosis; follow-up
of biopsy outcomes with radiology-pathology correla-
tion is allocated to the examining radiologist.

5 Extremely evocative of malignancy: 95–100% likeli-
hood of malignancy; typical findings of malignancy

Image-guided Core biopsy for tissue sample; benign
result is deemed discordant, and further intervention
is advised and may incorporate replicate image-guided
vs surgical biopsy.

6 Biopsy-proven malignancy: verified cancer that has not
finished definitive treatment

Properly utilized in patients receiving neoadjuvant ther-
apy or in those who need additional staging; clinical
managing of the malignancy is recommended.

Mammographic lesions properly corroborated as BI-RADS category 3 involve a soli-
tary circumscribed mass, a focal asymmetry without corresponding sonographic correlate,
and a punctate grouped calcification [10,11]. A recent study revealed that category 3 assign-
ment after recall from screening mammography is applicable, with a 1.86% accumulative
cancer yield over a 2-year follow-up, verifying the need for short-interval follow-up of
BI-RADS category 3 findings [12]. Distinctive US criteria for BI-RADS category 3 comprise
nonpalpable circumscribed oval masses implying fibroadenoma and complicated cysts [8].
Numerous studies reported that the short-term follow-up offered by BI-RADS category 3
granted early-stage breast cancer detection, with no harmful consequences credited to a
short delay in diagnosis [8,13,14].

BI-RADS category 4 has a wide range of anticipated risk of malignancy and accord-
ingly it has been subdivided into three categories in both US and mammography to
overcome radiology–pathology discordance [15]. Category 4A can be utilized to address
cases that may be securely downgraded, by using potential supplemental technologies,
such as contrast-enhanced mammography (CEM) [16]. Evidence for the MRI subdivision
of category 4 is still limited [8].

BI-RADS category 5 indicates a very high probability of malignancy and is utilized
identically through mammography, US, and MRI. Careful radiology–pathology correlation
is essential if percutaneous biopsy of a category 5 lesion shows a benign histopathology, to
establish if repeat image-guided biopsy or surgical biopsy is the ideal following step [14].
BI-RADS category 6 was announced in the 4th edition [8]

3.3. BI-RADS Lexicon

A lexicon serves as a collection of consistent terms used to concisely and accurately
describe imaging findings. Various studies have certified lexicons for different imaging
modalities [16,17]. The 5th edition of BI-RADS harmonizes terminology across mammog-
raphy, ultrasound (US), and breast MRI, enabling precise correspondence between these
modalities, facilitating communication among radiologists, and ensuring consistent re-
porting to referring clinicians [8]. However, lexicon descriptors developed for specific
techniques may not always be adaptable for harmonization, especially in the case of the MR
dynamic contrast enhancement (DCE) technique and kinetic assessment of signal intensity
changes. As a result, the MRI lexicon includes unique descriptors designed specifically for
quantifying contrast kinetics [18].

Several breast imaging modalities that have emerged since the publication of the
BI-RADS 5th edition lack a distinct lexicon. These modalities include contrast-enhanced
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mammography (CEM), positron emission mammography (PEM), and molecular breast
imaging (MBI). Studies have attempted to adapt existing descriptors for these recent
modalities. For instance, various studies assessing the applicability of MRI BI-RADS
descriptors to CEM have indicated that mass lesion features yield the most consistent
results across MRI and CEM [16,17]. Similarly, the BI-RADS lexicon has been customized for
MBI and PEM, incorporating recommendations for lesion features and relevant molecular
agent uptake [19,20]. Moreover, in the future, contrast kinetics lexicon descriptors may
be employed to advance technologies such as CEM. Perry et al. [21] used the existing
descriptors for CEM by employing mammographic lesion descriptors for low-energy
images and MRI descriptors (BPE and enhancement characteristics) for recombined images.

4. BI-RADS Supported Modalities: Findings and Updated Techniques

As illustrated in Section 3.3, the 5th edition of BI-RADS supports three modalities:
mammography, ultrasound, and MRI. In this section, we will outline the distinct findings
within BI-RADS for each of these supported modalities, while also providing an overview
of the updates pertaining to breast cancer in each modality.

4.1. BI-RADS Mammography Findings

Density in mammography was previously categorized as 1 through 4, leading to con-
fusion with assessment categories. In the BI-RADS 5th edition, breast composition is now
assessed visually and classified as density levels a, b, c, or d, ranging from fatty to highly
dense [8]. Breast density is determined by the presence of focal dense breast tissue that can
obscure the detection of cancer, even in cases where the overall breast is non-dense. Higher
breast density has been associated with an increased likelihood of findings being hidden
by normal dense breast tissue on mammograms, a phenomenon referred to as the masking
effect [22,23]. Architectural distortion and calcifications can serve as primary descriptors
or associated features. Additionally, findings such as skin lesions, intramammary lymph
nodes (LN), and solitary dilated ducts should be documented [8]. Mammography offers a
significant advantage over other methods because it can detect microcalcifications, which
are the initial manifestation in approximately 30–50% of nonpalpable breast cancers, partic-
ularly ductal carcinoma in situ (DCIS) [24]. A list of BI-RADS 5th edition Mammography
findings can be found in Table 2.

Table 2. BI-RADS 5th edition mammographic findings.

Findings Descriptors

Breast density

a. nearly entirely fatty
b. scattered areas of fibroglandular density
c. heterogeneously dense
d. extremely dense

Mass: A space-occupying 3D object.
Shape Round, oval, irregular
Margin Circumscribed, obscured, micro-lobulated, indistinct, spiculated
Density High, equal density, low, fat-containing

Calcification:
Typically
benign Skin, popcornlike vascular, large rodlike, milk of calcium, dystrophic, suture

Suspicious
morphology

Amorphous, heterogeneous, coarse, fine linear or fine-linear branching, fine
pleomorphic.

Distribution Diffuse, linear, segmental, regional, grouped.
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Table 2. Cont.

Findings Descriptors

Asymmetry Asymmetry, global asymmetry, focal asymmetry, developing asymmetry

Associated
features

Skin thickening, skin retraction, retracted nipple, trabecular thickening, axillary
lymphadenopathy, calcifications

Location of
lesion Laterality, clockface and quadrant, distance from the nipple

4.2. Advancements in Mammographic Imaging Techniques

Digital Mammography (DM) is the preferred method for breast cancer screening and
early detection; however, it exhibits low sensitivity in dense breasts, potentially concealing
underlying masses [25,26] (Figure 1). To address this limitation, new mammographic
modalities have been introduced, namely digital breast tomosynthesis (DBT) and contrast-
enhanced mammography (CEM). In the following section, we will provide an overview of
each of these advancements.

Figure 1. BI-RADS category 4C: 40-year-old woman with invasive ductal carcinoma. (A,B) left
mediolateral oblique and craniocaudal digital mammogram show irregular high-density mass with
spiculated margins. (C) transverse ultrasound shows an irregular mass with angular margins and
posterior shadowing corresponding to mammographic findings. No suspicious axillary LNs.

Digital Breast Tomosynthesis (DBT) is an advancement in digital mammography
(DM) that allows for the acquisition of three-dimensional (3D) volumetric data of thin
breast sections [27]. DBT reduces the tissue overlap between dense breast parenchyma and
underlying masses, enabling better visualization and accurate diagnosis of breast cancer
cases that may be missed by DM [28]. Furthermore, DBT demonstrates enhanced diagnostic
efficacy in evaluating dense breast tissue, particularly for initial BI-RADS 0 results and
the identification of indeterminate BI-RADS 3 and 4 lesions, surpassing the capabilities of
DM [29,30]. The combination of DBT and DM significantly enhances the performance of
BI-RADS in diagnosing indeterminate breast lesions, and in some cases, DBT alone can
lead to a change in the final BI-RADS classification [31].

Contrast-Enhanced Mammography (CEM) is a clinically available technique, per-
formed in a modified mammography unit, with a similar examination time as DM [32].
CEM improves breast cancer (BC) detection by visualizing malignant enhancement after
the injection of an intravenous contrast agent [33]. Multiple previous studies have con-
cluded that CEM and Contrast-enhanced MRI have equivalent diagnostic performance
for detecting BC, with CEM offering the advantages of reduced cost and examination
time [32–36]. Recent studies have also recommended CEM for high-risk and dense breast
screening [35]. To study and report enhancing lesions found on CEM, a standardized
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lexicon of morphological descriptors is required. A previous study reported that the MRI
BI-RADS lexicon of morphology descriptors can confidently be applied to illustrate lesions
on CEM [37]. A recently published meta-analysis showed that CE-MRI revealed higher
sensitivity and negative likelihood ratios to exclude malignancy compared to CEM [33].

4.3. BI-RADS Ultrasound Findings

US is regarded as a valuable complement to mammography and MRI [38]. The lexicon
for breast ultrasound has been revised to improve consistency across all imaging modalities,
streamline reporting processes, and incorporate advanced techniques like elastography.
Furthermore, the “special cases” category has been expanded in the BI-RADS 5th edition [7].
Detailed ultrasonic findings in accordance with the BI-RADS 5th edition can be found
in Table 3.

Table 3. BI-RADS 5th edition ultrasound findings.

Findings Descriptors

Tissue composition/
background echotexture

Homogenous (Fat, fibroglandular).
Heterogenous.

Mass:
Shape Round, oval, irregular.
Margin Circumscribed, indistinct, angular, microlobulated, spiculated.
Orientation Parallel or not parallel

Echo pattern Anechoic, hypoechoic, hyperechoic, isoechoic, heterogeneous, com-
plex cystic and solid.

Posterior features No posterior acoustic features, shadowing, enhancement, combined
features.

Calcification: Calcifications inside a mass, intraductal calcifications outside of a
mass.

Associated features
Skin thickening, edema, skin retraction, vascularity (absent, vessels
in rim, internal vascularity), architectural distortion, elasticity assess-
ment (soft, intermediate, hard).

Special cases

Simple cyst, complicated cyst, clustered microcysts, foreign body
counting implants, mass in skin, lymph nodes (intramammary or axil-
lary), vascular abnormalities (arteriovenous malformation, pseudoa-
neurysms, or Mondor disease), postoperative collection, fat necrosis.

4.4. Advancements in US Techniques

Since only a small percentage of BI-RADS-US 3 lesions (3%) were determined to
be malignant, causing delays in cancer diagnosis, and a large portion of BI-RADS-US
4A lesions were found to be benign, leading to excessive and unnecessary biopsies, it is
necessary to investigate an appropriate diagnostic predictor of malignancy in BI-RADS-US
3 and BI-RADS-US 4A lesions [39]. To overcome these limitations, updated US techniques
have been investigated, including US elastography and contrast-enhanced ultrasound
(CEUS), as illustrated below.

US-Elastography is a noninvasive ultrasound technique utilized to generate images
that depict the relative hardness or stiffness of tissue, as cancerous tissue typically exhibits
greater firmness compared to the surrounding normal breast parenchyma [40]. Shear
wave elastography (SWE) and ultrasound strain elastography (USE) play crucial roles in
continuously improving elastography techniques. A recent prospective study [41] has
demonstrated that combining B-mode ultrasound with both USE and SWE results in
an enhanced BI-RADS category assessment, with USE achieving statistically significantly
higher accuracy than SWE. USE is generated through manual pressure and release, allowing
for real-time calculation of tissue elasticity [42]. The five-point elasticity score is determined
by evaluating the level and pattern of strain observed within the lesion and its surrounding
tissue, as illustrated in Table 4 [43]. Furthermore, the integration of elastography into the
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BI-RADS system holds the potential to increase its diagnostic value, particularly in cases
involving lesions smaller than 2 cm, as USE enhances the ability to differentiate between
malignant and benign small lesions [44].

Contrast-enhanced ultrasound (CEUS) demonstrates favorable sensitivity and speci-
ficity when categorizing breast lesions, as it effectively delineates the microvascular ar-
chitecture of these lesions [45,46]. In terms of enhancing breast lesions, CEUS images can
be graded using a five-score system, as illustrated in Table 4 [47,48]. A previous study
compared the diagnostic performance of conventional ultrasound (US), ultrasound elastog-
raphy (USE), and CEUS in characterizing subcentimeter breast lesions, revealing that the
combination of BI-RADS-US with CEUS yielded the highest diagnostic accuracy. Moreover,
both USE and CEUS serve as viable alternatives to a biopsy for such small lesions [47].

Table 4. Scores for updated ultrasound techniques (USE and CEUS scores). USE: ultrasound strain
elastography [43], CEUS: contrast-enhanced US [47].

Score USE Score CEUS Score

1 The entire lesion is uniformly
colored in green

Ring-like enhancement, no internal enhancement.

2 The lesion is shadowed in green
with focal blue spots

Iso- and synchronous enhancement of the lesion
with the surrounding tissue.
No clear outline.

3 The half of the lesion is green and half
blue

Earlier enhancement of the lesion than neighboring tissue either
heterogeneous or homogeneous.
Clear margin.
The lesion size is nearly equal to that demonstrated in a 2D image.
Regular shape.

4
The whole lesion is blue or
predominantly blue with a
minimum green

Earlier enhancement of the lesion than neighboring tissue,
typically heterogeneous.
The lesion size is larger than that in the 2D image, the lesion still reveals
a clear margin with or without a perfusion defect inside the lesions, no
crab claw-like enhancement.
Irregular shape.

5 The whole lesion and its neighboring area
ware blue or blue with focal green spots

Heterogeneous enhancement of the lesion with a larger size than that in
the 2D image. With or without perfusion defect.
Crab claw-like enhancement with an unclear margin.

4.5. BI-RADS MRI Findings

Breast MRI plays a pivotal role in visualizing breast cancer. MRI boasts the highest
sensitivity, ranging from 88% to 100% when compared to other breast imaging modalities
(Figure 2) [49]. The BI-RADS lexicon has significantly improved the reliability of inter-
preting and reporting breast MR imaging [50]. It is important to note that background
parenchymal enhancement (BPE) of breast tissue on MRI differs from mammography den-
sity or the MRI appearance of breast fibroglandular tissue. BPE has been established as an
indicator of increased breast cancer risk, regardless of breast density [8]. The recommended
timing for screening breast MRI was previously suggested during the second week of the
menstrual cycle to minimize BPE [51,52]. However, recent research questions the validity of
this suggestion, as menstrual cycle phases have shown no significant impact on reporting
results [53]. Most contemporary MRI protocols are multiparametric [54,55], and detailed
findings according to the 5th edition of BI-RADS MRI can be found in Table 5 [8].
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Figure 2. BI-RADS category 5: 49-year-old woman with Luminal (A) (positive ER and PR, negative
Her2) lobular carcinoma. Axial fat-saturated T2-weighted MRI shows left breast hyperintense
irregular mass. (B) axial T1-weighted fat-saturated dynamic contrast-enhanced MR image shows
heterogenous segmental nonmass enhancement of the lesion (L1). (C) kinetic color overlay shows
predominant yellow and red colors in the mass indicating plateau kinetics and washout respectively.
(D) kinetic signal intensity time curve shows rapid initial phase and washout in the delayed phase.
No suspicious axillary LNs.

Table 5. BI-RADS 5th edition MRI findings.

Findings Descriptors

Tissue composition

Entirely fatty breast
Scattered fibroglandular tissue
Heterogeneous fibroglandular tissue
Marked fibroglandular tissue

Background
parenchymal
enhancement (BPE)
Symmetry Symmetrical/Asymmetrical
Level Minimal/Mild/Moderate/Severe

Focus: Yes/No

Mass:
Shape Oval (+lobulated) /Round/Irregular
Margin Circumscribed

Irregular/Spiculated
Patterns of internal
enhancement

Homogenous
Heterogenous
Clumped
Clustered ring
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Table 5. Cont.

Findings Descriptors

Non-mass enhancement:
Distribution Focal/Linear/Segmental/Regional/Multi-regional/Diffuse
Patterns of internal
enhancement

Homogenous
Heterogenous
Clumped
Clustered ring

Non-enhancing findings:

Cyst, non-enhancing mass, architectural distortion, ductal hyperin-
tensity on precontrast T1 weighted images, postsurgical hematoma
or seroma, posttreatment skin thickening, signal void from clips and
foreign bodies.

Concomitant findings:
Skin retraction, skin invasion, nipple retraction, nipple invasion, pec-
toralis muscle invasion, chest wall invasion, inflammatory breast
cancer, axillary adenopathy, architectural distortion.

Fat-containing lesions: Normal or abnormal lymph nodes, hamartoma, fat necrosis, postoper-
ative seroma encompassing fat.

Intra-mammary lymph
nodes: Yes/No

Skin lesions: Yes/No

Location and depth of
lesions:

Implant findings: Material of the implant, lumen type, contour, position, water droplets,
intra- and extracapsular findings, peri-implant findings.

Kinetic signal intensity
time curve assessment:
Initial phase Slow/Medium/Fast
Delayed phase Persistent/Plateau/Washout

4.6. Advancements in MRI Techniques

The various components of the multiparametric MRI protocol, which encompass
the quantitative assessment of contrast medium enhancement and advanced diffusion-
weighted MRI (DW-MRI) techniques, contribute significantly to enhancing the classification
of lesions.

Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) assesses
blood vessel permeability by using an intravenous contrast medium, gadolinium chelate,
which shortens the local T1 time and results in a higher signal in T1-weighted images [56].
Neoangiogenesis in breast cancer leads to the formation of leaky vessels that facilitate
faster extravasation of the contrast medium [57], resulting in rapid local contrast enhance-
ment. Dynamic evaluation with time-signal intensity curves involves acquiring a series of
T1-weighted images from five to seven minutes after contrast administration [58,59]. In
malignant tumors with leaky vessels, the peak accumulation of the contrast medium has
already occurred, and it is being washed out from the tumor. In benign lesions with vessels
of lower permeability, the accumulation of the contrast medium within the vessel wall
continues to show positive results, resulting in ongoing enhancement. This concept helps
elucidate the significance of kinetic time-signal intensity curves. A persistent rise is most
commonly seen in benign lesions, while a decrease in the late phase is typical of malignant
tumors [60]. The curve suspicious for malignancy is often characterized by a “washout-
plateau-persistent” pattern, observed in approximately 85% of malignant tumors [59,60].
Conversely, persistent time-signal intensity curves are rare in cancers, although they are a
possibility in cases of ductal carcinoma in situ (DCIS) and more diffusely growing invasive
tumors, especially lobular breast cancers [61].



Cancers 2023, 15, 5216 11 of 46

Diffusion-weighted magnetic resonance imaging (DW-MRI) measures the random
Brownian motion of water molecules within tissue, a motion influenced by tissue mi-
crostructure and cell density. Motion-sensitizing gradients (b factors) are applied to a
T2-weighted echo-planar sequence [62,63]. Malignant tumors exhibit reduced water dif-
fusion due to increased cell density, resulting in diffusion restriction and high DW-MRI
signal intensity. To obtain high-quality DW-MRI scans, it is essential to select appropriate
b values, minimize artifacts, ensure effective fat suppression, and maintain a satisfactory
signal-to-noise ratio [63]. The apparent diffusion coefficient (ADC) serves as a numerical
representation of diffusion values. Typically, ADC values are lower in malignant tumors,
falling within the range of 0.8 to 1.3× 10−3 mm2/s, as opposed to benign lesions, where
they usually range from 1.2 to 2.0× 10−3 mm2/s. This difference arises from the con-
strained diffusion properties of cancerous tissue [64]. When DW-MRI is conducted with a
b value lower than 1000 s/mm2, it demonstrates the highest precision in distinguishing
between benign and malignant lesions [65,66].

Diffusion tensor magnetic resonance imaging (DTI-MRI) not only measures the
apparent diffusion coefficient (ADC) but also provides information about diffusion direc-
tionality [67]. Diffusion anisotropy arises from the alignment of water diffusion within the
microstructure of breast tissue, which consists of ducts and lobules. DTI-MRI surpasses
DW-MRI by enabling the investigation of water motion in six or more directions to fully
characterize the diffusion tensor. Fractional anisotropy (FA) serves as a crucial metric for
quantifying the extent of DTI directionality and has been a primary parameter in DTI
studies [68]. More intricate three-dimensional diffusion patterns and their mean diffusivity
are also considered. It has been postulated that malignant tumors may be linked to higher
cell density and a more disorganized microstructure, resulting in decreased FA. However,
the findings regarding DTI’s efficacy in differentiating between benign and malignant
breast tumors are still a subject of debate. Some studies have reported a significant decrease
in FA in malignant breast tumors compared to normal parenchyma, while others have
found no significant differences [67] (see Figure 3).

Figure 3. BI-RADS category 5: 37-year-old woman with triple-negative invasive ductal carcinoma.
(A) axial T1-weighted fat-saturated dynamic contrast-enhanced MR image shows two irregular
masses of heterogenous enhancement with ipsilateral suspicious axillary LN. (B–D) axial DWI
(b = 1000), corresponding ADC map, and DTI image (colored FA map ) show marked diffusion re-
striction of two masses and axillary LN with low ADC values (0.89× 10−3 mm2/s, 0.91× 10−3 mm2/s
and 0.93× 10−3 mm2/s ) and high FA values (0.57, 0.56 and 0.54), respectively.
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5. Microwave Breast Imaging

The flaws of mammography, such as radiation exposure and uncomfortable breast com-
pression, attract attention to research into alternate methods of imaging [69]. Microwave
imaging (MWI) offers an emerging potential non-ionizing, non-compressive method for
BC diagnosis [70]. MWI has been assigned as a potentially viable technique for identifying
breast abnormalities [71], with reported high sensitivity for identifying cancer in denser
breasts [72]. MWI uses electromagnetic radiation to deduce the dielectric characteristics
within a set volume, named the imaging domain [69]. The Wavelia system is a first genera-
tion, low-power electromagnetic wave breast imaging tool, utilized by MVG Industries [73].
A recent study concluded that the Wavelia system demonstrated promising results in
detecting benign and malignant breast lesions in a clinical setting [74]. SAFE (Scan and
Find Early) is a novel MWI device envisioned for BC screening and early detection. A
recent preliminary study compared SAFE results with US, mammography, and MRI, which
revealed promising concordance with clinical reports, consequently encouraging additional
SAFE clinical studies [75].

6. The Role of AI in the Detection and Diagnosis of Breast Cancer

By utilizing AI components, artificial intelligence (AI) aims to replicate human problem-
solving and thought processes. A fundamental element of AI is machine learning (ML),
which involves the utilization of image processing methods to extract characteristics or
features from a given input dataset. Subsequently, the data are either graded through
supervised learning or classified through unsupervised learning. In supervised learning,
labeled input–output pairs are employed to classify data using classifiers such as support
vector machines (SVM), random forests, and conventional neural networks. Deep learning
(DL), a subset of machine learning, has gained popularity in the medical industry, with
convolutional neural networks (CNNs) being the most frequently used deep learning net-
works. CNNs comprise multiple convolutional and fully connected layers to accomplish
feature extraction and classification. In contrast, unsupervised learning classifies data based
on patterns within the input data rather than labeled input–output pairs. AI has played
a pivotal role in recent times, particularly in applications like early breast cancer (BC)
detection and diagnosis. Various metrics are employed to address medical issues such as
categorization, diagnosis, and early detection, enabling the assessment of the effectiveness
of AI components. Below is a brief summary of these measures, with the total number of
data samples denoted as TP + TN + FN + FP. The abbreviations represent true positive (TP),
true negative (TN), false negative (FN), and false positive (FP), defined as follows:

• True negative (TN): both the classifier’s prediction and the test case were negative.
• True positive (TP): both the classifier’s prediction and the test case were negative.
• False negative (FN): the test cases yielded positive results, but the classifier’s prediction

was negative
• False positive (FP): the test cases turned out to be negative, but the prediction was

positive.

The following definitions in Table 6 apply to the performance measurements used in
this study.

Table 6. Performance metrics used to assess the performance of the different AI components.

Name Rule

Accuracy (Acc) TP + TN/Total

Precision (Prec) TP/TP + FP

Recall (Rec) or Specificity (Spec) or
True Positive Rate (TPR) TP/TP + FN

Sensitivity (Sens) TN/FP + TN
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Table 6. Cont.

Name Rule

F-Measure (F1-M) (2 × Precision × Recall)/(Precision + Recall)

False Positive Rate (FPR) FP/(FP + TN)

PR AUC Precision-Recall Area Under Curve

Receiver operating characteristic
curve (ROC)

An ROC curve plots TPR vs. FPR at different classification
thresholds

Area Under the ROC Curve (AUC) AUC measures the entire two-dimensional area underneath
the entire ROC curve

Correlation (TP×TN)−(FP×FN)√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

AUC-SD Standard deviation of the AUC

This section of the survey outlines recent studies employing AI/ML techniques for the
detection and categorization of breast cancer using various imaging methods, including
mammography, ultrasound, magnetic resonance imaging (MRI), and computed tomogra-
phy (CT). Using AI in the image analysis and management of breast cancer patients offers
advantages related to early detection, diagnosis, and predicting the treatment response,
which contributes to improved patient outcomes and the overall quality of breast cancer
care. AI/ML learning methods rely on extracting hand-crafted features and employing one
of the ML classifiers for detection or classification. The most commonly utilized AI/ML
components for breast cancer (BC) diagnosis and detection, as shown in Figure 4, include
SVM, decision tree (DT), random forest (RF), artificial neural network (ANN), autoencoder
(AE), and CNNs.

Figure 4. The most frequent AI/ML components used for breast cancer (BC) detection and diagnostic.

6.1. Svm-Based Detection/Classification Methods

SVM possesses the capability to identify an optimal decision boundary that best
represents the largest separation, or the widest margin, between different classes. Initially,
it was developed to address problems involving linearly separable classes, but it was
subsequently extended to handle non-linearly separable classes as well. SVM stands out
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as one of the most widely employed classifiers for the diagnosis and prediction of breast
cancer (BC).

In the literature, various research groups have employed SVM for the detection and
classification of breast cancer. For instance, Adel et al. [76] developed a technique to
classify breast cancer into benign and malignant categories using B-mode ultrasound
and elastography images. This approach involved extracting a total of 33 features from
these images, including parameters such as width-to-height ratio, standard deviation, area,
perimeter, mean, contrast-to-noise ratio, and signal-to-noise ratio. Principal component
analysis (PCA) was applied to reduce the number of features from 33 to 18. Subsequently,
SVM was employed for breast cancer classification, achieving an accuracy rate of 94.12%.
Ara et al. [77] conducted a comparative study of various machine learning (ML) techniques
for breast cancer classification into benign and malignant categories using the Wisconsin
Breast Cancer Diagnostic (WBCD) dataset, obtained from the University of California
Irvine (UCI) ML repository [78]. This dataset represents human breast tissue characteristics
related to the size, shape, and texture of cell nuclei for each patient. Correlation analyses
were performed on features such as radius, texture, area, and symmetry that characterize
each category (benign vs. malignant), resulting in the elimination of less correlated WBCD
features. For classification, different classifiers, including logistic regression (LR), SVM, RF,
naïve Bayes (NB), DT, and k-Nearest Neighbors (KNN), were investigated. Ultimately, RF
and SVM outperformed other classifiers, achieving accuracies of 96.5%.

In a study by Badr et al. [79], an optimized model served two purposes: (i) classifying
breast cancer (BC) into benign and malignant using the WDBC dataset, and (ii) detecting BC
records among healthy records using the Electronic Health Record (EHR) [80] dataset. Each
EHR record comprised nine features: age, body mass index, glucose, insulin, homeostatic
model assessment (HOMA), leptin, adiponectin, resistance, and monocyte chemoattractant
protein-1 (MCP-1). Grey wolf optimization (GWO) was employed to determine optimal
parameters for SVM classification. For data normalization, arithmetic, equilibration, and
geometric mean scaling techniques were explored. Their method (GWO + SVM) with
the equilibration scaling technique achieved the highest accuracy rate of 99.3% on the
WDBC dataset (compared to a classical SVM accuracy of 82.05%) and 93.3% on the EHR
dataset [80]. Khan et al. [81] applied a system for BC classification into malignant and
benign using cytology images. Image pre-processing involved linear contrast enhancement
and a linear filter for noise removal. After segmenting the cell objects using geometric active
contours (GACs) to isolate cellular from non-cellular objects, the gray level co-occurrence
matrix (GLCM) was computed from the segmented cell objects. Features such as contrast,
energy, homogeneity, and entropy were computed from the GLCM matrix. Finally, an SVM
classifier was employed to discriminate between malignant and benign cells, achieving an
accuracy of 96.3%. Ed-daoudy and Maalmi [82] implemented a system for breast cancer (BC)
classification into malignant and benign cases using the WBCD dataset. They reduced the
initial nine features to either eight or four through the application of association rules (AR).
When utilizing the eight selected features, an SVM classifier achieved the highest accuracy,
reaching 98%. El-Azizy et al. [83] developed a computer-aided diagnosis (CAD) system
designed to distinguish between malignant and benign nodules based on conventional
B-mode ultrasound images. The CAD system comprises four phases: noise removal,
lesion segmentation, feature extraction, and SVM classification. Firstly, they employed an
anisotropic filter for noise reduction. Secondly, the active contour segmentation technique
was utilized to delineate the tumors, either through a semi-automated or fully-automated
approach. The initial active contour mask was determined either manually, by selecting
a few points (semi-automated), or automatically using thresholding (fully automated).
Subsequent to segmentation, three morphological features, namely perimeter, regularity
variance, and circularity range ratio, were extracted from each lesion. Finally, SVM was
employed for classification, resulting in accuracies of 95.98% (semi-automated) and 95.67%
(fully automated, with a slight decrease in performance). Wei et al. [84] utilized breast
ultrasound images to propose an automatic classification system for BC, distinguishing
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between malignant and benign nodules based on texture and morphological features. These
features encompassed direct least-squares fitting of ellipses, compactness, and radial range
spectrum, all extracted from manually defined regions of interest (ROI). SVM classifiers
were employed for classification, yielding accuracies of 75.94% using only morphological
features, 85.62% using solely texture features, and 87.32% when combining both texture and
morphological features. Another study proposed by Rana et al. [85] introduced a system
that used a microwave device to detect breast lesions. Initially, clinical data are extracted
from patients using a microwave apparatus. The patient’s label, indicating whether their
tissues are healthy or non-healthy, is determined through conventional breast exams such
as echography, mammography, and magnetic resonance imaging. Subsequently, the clinical
information (i.e., frequency domain signals) obtained through the microwave apparatus
is input into three different classifiers in order to distinguish between normal and lesion
tissues. The latter are KNN, Multilayer Perceptron (MLP), and SVM. Their results showed
that the SVM demonstrated superior performance in breast cancer classification, achieving
an accuracy rate of 98%, surpassing the performance of other methods. A similar study by
Sami et al. [86] introduced a system for predicting breast lesions using microwave signals
in the frequency domain, specifically S-parameters (S21). First, these frequency domain
samples are subsequently transformed into time-domain signals through an inverse Fourier
transform. Then, different machine learning algorithms were utilized to differentiate
between healthy and non-healthy tissues by analyzing patterns found in the backscattered
signals. Their results showed that the SVM with a third-degree polynomial kernel achieved
an accuracy of 99.7%, surpassing the performance of traditional machine learning binary
classification algorithms. These studies demonstrated the potential and effectiveness of
integrating microwave signals with machine learning techniques for the early and accurate
detection of breast lesions.

Table 7 provides a summary of various SVM-based breast cancer detection and diag-
nostic methods found in the literature. As illustrated in the table, diverse methodologies
have been employed across various modalities and databases, encompassing ultrasound,
elastography, cell tissue characteristics, patient records, cytology images, and more. These
methods employ SVM classifiers that leverage distinct sets of extracted features, includ-
ing statistical, appearance, morphological, and texture-based attributes. The outcomes
obtained through these methodologies underscore the potential of incorporating AI/ML
components to aid radiologists in breast cancer detection and diagnosis.

Table 7. Summary of SVM-based BC detection/diagnostic methods.

Study Method Goal Database Evaluation

Adel et al.,
2019 [76]

• Feature extraction
from both B-mode
and elastography
images.

• PCA feature reduc-
tion

• SVM classification

Malignant/Benign BC
Classification

Private data, 82 images
from 34 patients (56 ma-
lignant and 26 benign)

Acc = 94.1

Wei et al.,
2019 [84]

• Manual ROI seg-
mentation

• Texture and morpho-
logical feature ex-
traction

• SVM classification

Malignant/Benign Ultra-
sound BC Classification

Ultrasound dataset (472
benign, 589 malignant)

• Acc = 87.3
• Sens = 87.0
• Spec = 87.6
• Prec = 87.9
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Table 7. Cont.

Study Method Goal Database Evaluation

El-Azizy et al.,
2019 [83]

• Anisotropic filter
was used for noise
removal

• Lesion segmentation
using active contour
(semi-automated or
fully automated)

• Three morphologi-
cal features were ex-
tracted from the seg-
mented lesion

• SVM classification

Malignant/Benign Ultra-
sound BC Classification

Private B-mode ultra-
sound dataset (216
benign, 107 malignant)

Semi-automated

• Acc = 96.0
• Sens = 95.4
• Spec = 97.2

Fully-automated

• Acc = 96.5
• Sens = 95.3
• Spec = 95.8

Rana et al.,
2019 [85]

• microwave signal.
• Different Machine

learning classifiers
were compared.

Automated lesion detec-
tion and classification us-
ing clinical data extracted
from microwave device.

Private data, 20 healthy
breasts and 23 non-
healthy breasts

• Acc = 55 (KNN)
• Acc = 53.8 (MLP)
• Acc = 98.9 (SVM)

Ed-daoudy
and Maalmi,
2020 [82]

• Feature selection us-
ing AR

• SVM classification

Malignant/Benign BC
Classification

WBCD (357 benign, 212
malignant)

• Acc = 97.0 (9 fea-
tures)

• Acc = 96.0 (4 fea-
tures)

• Acc = 98.0 (8 fea-
tures)

Khan et al.,
2021 [81]

• Cytology image pre-
processing

• Cell segmentation
using GACs

• GLCM features were
extracted from the
segmented cells

• SVM classification

Malignant/Benign Cytol-
ogy BC Classification

More than 4000 images
from the pathology de-
partment Lady Reading
Hospital Peshawar

Acc = 96.3

Ara et al.,
2021 [77]

• Less-correlated
WBCD features
were eliminated.

• Different ML classi-
fiers were compared

Malignant/Benign BC
Classification

WBCD (357 benign, 212
malignant)

• Acc = 94.4 (LR)
• Acc = 95.8 (KNN)
• Acc = 95.1 (DT)
• Acc = 92.3 (NB)
• Acc = 96.5 (RF)
• Acc = 96.5 (SVM)

Badr et al.,
2021 [79]

GWO+SVM algorithm
with equilibration scaling

• Malignant/Benign
BC Classification

• BC vs. healthy clas-
sification

• WBCD (357 benign,
212 malignant)

• HER (64 BC, 52
healthy)

• Acc = 99.3 (WDBC)
• Acc = 93.3 (HER)

Sami et al.,
2022 [86]

• Transformation
of the frequency
domain microwave
signal into time
domainsignal.

• SVM classification.

Prediction of the breast le-
sion using microwave sig-
nals

Open-source datasets con-
sisted of 1008 data exam-
ples obtained at the Uni-
versity of Manitoba.

• Acc = 99.7 (SVMPoly)
• Acc = 98 (SVMLinear)
• Acc = 87.7 (Linear

Discriminant Analy-
sis [LDA])

6.2. DT/Rf-Based Detection/Classification Methods

A predictive model known as decision trees (DT) in machine learning illustrates a
mapping between object properties and object values. DT functions as a tree-like classifier,
wherein each input data point can be categorized into specific classes based on each non-leaf
node (representing a specific attribute) in a flowchart-like manner. Once the information
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gain has been estimated, a decision is made by determining the best path from the root
node to a particular class (leaf). Some of the most widely recognized DT techniques, which
employ entropy-based measurements for tree growth, include Iterative Dichotomiser
3 (ID3) [87], C4.5 [88], J48 [89], and classification and regression tree (CART) [90]. An
ensemble model composed of multiple decision trees is commonly referred to as a Random
Forest (RF) classifier. DT and RF stand out as popular classifiers for the diagnosis and
prediction of Breast Cancer (BC).

In an experiment conducted by Singh et al. [91], various machine learning classifiers
were explored for the classification of breast cancer into benign and malignant nodules.
These classifiers included NB, binary logistic regression (BLR), and two DT classifiers,
namely J48 [89] and the simple CART [90] classifiers. Their method underwent validation
using the Wisconsin breast cancer original (WBCO) dataset, which was sourced from the
UCI repository [78]. This dataset comprises a collection of characteristics pertaining to hu-
man breast tissues, including size, shape, and texture of cell nuclei. Manual preprocessing
was executed to eliminate missing data values via a median filter. Among all the classifiers
investigated, the simple CART classifier exhibited the highest accuracy, achieving 98.13%.
Allada et al. [92] similarly delved into the examination of different machine learning clas-
sifiers such as KNN, SVM, DT, NB, LR, and RF for breast cancer classification using the
WBCD dataset [78]. Preceding classifier training, preprocessing steps encompassed label
encoding to convert categorical features into numerical ones, and feature value normal-
ization within the range of 0 to 1. Among all the classifiers explored, both SVM and RF
achieved the highest accuracy, registering at 96.5%. In the Sengar et al. [93] experiments, LR
and DT were scrutinized for breast cancer classification using the WBCD dataset [78]. Data
preprocessing involved label encoding and feature scaling applied to the WBCD features,
with the DT classifier attaining a higher accuracy of 95.1%. The literature highlights the
utilization of DT/RF-based techniques for breast cancer detection and diagnosis, as out-
lined in Table 8. This table underscores the competitive performance achieved by DT/RF
classifiers in breast cancer classification.

Table 8. Summary of DT/RF-based BC detection/diagnostic methods.

Study Method Goal Database Evaluation

Singh et al.,
2018 [91]

Different ML classifiers
were compared

Malignant/Benign BC
Classification

WBCO (456 benign, 241
malignant

• Acc = 95.3 (NB)
• Acc = 95.8 (BLR)
• Acc = 97.3 (DT, J48)
• Acc = 98.1 (DT,

CART)

Sengar et al.,
2020 [93]

LR and DT classifiers
were compared

Malignant/Benign BC
Classification

WBCD (357 benign, 212
malignant)

• Acc = 94.4 (LR)
• Acc = 95.1 (DT)

Allada et al.,
2021 [92]

Different ML classifiers
were compared

Malignant/Benign BC
Classification

WBCD (357 benign, 212
malignant)

• Acc = 92.3 (NB)
• Acc = 94.0 (LR)
• Acc = 95.0 (KNN)
• Acc = 95.1 (DT)
• Acc = 96.5 (SVM)
• Acc = 96.5 (RF)

6.3. ANN/AE-Based Detection/Classification Methods

The artificial neural network (ANN) is a machine learning model that draws inspira-
tion from the capabilities and structure of biological neural networks. Within the realm of
computer science, it exhibits functions akin to those of the human brain, encompassing tasks
such as information reception, processing, and delivery. Owing to their competitive per-
formance, ANNs have found application in breast cancer (BC) detection and classification.
For instance, Abbass et al. [94] employed an evolutionary artificial neural network (EANN)
based on the Pareto-differential evolution method (PDE) to predict BC. They conducted
evaluations using the WBCD dataset [78], comparing their results with an evolutionary
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programming (EP) approach. Impressively, their EANN technique surpassed the EP ap-
proach with an accuracy rate of 98.12%. Similarly, Karabatak et al. [95] utilized the WBCD
database [78], applying dimensionality reduction techniques to reduce the feature space
from 9 to 4. Subsequently, they employed ANN for classification, achieving an accuracy
of 95.6%. Furthermore, Jafari-Marandi et al. [96] developed a comprehensive framework
for BC diagnosis, deploying it on both the WBCD and WDBC datasets, both sourced from
UCI’s repository [78]. Their framework incorporated a self-organizing map (SOM) to
project similarity and dissimilarity patterns among patients (benign and malignant) into
a map that guided the training phase (error-driven learning) of a multi-layer perceptron
(MLP). This approach resulted in accuracy rates of 96.2% on WDBC and 98.2% on WBCD.
In a different approach, Rouhi et al. [97] tackled breast tumor classification into benign
and malignant categories using two mammographic datasets: the mammographic image
analysis society (MIAS) [98] dataset and the digital database for screening mammography
(DDSM) [99]. Their methodology involved tumor segmentation using a cellular neural
network segmentation, feature extraction from the segmented tumor regions, and feature
selection via a genetic algorithm (GA). Subsequently, mammograms were classified using
an ANN, achieving an accuracy of 90.16% on the MIAS dataset and 96.5% on DDSM.

When dealing with original datasets that lack labels and/or entail the expensive and
challenging task of annotation, unsupervised learning emerges as an advantageous op-
tion. The primary objective of unsupervised learning is to fathom the underlying data
structure, facilitating the extraction of valuable features. Among the prominent techniques
in this realm is the AE, which autonomously encodes the initial input data into a lower-
dimensional space representation, effectively compressing the data by leveraging an ANN
as an approximating function. The compressed data subsequently finds utility in data re-
construction, with the aim of faithfully reproducing the original dataset. For simplicity, this
task comprises two pivotal components: encoders and decoders. The encoder specializes in
learning how to condense the original input into compressed data, while the decoder excels
in the art of restoring the original data from the compressed counterpart. Autoencoders
bear resemblance to PCA, yet they boast greater adaptability. Unlike PCA, which confines
itself to linear transformations, autoencoders offer versatility by encoding data in both
linear and non-linear manners. There exist four distinct types of autoencoders: (i) denoising
autoencoders (DAE), which master the restoration of the unaltered input from partially
corrupted input; (ii) sparse autoencoders (SAE), characterized by an architecture featuring
more hidden encoding layers than input layers, sometimes employing the outputs of the
final autoencoder as inputs for subsequent layers or within the broader network architec-
ture, thus enabling the extraction of higher-level, abstract data representations through the
gradual reduction and subsequent expansion of dimensionality; (iii) variational autoen-
coders (VAE), a unique autoencoder variant that integrates an additional loss component
during training to approximate the posterior distribution in latent representation learning;
and (iv) contractive autoencoders (CAE), which differ from standard autoencoders due
to the incorporation of an explicit “regularizer” term in the training objective, promoting
the model to acquire robustness against input data variations. In a study conducted by
Kadam et al. (2019) [100], the authors employed an SAE-based approach, combined with
softmax regression, for breast cancer (BC) classification into non-cancerous and cancerous
cases, achieving an impressive accuracy of 98.59%. Table 9 highlights the application of
ANN/AE-based BC detection and diagnostic methods found in the literature, showcasing
their competitive performance in BC classification.
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Table 9. Summary of ANN/AE-based BC detection/diagnostic methods.

Study Method Goal Database Evaluation

Abbass et al.,
2002 [94]

EANN based on PDE
with local search

Malignant/Benign BC
Classification WBCD Acc = 99.1

Karabatak
et al., 2009 [95]

• AR feature reduc-
tion

• ANN classification

Malignant/Benign BC
Classification WBCD Acc = 95.6

Rouhi et al.,
2015 [97]

• Cellular neural net-
work was used for
tumor segmentation

• Features were ex-
tracted from the seg-
mented tumors

• GA-based feature se-
lection

• ANN classification

Malignant/Benign Mam-
mogram BC Classification

• MIAS
• DDSM

MAIS

• Acc = 90.2
• Sens = 92.7
• Spec = 90.5
• AUC = 95.6

DDSM

• Acc = 96.5
• Sens = 96.9
• Spec = 95.9
• AUC = 95.1

Jafari-Marandi
et al., 2018 [96]

A SOM followed by an
ANN

Malignant/Benign BC
Classification

• WBCD
• WDBC

• Acc = 96.2 (WDBC)
• Acc = 98.2 (WBCD)

Kadam et al.,
2019 [100]

Two SSAE + ensemble of
softmax classifiers

Malignant/Benign BC
Classification WDBC

• Acc = 98.6
• Sens = 97.2
• Spec = 99.4
• Prec = 99.0
• Rec = 97.2
• F1-M = 0.98

6.4. CNN-Based Detection/Classification Methods

CNN, an emerging type of ANN based on deep learning (DL), has garnered widespread
recognition across various domains, including computer vision and medical fields. The
primary feature of CNN lies in reducing the number of ANN parameters through parame-
ter sharing and local processing, consequently diminishing computation complexity. The
CNN architecture comprises three pivotal elements: convolutional layers, pooling layers,
and fully connected layers. Training a CNN typically demands a substantial volume of
training images, presenting a formidable obstacle in medical imaging due to the exorbitant
cost of acquiring labeled datasets. To surmount this challenge, transfer learning has been
introduced, leveraging pre-trained CNNs that were previously trained for other applica-
tions, thereby enabling the use of significantly smaller training databases. Transfer learning
entails applying acquired knowledge from one task’s completion to another within the
same domain or a related task. The benefit of deep learning, especially CNNs and transfer
learning, lies in its ability to learn and extract features from large datasets, in contrast
to machine learning, which relies on hand-crafted features. However, the disadvantages
of using deep learning include model complexity, the need to tune a large number of
parameters, the requirement for substantial computational resources for training on large
datasets, and longer training times compared to machine learning.

In the literature, both basic CNNs and pre-trained CNNs are commonly employed for
breast cancer (BC) detection and classification. For instance, Arevalo et al. [101] developed
a CAD system for classifying mammography mass lesions as either malignant or benign.
They applied their methodology to a dataset based on film mammography, sourced from
the Breast Cancer Digital Repository (BCDR) [102]. Their CAD system consisted of three
primary stages: preprocessing (comprising cropping, augmentation, and normalization),
feature extraction (employing CNNs), and an SVM classifier, achieving an AUC of 83%.
Zhang et al. [103] utilized a deep learning model for breast tumor classification into be-
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nign and malignant categories, based on features extracted from shear-wave elastography
(SWE). Point-wise gated Boltzmann Machines (PGBM) and restricted Boltzmann Machines
(RBM) were employed as a two-layer DL architecture for feature extraction. RBM was
employed in an unsupervised pre-training phase to learn the input distribution’s proba-
bility, while PGBM combined feature selection and learning. The DL features extracted
were subsequently input into an SVM classifier, achieving an accuracy of 93.4% for BC
classification. Wang et al. [104] applied a DL model for benign/malignant BC classification
using the Breast Cancer Histopathological Database (BreaKHis) [105]. They explored four
magnification factors for histopathological images (40×, 100×, 200×, and 400×), utilizing
a CNN to emphasize semantics and a capsule network to extract spatial information and
other pertinent features. These convolutional and capsule features were subsequently
merged via feature fusion and input into a modified capsule network for classification. The
highest accuracy of 94.52% was attained using a 100× magnification factor. Ting et al. [106]
adopted a DL approach for BC classification, categorizing patients into three classes: benign,
malignant, and healthy, using mammographic images. They conducted feature-wise data
augmentation and preprocessing, followed by employing a CNN for classification.

In a study conducted by Araújo et al. [107], a system was developed for classifying
breast cancer histology using the Bioimaging 2015 breast histology classification challenge
dataset [108]. Feature extraction was accomplished using a CNN, and for classification,
an SVM was employed. To arrive at the final image classification, a patch-wise classifier
was initially utilized to process several image patches. Subsequently, the classification
results of all image patches were fused using three different methods: majority voting,
maximum probability, and the sum of probabilities. Their system was capable of performing
both multi-classification (categorizing normal tissue, benign lesions, in situ carcinoma,
and invasive carcinoma) and binary classification (distinguishing carcinoma from non-
carcinoma). The best results were obtained using majority voting, with a multi-classification
accuracy of 77.8% and a binary classification accuracy of 83.3%. Kooi et al. [109] applied a
deep learning approach to detect mammographic lesions, utilizing a local dataset collected
from a screening program in the Netherlands. Handcrafted features, such as lesion location,
contrast, context, texture, geometry, and patient age, were integrated with the CNN features
to enhance the system’s performance, increasing it from 92.9% (when using only CNN
features) to 94.1%.

Using the mini-MIAS [98] mammogram database, Tan et al. [110] employed abnormal
tissue cropping and augmentation as preprocessing steps for a CNN model to classify mam-
mogram images into three categories: normal, noncancerous abnormality, and cancerous
abnormality. They achieved an accuracy of 82.71%, sensitivity of 82.68%, and specificity
of 82.73%. In [111], Agnes et al. utilized a multiscale all CNN (MA-CNN) model to cat-
egorize mini-MIAS mammographic images into normal, malignant, and benign classes.
Image preprocessing involved the application of a median filter for noise removal and
global thresholding for artifact removal. Instead of employing a pooling operation, which
can result in information loss, they opted for a larger stride convolution operation to re-
duce dimensions. To extract multiscale features, multiple dilated convolution operations
were implemented, taking into account different receptive field sizes. Ultimately, they
concatenated all feature maps generated by various receptive field sizes, followed by a
convolution-stride before reaching the output layer. According to their experimental results,
the MA-CNN model outperformed other tested CNN models in classifying mammogram
images into normal, malignant, and benign categories.

Muduli et al. [112] employed a deep CNN methodology to automate the diagnosis
of breast cancer across various mammography datasets (namely MAIS [98], DDSM [99],
and INbreast [113]) as well as different ultrasound datasets (BUS-1 and BUS-2 [114]). Their
methodology encompassed three key phases: preprocessing, deep CNN training, and
classification. In the preprocessing phase, a manual cropping process was utilized to
extract the ROI, followed by data augmentation through rotation, flipping, and scaling. To
assess model stability and generality, they conducted five-fold cross-validation, repeated



Cancers 2023, 15, 5216 21 of 46

10 times on diverse datasets, resulting in competitive performance in both mammogram
and ultrasound images. In contrast, Haq et al. [115] harnessed a deep ensemble model
for the classification of mammographic images into normal and abnormal categories.
They applied unsharp masking to accentuate image edges and isolated the ROI using a
Canny edge detector. Their CNN architecture comprised four major blocks, with the first
three focused on feature extraction, while the final block consisted of a flattened layer,
followed by three distinct parallel classifiers: sigmoid, SVM, and RF. To derive the ultimate
prediction, a majority voting scheme was applied to the three classification responses.
Their ensemble approach incorporated depth-wise convolution, spatial dropout, and data
augmentation techniques.

In addition to the CNN models that were trained from scratch, transfer learning was
frequently applied in breast cancer (BC) classification. For instance, Huynh et al. [116]
employed transfer learning to classify mammographic images as benign or malignant.
They combined two methods for classification: the first utilized a pre-trained CNN
(AlexNet [117]) for feature extraction from the ROI and an SVM for classification. The
second method extracted analytical features from the segmented lesion, including lesion
size, shape, and margin characteristics such as speculation and sharpness. Subsequently,
an SVM was applied to these features. The final classification was determined by soft
voting, combining the outputs of the two SVM classifiers. Hu et al. [118] adopted a
multi-parametric approach involving DCE-MRI and T2w-MRI. DCE-MRI provided com-
plementary morphological and functional lesion information. They employed a pre-trained
VGG19 network for feature extraction and training. Their approach involved combining
data from DCE and T2w MRI sequences at three distinct stages: image fusion, feature
fusion, and classifier fusion. For image fusion, an RGB composite image was generated
from DCE and T2w images. For feature fusion, the features extracted from the VGG19
networks of each modality (DCE and T2w) were combined as input for the SVM classifier.
Finally, classifier fusion was performed through soft voting, combining the output of the
DCE and T2w SVM classifiers predicting malignancy probabilities. The feature fusion
method statistically outperformed the other two fusion methods. For breast mass classifi-
cation, Hassan et al. [119] employed two pre-trained CNN networks: AlexNet [117] and
GoogleNet [120]. Mammogram images were pre-processed using the maximally stable
extremal regions (MSER) [121] method. These CNN networks were trained and tested on
mammogram images from CBIS-DDSM [122] and INbreast [113] databases, and they were
also tested on the MIAS database [98] and real cases from the Egyptian National Cancer
Institute. Their results demonstrated that the AlexNet model outperformed the GoogleNet
model in BC classification.

Wang et al. [123] employed a modified Inception V3 network [124] to distinguish be-
tween malignant and benign lesions in ultrasound images captured from two perspectives:
coronal and transverse. They conducted four experiments, with two relying on a single
view and the remaining two utilizing multi-views. In all experiments, their adapted Incep-
tion V3 model was utilized for feature extraction. In the initial two experiments, features
were extracted exclusively from either the coronal or transverse view of the cropped lesion.
In the third experiment (referred to as CNN A), they concatenated the two views of the
same cropped lesion (transverse and coronal) and fed them into a modified Inception V3
model for classification. In the last experiment (referred to as CNN B), two Inception-v3
models were employed, one for each specific view. Features generated from these two
Inception models were subsequently concatenated into a final layer for classification. The
experiments were evaluated using data collected at the Jeonbuk National University Hos-
pital (JNUH), where CNN A achieved the highest performance. Meanwhile, to classify
benign and malignant mammogram structures, including benign masses, malignant masses,
benign calcifications, and malignant calcifications, Hekal et al. [125] applied optimal Otsu
thresholding [126] to segment suspected nodule regions. These segmented regions were
further processed using either AlexNet or ResNet-50, and an SVM was then employed
for the classification task. In a subsequent work, Hekal et al. [127] utilized an ensemble
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comprising four CNN models (ResNet-50, ResNet-101, AlexNet, and DenseNet-201) to
process suspected nodule regions segmented through automated thresholding, aiming to
classify benign and malignant mammogram structures.

A recent study by Moreau et al. [128] proposed an automatic segmentation system
to detect breast cancer metastatic lesions on longitudinal whole-body PET/CT. First, the
authors used a U-Net network to segment baseline images and follow-up images. Then,
four different biomarkers were extracted from these segmentations to evaluate how patients
respond to their treatment. The latter are SULpeak, total lesion glycolysis (TLG), PET bone
index (PBI) and PET liver index (PLI). Their results showed that SULPeak is the most
effective biomarker in evaluating patients’ response with a sensitivity and specificity equal
to 87%.

The discussed CNN-based detection and diagnostic techniques are listed in Table 10.
As seen in the table, various DL techniques such as augmentation, spatial drop-out, transfer
learning, fusion, ensemble learning, etc., were employed across various modalities and
databases including US, mammogram, elastography, histopathology, DEC-MRI, T2w-MRI,
and multi-parametric data. The outcomes of these techniques underscore the potential
of employing DL and CNN models to aid radiologists in breast cancer detection and
diagnosis. Table 11 summarizes the most frequently utilized modalities, features, and
AI/ML components in the breast cancer detection and diagnosis literature. This literature
demonstrates how these AI/ML components play a crucial role in providing objective
quantitative metrics for breast cancer identification and diagnosis, potentially enhancing
the quality of healthcare systems with regard to breast cancer.

Table 10. Summary of CNN-based BC detection/diagnostic methods.

Study Method Goal Database Evaluation

Arevalo et al.,
2015 [101]

• Cropping, augmen-
tation, normaliza-
tion

• CNN feature extrac-
tion

• SVM classification

Malignant/Benign BC
Mammogram Classifica-
tion

BCDR [102] (736 images
from 344 patients, 426 be-
nign, 310 malignant)

AUC = 0.86

Zhang et al.,
2016 [103]

Two-layer DL architecture
(PGBM+RBM)

Malignant/Benign BC
Classification

227 SWE images (135 be-
nign, 92 malignant)

• Acc = 93.4
• Sens = 88.6
• Spec = 97.1

Huynh et al.,
2016 [116]

Soft voting for two SVM
outputs; one uses transfer
learning Alexnet features
and the other uses hand-
crafted features

BC Mammogram Classifi-
cation

Data from University of
Chicago Medical Center
(607 images, 261 benign,
346 malignant)

AUC = 0.86

Araújo et al.,
2017 [107]

• Patch-wise classifica-
tion (CNN + SVM)

• Majority voting for
fusing the labels of
the patches

Malignant/Benign BC
Histopathology Classifi-
cation

Online dataset [108] (249
training images, 20 testing
images)

• Acc = 77.8 (4 classes)
• Acc = 83.3 (2 classes)

Kooi et al.,
2017 [109]

Integrating CNN features
with handcrafted features

Detection of solid, malig-
nant lesions from mam-
mogram

Local dataset of around
45,000 images Acc = 94.1

Tan et al.,
2017 [110] Preprocessing + CNN BC Mammogram Classifi-

cation

Mini-MIAS [98] (62 be-
nign, 51 malignant, 209
normal)

• Acc = 82.7
• Sens = 82.7
• Spec = 82.7
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Table 10. Cont.

Study Method Goal Database Evaluation

Agnes et al.,
2019 [111]

Preprocessing + MA-
CNN

BC Mammogram Classifi-
cation

Mini-MIAS [98] (62 be-
nign, 51 malignant, 209
normal)

• Sens = 96.0
• Spec = 96.0
• F1-M = 97.0
• AUC = 0.99

Ting et al.,
2019 [106]

• Feature-wise data
augmentation and
preprocessing

• CNN classification

BC Mammogram Classifi-
cation

MIAS [98] (21 benign, 27
malignant, 183 normal)

• Acc = 90.5
• Sens = 89.5
• Spec = 90.7

Hu et al.,
2020 [118]

• VGG19 was used
for feature extrac-
tion and SVM for
classification

• Three fusion levels
for DCE-MRI and
T2W data were in-
vestigated

BC Classification

Multiparametric data
(DCE-MRI and T2W) of
927 unique breast lesions
from 616 women (199
benign, 728 malignant)

• AUC = 0.85 (DCE)
• AUC = 0.78 (T2w)
• AUC = 0.85 (Image

fusion)
• AUC = 0.87 (Feature

fusion)
• AUC = 0.86 (Classier

fusion)

Hassan et al.,
2020 [119]

• Pre-processing
using MSER [101]

• Pre-trained AlexNet
and GoogleNet were
compared for fea-
ture extraction and
classification

BC Mammogram Classifi-
cation

Training data

• CBIS-DDSM [122]
• INbreast [113]

Test data

• MIAS [98]
• Real NCI cases

AlexNet

• Acc = 98.5 (MIAS)
• AUC = 0.99 (MIAS)
• Acc = 97.9 (NCI)
• AUC = 0.98 (NCI)

GoogleNet

• Acc = 88.2 (MIAS)
• AUC = 0.95 (MIAS)
• Acc = 91.6 (NCI)
• AUC = 0.96 (NCI)

Wang et al.,
2020 [123]

Pre-trained Inception-v3
models were applied for
feature extraction from
multi-view (transverse
/coronal) US images

BC Ultrasound Classifica-
tion

Private JNUH data (316
breast lesion, 181 benign,
135 malignant)

CNN A

• Sens = 88.6
• Spec = 87.6
• AUC = 0.95

CNN B

• Sens = 86.5
• Spec = 84.8
• AUC = 0.93

Wang et al.,
2021 [104]

• Fusion of CNN fea-
tures with capsule
network features

• Classification using
a modified capsule
network

Malignant/Benign BC
Histopathology Classifi-
cation

BreaKHis [105] (135 be-
nign, 92 malignant) Acc = 95.6

Muduli et al.,
2021 [112] Preprocessing + CNN BC Classification

Mammogram

• MAIS, 326 images
• DDSM, 1500 images
• INbreast, 410 images

Ultrasound

• BUS-1780 images
• BUS-2250 images

• Acc = 96.5 (MIAS)
• Acc = 90.7 (DDSM)
• Acc = 90.7 (INbreast)
• Acc = 90.7 (BUS-1)
• Acc = 90.7 (BUS-2)
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Table 10. Cont.

Study Method Goal Database Evaluation

Hekal et al.,
2021 [125]

Otsu segmentation
of suspected regions,
AlexNet/ResNet for
feature extraction, and
SVM for classification

Classification of benign
and malignant mammo-
gram structures

CBIS-DDSM [122] detest
of 3549 mammogram im-
ages (1852 benign, 1697
malignant)

• Acc = 91.0 (AlexNet)
• Acc = 84.0 (ResNet-

50)

Haq et al.,
2022 [115]

• Unsharp Image en-
hancement

• ROI extraction via
canny detector

• Ensemble of a CNN
with three parallel
classifiers with ma-
jority voting

BC Mammogram Classifi-
cation

• MIAS [98]
• BCDR [129]

MIAS

• Acc = 99.4
• Sens = 99.5
• Spec = 99.4

BCDR

• Acc = 98.5
• Sens = 98.8
• Spec = 98.4

Moreau et al.,
2022 [128]

• U-Net model
• Evaluate the trea-

ment response
using four different
biomarkers: stan-
dardized uptake
value peak(SULpeak),
total lesion glycoly-
sis (TLG), PET bone
index (PBI) and PET
liver index (PLI).

Automatic Segmentation
of Metastatic Breast
Cancer for Treatment
Response Assessment.

Images were acquired at
two sites (A-ICO, N-ICO).

SULpeak

• Sens = 87
• Spec = 87

TLG

• Sens = 73
• Spec = 81

PBI

• Sens = 69
• Spec = 69

Hekal et al.,
2023 [127]

Otsu segmentation of sus-
pected regions followed
by ensemble DL

Classification of benign
and malignant mammo-
gram structures

CBIS-DDSM [122] detest
of 3549 mammogram im-
ages (1852 benign, 1697
malignant)

• Acc = 94.0 (Benign
vs. Malignant)

• Acc = 95.0 (Benign
vs. Malignant Mass)

Table 11. The most frequent modalities, features, and AI/ML components used for breast cancer (BC)
detection and diagnosis.

Modalities/Database Features AL/ML Components

• Mammogram
• Ultrasound
• Elastography
• Histopathology
• MRI
• Multi-parametric data
• Cell characteristics
• Patient Record

• Statistical
• Morphological
• Appearance
• Texture
• Cell tissue features
• Health records
• Deep learning

• LR
• KNN
• NB
• SVM
• DT/RF
• ANN
• ANN
• AE
• CNN

7. Molecular Breast Cancer Subtypes and Imaging Techniques

Breast cancer is a diverse disease encompassing various molecular subtypes that can
profoundly impact prognosis. Recent advancements in non-invasive imaging techniques,
such as Molecular Breast Imaging (MBI), have emerged to predict these subtypes.

7.1. Molecular Breast Cancer Subtypes

Molecular classifications have opened the door to understanding that breast cancer
(BC) is not a uniform disease [130]. The breast molecular subtype proves to be a reliable
prognostic factor for survival as it correlates with tumor aggressiveness [131]. According to
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immunohistochemical markers such as the estrogen receptor (ER), progesterone receptor
(PR), human epidermal growth factor receptor 2 (HER2) status, and Ki-67 expression, four
distinct molecular subtypes of BC have been established, each characterized by unique
gene expression profiles. This classification also significantly impacts clinical outcomes and
the response to treatment [132]. These four subtypes are:

• Luminal A: positive ER and PR, negative Her2, and low proliferation index.
• Luminal B: positive ER, and either positive Her2 or high proliferation index.
• Her 2 enriched: negative ER and PR, and positive Her2.
• Triple-negative: negative ER, PR, and Her2.

Most invasive breast cancers are classified into luminal A and B groups, which are
associated with better survival rates. The HER2-enriched subtype, comprising 10% to 20%
of breast cancers, responds well to HER2-directed therapy [133]. However, HER2-enriched
cancers exhibit superior responses to chemotherapy but exhibit poorer overall and disease-
free survival outcomes [134]. Triple-negative breast cancer represents approximately 15%
to 20% of all invasive breast cancer cases [135]. Patients diagnosed with the triple-negative
subtype typically experience worse prognoses and a higher likelihood of recurrence [136].

7.2. Molecular Breast Imaging (MBI)

Molecular imaging techniques, such as PET-CT and PEM, provide quantitative biomark-
ers that convey valuable information about tumor receptor status, the extent of tumor
diversity, and the response to treatment [137]. MBI successfully addresses the limitations
of tissue-based biomarkers by enabling noninvasive evaluation of the entire body, either
singly or multiple times. Furthermore, MBI serves as a problem-solving tool for assessing
complex mammography or unexplained physical findings [138]. In this section, we will
provide an overview of various MBIs and their applications in breast cancer.

7.2.1. PET-CT

PET-CT, utilizing the radiotracer 18F-Fluorodeoxyglucose (18F-FDG), has proven to
be a dependable non-invasive imaging modality for distinguishing benign from malignant
lesions, offering substantial benefits in assessing tumor response [139]. FDG PET-CT can
effectively identify malignant breast masses, as tumor cells exhibit elevated glycolytic
activity and increased FDG uptake, which may also be influenced by the tumor grade [140].
PET-CT provides comprehensive metabolic and morphologic information, along with
quantitative data regarding tumor activity [141]. The most commonly used method for
quantifying FDG avidity is the standardized uptake value (SUV), available in various forms
depending on the ROI considered, such as maximum, mean, or peak SUV [142]. Both
SUVmax (maximum standardized uptake value) and metabolic tumor volume are more
reliable and reproducible quantitative parameters compared to measuring tumor size [143].
Although PET-CT exhibits lower sensitivity in diagnosing primary breast cancer when
compared to specialized breast imaging methods like mammography, ultrasound (US), and
breast MRI, it plays a pivotal role in systemic staging and the detection of tumor response
and recurrence [144] (Figure 5). The medical applications of PET-CT are further illustrated
as follows:

Diagnosis: The National Comprehensive Cancer Network (NCCN) guidelines do not
endorse the routine use of PET-CT for the initial diagnosis of breast cancer [139]. However,
PET-CT may offer advantages, particularly in the initial staging of patients at a substantial
risk of developing metastasis [145]. Progress in dedicated breast imaging techniques, such
as positron emission mammography (PEM), has enhanced the nuclear medicine assessment
of primary breast lesions [146].
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Figure 5. Hepatic and bony metastases: 61-year-old woman with grade II invasive ductal carcinoma
who underwent a right modified radical mastectomy. (A,B) axial post-contrast CT image and fused
FDG PET/CT image reveal FDG-avid hepatic metastatic deposit at segment IV b with a maximum
standardized uptake value (SUVmax) of 8.5. (C,D) coronal-fused FDG PET/CT and maximum
intensity projection (MIP) images reveal FDG-avid multiple bony metastatic deposits at ribs, proximal
humeri, lumbar vertebrae, iliac bones, and both femori with SUVmax of 9.8.

Prognosis: PET-CT offers distinct advantages over conventional imaging modali-
ties when it comes to delivering prognostic stratification. Unlike conventional methods
that solely assess the morphological features of the primary tumor [147], PET-CT has
gained approval for its ability to aid in risk classification for advanced stage breast cancer
(BC) [148,149]. Notably, FDG uptake demonstrates a significant correlation with tumor
grade, aggressiveness, and overall prognosis [150]. Recent research findings have revealed
a positive association between SUVmax values and various factors, including tumor size,
clinical stage, specific molecular subtypes (such as the triple-negative subtype), and the
Ki-67 index [151]. Specifically, the triple-negative subtype exhibits markedly higher FDG
uptake compared to luminal subtypes, while the luminal B subtype shows significantly
higher FDG uptake than the luminal A subtype [152]. High initial pretreatment SUVmax
values are predictive of poorer outcomes in specific BC types, notably the luminal type and
invasive ductal carcinoma (IDC) [153]. Furthermore, a higher SUVmax may indicate an
elevated risk of recurrence, particularly among patients with hormone receptor-positive
breast cancer [154]. However, it is worth noting that pretreatment SUVmax may have
limited utility for tumors with lower FDG avidity, such as lobular carcinoma [155].

Nodal metastases: The most crucial prognostic indicator influencing the treatment
strategy for breast cancer (BC) is the presence of lymph node (LN) metastases, as highlighted
in a study by Mohammed et al. [156]. Historically, surgery served as the gold standard
for obtaining LN staging information. However, the landscape has evolved with the
increased utilization of neoadjuvant systemic therapy and a preference for less extensive
surgical interventions whenever feasible. Consequently, the role of radiologic staging has
gained prominence in recent years, as emphasized by Chung et al. [157]. It is important to
note that locoregional nodal metastases encompass both axillary lymph nodes (ALN) and
extra-axillary LNs, as elucidated by Ulaner et al. [141].

i. Axillary nodal metastasis: When staging axillary lymph nodes (ALNs), sentinel node
biopsy (SNB) remains the gold standard [158]. It is defined as the initial site to receive
breast lymphatic drainage and represents the primary location for ALN infiltra-
tion [159,160]. This sentinel node can be identified using various methods, including
blue dye, radioisotopes, ICG (indocyanine green), or their combination, and subse-
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quently retrieved intraoperatively for histopathological examination to determine
the necessity for ALN dissection [160]. In contrast to SNB, FDG PET-CT exhibits
reduced sensitivity in detecting axillary lymph node (ALN) metastases [161,162]. Nev-
ertheless, FDG PET-CT has shown comparable performance to other non-invasive
imaging modalities such as ultrasound (US) and MRI for ALN detection [149]. In
a previous study, PET-CT demonstrated notably higher accuracy than ultrasound
(US) [163]. It is worth noting that PET-CT has better specificity than sensitivity for
detecting ALN metastasis, particularly in early-stage cases [164]. SUVmax may serve
as a potential prognostic factor for axillary lymph node (ALN) metastases, especially
in specific breast cancer subtypes like HER2-positive and ER-positive/HER2-negative
tumors [130].

ii. Extra-axillary nodal metastasis: Regional extra-axillary lymph nodes, which encompass
the internal mammary, infraclavicular, and supraclavicular lymph nodes, are less
frequently identified through sentinel node assessment [141]. FDG PET-CT offers
superior accuracy in staging by detecting extraaxillary nodal metastases, particu-
larly excelling over ultrasound in the detection of internal mammary nodal involve-
ment [165,166]. The discovery of unexpected metastatic lymph nodes beyond the
axillary region during the initial staging using FDG PET-CT has a profound impact
on patient prognosis and can potentially influence decisions regarding the extent of
surgical or radiotherapeutic interventions [167].

Distant metastases: The conventional imaging modalities for detecting distant metas-
tasis in BC include anatomic imaging with contrast-enhanced CT, bone scintigraphy, and
MRI. More recently, functional imaging with FDG-PET/CT has been performed [147].
FDG-PET/CT is recommended for initial staging in patients with clinical stage ≥ IIB
BC [168]. The most common sites of distant metastasis in BC are bones, lungs, liver, and
brain [169].The functional advantage of PET-CT permits detection of early metastasis in
the bone, the most common site of metastasis, which may stay undetected with bone
scintigraphy [170]. PET/CT is furthermore efficient in detecting extra-skeletal metastases,
comprising, pleural, hepatic, splenic, and pelvic metastases [145,149,171]. A recent com-
prehensive literature review confirmed that PET/CT is very efficient in identifying occult
distant metastases (except for brain), with superior performances compared to those of
conventional imaging [171]. In a recent prospective study of 103 BC patients, 24 (23%)
were diagnosed with distant metastases by FDG-PET/CT. Owing to these findings, breast
surgery was cancelled in 18 while the other 16 patients were upstaged, leading to more
extensive radiotherapy. So, they concluded that FDG-PET/CT should be considered for
primary staging in high-risk BC to improve management planning [172].

The new development of PET tracers that act as fibroblast-activation-protein inhibitors
(FAPIs) exhibited promising results, FAP is overexpressed by tumour-associated fibroblasts
of various tumors [173]. A recent prospective comparative study of 34 newly diagnosed
BC patients concluded that the 68Ga-FAPI SUVmax was positively correlated with the
pathological grade and the final stage of the patients. Also, 68Ga-FAPI PET/CT revealed
higher accuracy than 18F-FDG in the evaluation of N stage, which may improve the
treatment strategy [174]. A few recent case reports and small pilot studies highlighted the
role of 68Ga-FAPI PET/CT in detection metastases in BC, which need to be confirmed by
further larger studies [175,176].

7.2.2. Positron Emission Mammography (PEM)

Positron emission mammography (PEM) is a recent breast-specific technology that
offers high-resolution detection of 18-FFDG uptake, producing images equivalent to those
utilized in mammography. This capability allows for convenient image comparison [177].
PEM holds a significant advantage over PET-CT due to its superior spatial resolution,
particularly for detecting small and low-grade lesions, boasting an overall sensitivity of
91% and specificity of 93% [178]. PEM excels in detecting tumors as small as 2 mm, whereas
whole-body PET-CT struggles with breast cancers smaller than 10 mm [146]. Typically,
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PEM is primarily employed for staging and preoperative planning, especially when MRI is
contraindicated [179]. Furthermore, PEM plays a vital role in enhancing the management
of women with mammographically suspicious microcalcifications, as it can detect invasive
carcinomas and high-grade ductal carcinoma in situ (DCIS), thereby preventing unneces-
sary biopsies in benign cases [180]. Additionally, PEM finds use in distinguishing recurrent
tumors from scars and evaluating responses to neoadjuvant chemotherapy [181].

8. Breast Cancer Imaging Biomarkers

In the current advanced era of precision medicine, there is an augmented need to
integrate breast imaging with correlated biomedical disciplines to create comprehensive
databases encompassing clinical, laboratory, and imaging biomarkers, ultimately improv-
ing breast cancer management [182]. For many years, breast cancer treatment has relied on
tissue-based biomarkers, which involve assessing the expression levels of ER, PR, HER2,
and Ki-67 [183]. However, tissue-based biomarkers have limitations in detecting the di-
verse characteristics of breast cancer within both the primary tumor and its metastatic
sites. Furthermore, assessing the evolving features of metastatic breast cancer over time
using these biomarkers is complex, necessitating successive biopsies [184]. Recognizing
the critical diagnostic and predictive roles of imaging, biomarkers are now considered
measurable indicators of biological processes obtainable from either tissue or imaging [137].
Imaging-based biomarkers encompass diagnostic, prognostic, predictive, and pharmacody-
namic categories, making it crucial to distinguish among these types when discussing their
clinical significance [185].

Diagnostic biomarkers are employed for disease verification and the detection of its
specific subtype, while pharmacodynamics biomarkers evaluate the impact of systemic ther-
apy or intervention. This outcome may not necessarily correlate with a positive result [186].
Conversely, predictive biomarkers aid in selecting optimal therapies for patient care by
identifying individuals more likely to respond favorably or unfavorably to specific treat-
ments compared to those without the biomarker [182,187]. Prognostic markers indicate
disease progression or recurrence and can assess the inherent prognosis of the disease, but
they do not provide guidance for treatment decisions [188]. Table 12 enumerates examples
of imaging-based breast biomarkers.

Table 12. Imaging-based breast biomarkers. ER: estrogen receptor PR: progesterone receptor, HER2:
human epidermal growth factor receptor 2.

Type of Biomarker Examples

Diagnostic ER, PR, HER2 and BI-RADS descriptors

Pharmacodynamic Standardized uptake value (SUV) at 18-FDG PET-CT and
68Ga-FAPI SUVmax

Predictive ER, PR, BRCA gene, increased mammographic breast den-
sity

Prognostic Tumor stage, grade, tumor receptor status, and SUV at 18-
FDG PET-CT

Certain biomarkers can fall into multiple categories depending on the clinical question.
For example, the maximum standardized uptake value (SUVmax) derived from 18F-FDG
PET-CT scans can serve as predictive or pharmacodynamic biomarkers [189,190]. Addition-
ally, ER, PR, and HER2 may provide diagnostic, predictive, or prognostic biomarkers [182].

9. Management of Breast Cancer

Breast cancer management is a multifaceted endeavor, relying on five primary treat-
ment modalities: surgery, radiotherapy, chemotherapy, hormonal therapy, and targeted
therapy [191]. The customization of each patient’s treatment plan hinges primarily on
the disease stage and the molecular profile [192]. In this era of personalized medicine,
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intricate patient-specific details play a pivotal role. These encompass decisions regarding
which treatment line is most suitable, the timing of interventions, and the sequence of these
therapeutic approaches. The administration of these treatment modalities within special-
ized, high-volume breast cancer centers, guided by multidisciplinary team assessments, is
no longer an extravagance but a determinant of patients’ oncological outcomes and their
overall quality of life [192]. Surgery encompasses both breast and axillary procedures.
Within breast surgery, there are two primary categories: breast-conserving surgery and
mastectomy, the latter of which may or may not involve reconstruction. Breast-conserving
surgery represents the gold standard for early-stage breast cancer [193]. Mastectomy, on
the other hand, remains a vital alternative for those ineligible for breast conservation, such
as the patients with locally advanced tumors at the time of surgery, patients unsuitable for
breast irradiation, individuals with multicentric tumors that cannot be sufficiently removed
through oncological resection, and those who opt against breast conservation [192–196].
For patients undergoing mastectomy, breast reconstruction surgeries, whether involving
synthetic or autologous implants, offer crucial options [197–199]. Axillary surgery encom-
passes procedures such as axillary lymph node dissection (ALND) and sentinel lymph
node biopsy (SNB). SNB has become the standard approach for node-negative breast cancer
and selected cases of node-positive breast cancer. However, axillary dissection remains nec-
essary for patients with multiple metastatic axillary lymph nodes at the time of surgery, as
well as for individuals who are not suitable candidates or have experienced failed sentinel
lymph node localization [160,200–203].

The other local treatment modality is radiotherapy, which is indicated following
breast-conserving surgery or in patients who have undergone mastectomy with a large
tumor size or heavy axillary disease. Radiotherapy can be administered in two main forms:
conventional external beam radiation or partial breast irradiation. The latter includes
localized conformal external beam radiation therapy, brachytherapy, and intraoperative
single-fraction (IORT) treatment [192,204–206]. Systemic treatment encompasses three
additional approaches: chemotherapy, hormonal therapy, and targeted therapy, which can
be administered either in the adjuvant or neoadjuvant context. Neoadjuvant therapy is rec-
ommended for patients with locally advanced cancer or early-stage breast cancer, with the
aim of enabling breast preservation or reducing lymph node involvement to make sentinel
lymph node biopsy (SNB) an option instead of axillary lymph node dissection (ALND).
Notably, it has become the standard practice for aggressive breast cancer subtypes such as
triple negative and HER2-enriched, even in the early stages of the disease [192,200,207–209].
Chemotherapy is indicated in the adjuvant setting for patients with malignant lymph nodes,
invasive tumors larger than 0.5 cm (except for luminal A type), and in luminal A breast
cancer if the Oncotype DX score is greater than 31. It should be administered within 6 weeks
of the operation, typically involving a combination of Anthracycline-based and Taxane-
based chemotherapy for 6–8 cycles [200,210,211]. Hormonal treatment is recommended
for luminal breast cancer, using anti-estrogens, aromatase enzyme inhibitors, and ovarian
suppression or ablation [200,212]. Targeted therapy (anti-HER2 therapy) is employed for
patients with HER2 overexpression (HER2-enriched or luminal B-HER2+ type), improving
response rates and patient survival when combined with taxane chemotherapy [133,134].

10. Assessment of Treatment Response

BC employed a range of treatment strategies tailored to variable prognostic factors,
which encompassed factors such as tumor stage, nodal metastases, and molecular subtype.
Precise evaluation post-treatment was imperative for both locally advanced and metastatic
BC cases.

10.1. Assessment of Neoadjuvant Therapy Response

Neoadjuvant chemotherapy (NAC) is no longer limited to treating locally advanced
BC; more recently, it has been employed to downstage the disease, facilitating conservative
surgery or avoiding axillary nodal dissection [158]. The response to NAC is frequently
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evaluated using breast MRI and, to a lesser extent, ultrasound (US), mammography, and
clinical examination, to distinguish between responders and non-responders [213,214].
MRI surpasses ultrasound (US) in accurately determining tumor size before surgery fol-
lowing NAC [215]. Monitoring axillary lymph nodes (ALN) and tumor size using both US
and MRI is valuable for predicting axillary response to NAC, with the highest diagnostic
performance achieved by US during NAC [216]. Additionally, a different study demon-
strated that ultrasound (US) evaluation of ALN following NAC showed the strongest
independent association with the presence of residual axillary metastasis during surgical
procedures [217].

Higher baseline FDG activity and a greater decrease in SUVmax after the early cycles
of NAC may indicate improved histopathological status following NAC [218]. Previous
studies have consistently shown a strong association between early changes in SUVmax
and NAC response, as assessed through pathological examination [219,220]. More recent
studies have proposed principles for predicting NAC response in various tumor subtypes
based on FDG activity measures [135,174]. A meta-analysis study has demonstrated that
PET/CT has moderate accuracy in predicting pathological response during the early cycles
of NAC in breast cancer patients, and it suggests further prospective studies to better
understand PET/CT’s role in evaluating NAC response [221]. However, no imaging
modality has shown the ability to differentiate partial response from complete response,
as low-volume residual disease may persist despite no evidence on imaging [214,222].
Radiological complete response by MRI cannot accurately predict pathological complete
response (pCR) after NAC, making pathologic assessment of the breast tumor and axillary
lymph nodes necessary [223,224]. A recent study found that the effectiveness of MRI in
predicting complete pathological response varied among molecular subtypes, with the
HR/HER2+ subtype having the highest rate of false-negative results [225]. However, MRI-
detected residual lesions can consistently indicate non-pCR in the luminal subtype [226].
To achieve accurate predictions of pCR, the study recommends combining PET/CT and
MRI [227].

10.2. Assessment of Response in Metastatic Breast Cancer

The standard for assessing treatment response in metastatic breast cancer relies on
tumor size measurements, typically via CT scans [228]. Molecular breast imaging (MBI)
outperforms anatomic changes in detecting tumor response, as it can gauge metabolic alter-
ations, especially in the presence of therapy or surgery-induced anatomical changes [147].
There are fewer published studies evaluating treatment response in metastatic breast cancer
compared to those investigating responses to NAC. This disparity arises because while
pathologic examination is typically available as a reference standard after NAC, it is rarely
accessible following treatment for metastases [141]. Previous research has demonstrated
that PET-CT serves as a clinically significant biomarker capable of distinguishing response
from non-response in metastatic breast cancer [229]. PET-CT surpasses CT in its ability
to detect treatment responses in bony metastases because changes in bone density visible
on CT scans after treatment may indicate bone healing rather than the emergence of new
metastases. Consequently, the utilization of PET-CT helps prevent inaccurate evaluations of
treatment response solely relying on CT scans [230,231]. Few studies have compared the di-
agnostic performance of both CT and PET-CT in assessing treatment response in metastatic
breast cancer, revealing that PET-CT was a superior predictor of both disease-specific and
progression-free survival compared to CT [232]. Monitoring treatment response with PET-
CT in metastatic breast cancer has the potential to enhance patient management, although
further research is required.

10.3. The Role of AI in the Assessment of Treatment Response

The utilization of AI/ML approaches for predicting early responses to neoadjuvant
chemotherapy (NAC) holds the promise of improving precision in anticipating the prob-
ability of achieving a pCR before the commencement of treatment. Machine learning
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methodologies are particularly adept at constructing models that integrate clinical and
imaging data, given their ability to effectively handle and develop models from vast and
intricate datasets. Researchers have initiated investigations into the use of AI/ML methods
employing imaging data to assess the responses of breast cancer (BC) patients to NAC
treatment. For example, Mani et al. [233] introduced an approach to assess BC response to
NAC, classifying it into two categories: pCR and non-responders. A pCR is characterized
by the complete elimination of all invasive cancer within the breast following the conclu-
sion of NAC [234], while non-responders are defined as cases where no change occurs
in the lesion after NAC. They utilized quantitative MRI techniques such as DCE-MRI
and DWI-MRI, rather than conventional MRI, to generate thirteen imaging features in
conjunction with standard clinical information. Several ML algorithms were employed,
including three linear classifiers (Gaussian Naïve Bayes (GNB), LR, and Bayesian logistic
regression (BLR)), and two decision tree-based classifiers (CART and RF). Additionally,
Gram-Schmidt orthogonalization with a selection of ten features (GS-10) was used as a
feature selection method. Using a cohort of 20 patients collected at Vanderbilt University
Medical Center, Nashville, TN, USA, the study reported that the combination of imaging
(DCE-MRI and DWI-MRI) and clinical factors significantly improved the performance of
BLR, resulting in an accuracy of 0.9 and an AUC of 0.96, even without the use of feature
selection (GS-10).

Tahmassebi et al. [235] employed an approach to assess the response of breast cancer
(BC) to NAC by categorizing it into four residual cancer burden (RCB) classes: RCB 0,
indicating the absence of any invasive cancer in the breast after NAC completion; RCB 1,
representing a small amount of residual disease; RCB 2, indicating a moderate residual
disease burden; and RCB 3, signifying no change in the lesion following NAC. Furthermore,
they aimed to predict survival outcomes, specifically disease-specific survival (DSS) and
recurrence-free survival (RFS), in BC patients. They utilized both qualitative and quan-
titative features extracted from multiparametric MRI, encompassing T2-weighted MRI,
dynamic contrast-enhanced MRI (DCE-MRI), and diffusion-weighted MRI (DWI-MRI), to
forecast the response of breast cancer to NAC. Eight different classifiers were employed, in-
cluding linear discriminant analysis (LDA), SVM, LR, RF, stochastic gradient descent (SGD),
DT, AdaBoost, and XGBoost. Ultimately, in a cohort of 38 patients, they demonstrated
that the XGBoost classifier outperformed all other classifiers, achieving an AUC of 0.94 for
predicting pCR and an AUC of 0.92 for predicting DSS. However, the LR classifier slightly
outperformed XGBoost in RFS prediction, with an AUC of 0.86. Bhardwaj et al. [236]
employed a framework to assess the response of breast cancer, utilizing a dataset consisting
of 222 subjects from the breast imaging research project [237]. They utilized three ensem-
ble models, namely LR, AdaBoost, and Adabag, for prediction and employed stacking
instead of majority voting to produce the final prediction. For performance evaluation, they
calculated the weighted simple additive weighting (WSAW) score using ten evaluation
criteria: true positive rate (TPR), false positive rate (FPR), precision, recall, F-Measure,
Matthews correlation coefficient (MCC), accuracy, mean absolute error, root mean square
error, and AUC. Using this dataset, their framework outperformed other classification
models, including Bayes Net, RF, Adaboost, Adabag, and NB, with an accuracy of 99.1%.

Aghaei et al. [238] introduced two methodologies for the early prediction of tumor
response to NAC, classifying it into two categories: complete response and partial response
with no response. They extracted 39 kinetic image features organized into five groups
from both the tumor and background parenchymal enhancement regions, encompassing
the tumor area, enhanced area, necrotic area, and background parenchymal area. In the
first methodology, they evaluated the discriminative potential of each image feature using
ROC curves and identified non-redundant features by analyzing correlation coefficients.
Subsequently, they devised a novel categorization score through a straightforward fusion
procedure, serving as a predictor for the tumor’s response to NAC. The second methodology
selected 11 characteristics and employed an ANN as a classifier, using a wrapper subset
evaluator (WSE). Evaluation was conducted using data from 68 breast cancer patients,
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employing a leave-one-case-out approach, where the ANN method outperformed the
simple fusion method with an impressive AUC of 0.96. Sutton et al. [239] adopted an
approach for predicting tumor response to NAC, categorizing it into two classes: pCR and
no-response (no-pCR). They amalgamated radiomics features derived from T1-weighted
fat-saturated pre-contrast and three post-contrast MRI sequences with molecular subtypes
(Luminal A, Luminal B, HER2+, and Triple-negative). They subsequently performed feature
selection using maximum relevance minimum redundancy (MRMR) and generalized linear
regression with elastic net (GLMNet). Finally, they employed recursive feature elimination
with RF (RFE-RF) as a classifier, evaluating it using data from 273 patients. The combination
of radiomics features with molecular subtypes notably improved prediction performance,
elevating the AUC from 0.72 to 0.80. Vicent et al. [240] harnessed six machine learning
algorithms (KNN, DT, RF, AdaBoost, GBoost, GNB, LDA, LR, and MLP) to predict tumor
response to NAC, classifying it into two categories: pCR and no-pCR. They assessed
their algorithms using data from 58 patients collected at Castellón provincial hospital,
Spain. Their study demonstrated that integrating radiomics features and imaging features
extracted from DWI-MRI and DCE-MRI, such as gray-level size-zone matrix, GLCM, and
gray-level run length matrix, along with clinical data such as molecular subtype and
clinical tumor stage, significantly enhanced performance compared to using clinical or
imaging features alone, achieving an accuracy of 91.5%. Collectively, the literature studies
presented [233,235,236,238–240] underscore the potential for improving the pre-treatment
prediction of tumor response to NAC through the application of AI/ML techniques.

11. Conclusions

Artificial intelligence (AI) has seamlessly integrated itself into the medical field, with a
significant impact on diagnostic imaging, where continuous developments in AI technology
have led to its widespread adoption across various medical applications. In the realm of
breast cancer (BC), deep learning techniques have found extensive application, facilitating
automated diagnosis, segmentation, data analysis, and outcome predictions. Recent studies
have showcased encouraging outcomes by harnessing deep learning algorithms for BC
diagnosis and precise feature segmentation, thereby underscoring AI’s potential to enhance
the accuracy and efficiency of BC diagnosis and analysis. To encapsulate the key findings
of this survey:

• Structured BI-RADS reports provide assessment categories that encompass breast
density, a description of detected findings, and recommendations for managing the
identified abnormalities [8].

• Digital Mammography (DM) is the ideal method for screening and early detection of
BC, but it has low sensitivity in dense breasts [28].

• Updated mammographic modalities such as digital breast tomosynthesis (DBT) and
contrast-enhanced mammography (CEM) are proposed to overcome this shortage [32,33].

• Breast US lexicon has been updated to reflect advanced techniques such as elastog-
raphy. Also, the “special cases” category has been extended in the BI-RADS 5th
edition [7].

• Currently, MRI is the key technique for imaging breast cancer with the highest sensi-
tivity (88–100%) among breast imaging modalities [49].

• Molecular classifications opened the door to understanding that BC is not a uniform
disease. The molecular subtype affects the clinical outcomes and the response to
treatment [130].

• MBI offers quantitative biomarkers, which indicate tumor receptor status, tumor
aggressiveness, and treatment response [137].

• PET-CT has a critical role in systemic staging and the detection of tumor response and
recurrence of BC, but PET-CT has low sensitivity to diagnose primary BC compared
to other dedicated breast imaging [144].
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• PEM has a great advantage over PET-CT owing to its higher spatial resolution, par-
ticularly for small and low-grade lesions, with overall 91% sensitivity and 93% speci-
ficity [178].

• Radiologists must be familiar with variable BC imaging biomarkers [185].
• Breast cancer management is multimodal depending mainly on the disease stage and

the molecular profile [191].
• Response to NAC is frequently assessed by breast MRI and, to a minor extent, US to

discriminate NAC response from nonresponse. MRI is superior to US in preoperative
tumor size assessment after NAC [213].

• The evaluation of treatment response in metastatic breast cancer commonly relies on
measuring tumor size, typically using CT scans [228].

• Utilizing ML classifiers using different extracted features (e.g., statistical [241–243], ap-
pearance [241–249], morphological [241–243,246–250], texture [241–246,250–255], etc.),
various investigated methods were applied to various modalities/databases (e.g.,
ultrasound, elastography, cell tissue characteristics, patient records, cytology images,
etc.). The outcomes of these ML-based techniques highlight the potential of utilizing
ML classifiers for BC detection and diagnosis [76,81,92].

• On various modalities/databases (e.g., US, mammography, elastography, histopathol-
ogy, DEC-MRI, T2w-MRI, multi-parametric data, etc.), various DL technologies (e.g.,
augmentation, spatial drop-out, transfer learning, fusion, ensemble learning, etc.) were
utilized. The results of these DL methods demonstrate the possibility of using CNN
and DL models to assist radiologists in BC identification and/or diagnosis [100,118].

• The fusion of the extracted AI features from multiparametric modalities can improve
the performance of BC classification [118].

• ML/AI components are able to provide quantifiable, objective measures for BC de-
tection and diagnosis and can help with pre-treatment tumor response prediction to
NAC. Therefore, their findings have the potential to enhance the effectiveness of the
healthcare systems for BC [233,235,236,238–240].

The future holds advances in technology, which can be outlined as follows:

• There is a need for an updated BI-RADS lexicon for the proper application of evolving
imaging modalities, such as contrast-enhanced mammography and molecular breast
imaging (MBI).

• Further investigations into the role of DTI in BC diagnosis are required.
• Monitoring treatment response with PET-CT in metastatic BC may improve metastatic

patient management, however further investigation is needed.
• The recent advances in AI/ML (i.e., DL techniques, transfer learning, ensemble learn-

ing, etc.) have the potential to effectively improve healthcare outcomes for BC detec-
tion, diagnosis, classification, and treatment prediction [118,119,123].

• Further investigation for utilizing AI/ML CAD systems based on alternative nonion-
ized modalities (other than the ionized mammograms) should be explored to reach
acceptable clinical performance [86].

• Constructing large standard online databases for the purpose of evaluating devel-
oped AI-based systems for BC detection, diagnosis, classification, and/or treatment
prediction can help to evolve the evolution of AI in this field.

Overall, this survey overviews updated information about the BC molecular subtypes,
advanced imaging techniques, tumor response assessment, and variable treatment strate-
gies that improves the radiologists’ role in the tailored care of BC patients. BI-RADS is
expected to continue to develop for application in a variety of evolving imaging modali-
ties. Details regarding BC molecular subtypes, biomarkers, molecular imaging, and the
promising role of AI are shown in this review to provide a source of updated knowledge
and further research.
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AI Artificial Intelligence
ACR American College of Radiology
AdaBoost Adaptive Boosting
ADC Apparent diffusion coefficient
AE Autoencoder
ALN Axillary lymph node
ANN Artificial neural networks
AR Association rules
AUC Area under the ROC curve
BI-RADS Breast Imaging Reporting and Data System
BC Breast cancer
BCDR Breast cancer digital repository
BLR Bayesian logistic regression
BreaKHis Breast cancer histopathological database
CAE Contractive autoencoder
CAD Computer aided diagnosis
CART Classification and Regression Trees
CEM Contrast-enhanced mammography
CEUS Contrast-enhanced ultrasound
CNN Convolutional neural network
DAE Denoising autoencoder
DCE-MRI Dynamic contrast-enhanced magnetic resonance imaging
DDSM Digital database for screening mammography
DL Deep learning
DT Decision Tree
DTI-MRI Diffusion tensor magnetic resonance imaging
DSS Disease-specific survival
DW-MRI Diffusion weighted magnetic resonance imaging
EANN Evolutionary artificial neural network
EP Evolutionary programming
ER Estrogen receptor
FA Fractional anisotropy
FN False negative
FP False positive
GA Genetic algorithm
GAC Geometric active contour
GBoost Gradient Boosting
GLCM Gray level co-occurrence matrix
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GLMNet Generalized linear regression with elastic net
GNB Gaussian Naïve Bayes
GWO Grey wolf optimization
HER Electronic health record
HER2 Human epidermal growth factor receptor 2
HOMA homeostatic model assessment
ID3 Iterative Dichotomiser 3
JNUH Jeonbuk national university hospital
KNN K-Nearest Neighbor
MA-CNN Multiscale all CNN
MBI Molecular breast imaging
LDA Linear discriminant analysis
LR Logistic Regression
MCP-1 Monocyte chemoattractant protein-1
MIAS Mammographic image analysis society database
ML Machine learning
MLP Multi-layer perceptron
MRI Magnetic Resonance Imaging
MRMR Maximum relevance minimum redundancy
MSER Maximally stable extremal regions
NAC Neoadjuvant chemotherapy
NCI National Cancer Institute
NB Naïve Bayes
PDE Pareto-differential evolution algorithm
PEM Positron emission mammography.
RF Random forest
RFE-RF Recursive feature elimination random forest
RFS Recurrence-free survival
pCR Pathological complete response
PGBM Point-wise gated Boltzmann machine
PR Progesterone receptor
QDA Quadratic Discriminant Analysis
ACR American College of Radiology
RBM Restricted Boltzmann machine
RCB Residual cancer burden
ROC Receiver operating characteristic
ROI Region of interest
SAE Sparse autoencoder
SGD Stochastic gradient descent
SOM Self organization map
SSAE Stacked sparse autoencoder
SWE Shear-wave elastography
TN True negative
TP True positive
UCI University of California Irvine
US Ultrasonography
VAE Variational autoencoder
WBCD Wisconsin breast cancer database
WBCO Wisconsin breast cancer original database
WSAW Weighted simple additive weighting
WSE Wrapper subset evaluator
XGBoost Extreme gradient boosting
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