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Simple Summary: Magnetic resonance imaging (MRI) has several advantages over computerized
tomography (CT) in the treatment planning of central nervous system (CNS) malignancies. The
adoption of hybrid MRI and linear accelerators (MRLs) has allowed for more effective tumor control
and reduced unnecessary neurotoxicity through precise daily adaptations. In this review, we provide
a summary of the evidence for MRLs in the management of various CNS tumors. Additionally,
we discuss the potential of multiparametric MRI and genomically guided radiotherapy to enhance
patient outcomes.

Abstract: Magnetic resonance imaging (MRI) provides excellent visualization of central nervous
system (CNS) tumors due to its superior soft tissue contrast. Magnetic resonance-guided radiotherapy
(MRgRT) has historically been limited to use in the initial treatment planning stage due to cost and
feasibility. MRI-guided linear accelerators (MRLs) allow clinicians to visualize tumors and organs
at risk (OARs) directly before and during treatment, a process known as online MRgRT. This novel
system permits adaptive treatment planning based on anatomical changes to ensure accurate dose
delivery to the tumor while minimizing unnecessary toxicity to healthy tissue. These advancements
are critical to treatment adaptation in the brain and spinal cord, where both preliminary MRI and daily
CT guidance have typically had limited benefit. In this narrative review, we investigate the application
of online MRgRT in the treatment of various CNS malignancies and any relevant ongoing clinical
trials. Imaging of glioblastoma patients has shown significant changes in the gross tumor volume
over a standard course of chemoradiotherapy. The use of adaptive online MRgRT in these patients
demonstrated reduced target volumes with cavity shrinkage and a resulting reduction in radiation
dose to uninvolved tissue. Dosimetric feasibility studies have shown MRL-guided stereotactic
radiotherapy (SRT) for intracranial and spine tumors to have potential dosimetric advantages and
reduced morbidity compared with conventional linear accelerators. Similarly, dosimetric feasibility
studies have shown promise in hippocampal avoidance whole brain radiotherapy (HA-WBRT). Next,
we explore the potential of MRL-based multiparametric MRI (mpMRI) and genomically informed
radiotherapy to treat CNS disease with cutting-edge precision. Lastly, we explore the challenges of
treating CNS malignancies and special limitations MRL systems face.

Keywords: radiation therapy; RT; ultra-hypofractionated radiation therapy; ablative radiation
therapy; adaptive radiation therapy; image-guided radiotherapy; magnetic resonance imaging; MRI;
MR-guided radiation therapy; MRgRT; stereotactic body radiotherapy; SRS; stereotactic radiosurgery;
SRT; stereotactic radiation therapy; plan optimization; tumor motion management; multiparametric
MRI; mpMRI
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1. Introduction

Central nervous system (CNS) tumors pose unique and significant challenges for
oncologists. As the understanding of CNS tumors continues to improve, innovative ap-
proaches and advancements in radiotherapy techniques are needed to take advantage of
these insights to improve patient outcomes. The integration of magnetic resonance imaging
(MRI) with linear accelerators (MRLs) has allowed for adaptive magnetic resonance-guided
radiotherapy (MRgRT), which has emerged as a promising modality for increased person-
alization in radiation therapy for treating CNS tumors.

MRI plays a central role in both the diagnosis and evaluation of CNS tumors due to its
excellent soft tissue imaging and ability to visualize the boundaries between the tumor and
normal tissues [1,2]. High-resolution anatomical and parametric imaging techniques have
significantly improved the accuracy of target delineation [3,4]. Thus, the integration of MRI
into treatment planning has become more prevalent, leading to better disease control and
fewer toxicities [5,6].

The advent of MRLs marked a revolutionary step in the field of MRgRT for CNS
tumors [6,7]. In addition to their soft tissue imaging advantages, MRLs also enable adapta-
tion of treatment plans based on daily intrafraction anatomical changes. These advantages
work together to effectively expand the therapeutic window for CNS RT by improving dose
delivery to the tumor and minimizing the exposure of surrounding healthy tissue [8,9]. The
two commercially available MRLs are the ViewRay MRIdian (ViewRay Technologies Inc.,
Oakwood Village, Ohio) and Elekta Unity (Elekta AB, Stockholm, Sweden) systems [10].
These systems make up the majority of clinical MRL implementations and have been used
with great efficacy to treat tumors across the body [10,11]. The MRIdian system integrates
a 0.35 T field strength split-bore magnet MRI with a 6 MV flattening filter-free (FFF) linear
accelerator [12], while the Elekta Unity combines a 1.5 T MRI with a 7 MV FFF linear
accelerator [13]. As an example of the imaging capabilities of the low-field MRIdian unit,
Figure 1 demonstrates a T2 fluid-attenuated inversion recovery (FLAIR) sequence and a
true fast imaging with steady-state free precession (TRUFI) sequence [14] of a healthy brain.
The Unity system’s conventional strength MRI generates images of similar quality to a
1.5 T diagnostic MRI unit, and the system has access to all clinically available sequences on
Philips MR systems. Although both systems have their unique strengths and limitations,
they share the same advantages over conventional computerized tomography (CT)-based
radiation therapy in the treatment of CNS tumors. These advantages are actively being
explored in several innovative trials. Table 1 lists currently active trials exploring CNS
radiation therapy on an MRL that are registered on ClinicalTrials.gov (8 August 2023).

In the subsequent sections, we discuss the unique challenges and limitations associated
with treating adult patients with CNS tumors using traditional radiotherapy methods and
how MRgRT offers a potential solution to address these issues. Specifically, we explore the
role of MRgRT in the treatment of glioblastoma (GBM) and the unique ability of MRLs to
detect subtle soft tissue changes and plan adaptation to improve tumor targeting and reduce
dose to surrounding healthy tissue [15]. Furthermore, we will examine the dosimetric
feasibility and potential advantages of delivering stereotactic radiotherapy (SRT) on an MRL
for intracranial [16–20] and spine [21–23] lesions. We review recent studies and highlight
the ongoing clinical trials that aim to further evaluate the clinical benefits and challenges of
these approaches. We also discuss the potential role of MRL-based hippocampal avoidance
whole brain radiation therapy (HA-WBRT), a promising technique that strives to balance
effective tumor control and minimize neurotoxicity for patients undergoing WBRT [24–26].
By providing enhanced target delineation and facilitating daily adaptive treatment to ac-
count for therapeutic tumor response throughout therapy, MRLs demonstrate potential to
optimize HA-WBRT [15,27]. Additionally, we discuss the future direction of biologically
adaptive radiation therapy for CNS tumors and provide a general introduction to how
multiparametric MRI (mpMRI) and genomics may pave the path towards this paradigm
shifting approach [28–31]. Finally, we will review the limitations and challenges that MRLs
have in general, as well as the specific challenges in the treatment of CNS tumors [32,33].



Cancers 2023, 15, 5200 3 of 19
Cancers 2023, 15, x FOR PEER REVIEW 3 of 19 
 

 

 
Figure 1. Magnetic resonance imaging (MRI) sequences on a 0.35 T combination MRI and linear 
accelerator (MRL) without contrast. (A) A true fast imaging with steady-state free precession 
(TRUFI) sequence of a healthy brain. The in-plane resolution and acquisition time for the TRUFI 
sequence were 1.5 mm and 1 min and 40 s, respectively. The TRUFI sequence provides contrast that 
is a combination of T1 and T2 weighting and is the sequence used for planning on the 0.35 T MRL. 
(B) T2 fluid-attenuated inversion recovery (FLAIR) sequence of a healthy brain. The in-plane reso-
lution and acquisition time for the FLAIR sequence were 0.75 mm and 12 min and 6 s, respectively. 
Both sets of images (FLAIR and TRUFI) have a slice thickness of 1.5 mm and were acquired using a 
six-channel phased-array receiver head coil. 

  

Figure 1. Magnetic resonance imaging (MRI) sequences on a 0.35 T combination MRI and linear
accelerator (MRL) without contrast. (A) A true fast imaging with steady-state free precession (TRUFI)
sequence of a healthy brain. The in-plane resolution and acquisition time for the TRUFI sequence
were 1.5 mm and 1 min and 40 s, respectively. The TRUFI sequence provides contrast that is a
combination of T1 and T2 weighting and is the sequence used for planning on the 0.35 T MRL. (B) T2

fluid-attenuated inversion recovery (FLAIR) sequence of a healthy brain. The in-plane resolution and
acquisition time for the FLAIR sequence were 0.75 mm and 12 min and 6 s, respectively. Both sets of
images (FLAIR and TRUFI) have a slice thickness of 1.5 mm and were acquired using a six-channel
phased-array receiver head coil.
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Table 1. Ongoing MRL CNS clinical trials registered on ClinicTrials.gov (8 August 2023).

Study Title Sponsor Site Condition/Disease Estimated
Enrollment Identifier

MR-Linac Guided
Adaptive FSRT for
Brain Metastases
From Non-small
Cell Lung Cancer

Sun Yat-sen
University CNS

Brain Metastases
from Non-small

Cell Lung Cancer
55 NCT04946019

UNIty-Based
MR-Linac Guided

AdapTive
RadiothErapy for

High GraDe
Glioma: A Phase 2

Trial (UNITED)

Sunnybrook
Health Sciences

Centre
CNS Glioma, High

grade 97 NCT04726397

UNIty-Based
MR-Linac Guided

Adaptive
RadioThErapy for

High GraDe
Glioma-3

(UNITED-3)

Sunnybrook
Health Sciences

Centre
CNS Glioma, High

grade 40 NCT05720078

Pilot Study of
Same-session

MR-only
Simulation and
Treatment With

Stereotactic
MRI-guided

Adaptive
Radiotherapy
(SMART) for

Oligometastases of
the Spine

Washington
University School

of Medicine
CNS Oligometastases of

the Spine 10 NCT03878485

Response
Assessment

During MR-guided
Radiation Therapy
for Glioblastoma

(MARGA)

University of
Zurich CNS Glioblastoma 20 NCT05565326

Phase II Cohort of
Spinal Stereotactic
Radiotherapy in
Patients Using a

MR LINAC

M.D. Anderson
Cancer Center CNS Spinal Disease 40 NCT05709782

UNITy-BasED
MR-Linac
Adaptive

Simultaneous
Integrated Hy-

pofractionationed
Boost Trial for
High Grade

Glioma in the
Elderly

(UNITED2)

Sunnybrook
Health Sciences

Centre
CNS Glioblastoma 55 NCT05565521
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Table 1. Cont.

Study Title Sponsor Site Condition/Disease Estimated
Enrollment Identifier

Prospective
Evaluation of
Radiotherapy

Using Magnetic
Resonance Image
Guided Treatment

(PERMIT)

Institute of Cancer
Research, United

Kingdom
All/Multiple Sites N/A 200 NCT03727698

PRIMER:
Development of

Daily Online
Magnetic

Resonance
Imaging for

Magnetic
Resonance Image

Guided
Radiotherapy

Institute of Cancer
Research, United

Kingdom
All/Multiple Sites N/A 173 NCT02973828

MR-BIO: A Study
to Evaluate

Changes in MR
Imaging and

Biological
Parameters
(MR-BIO)

University of
Manchester All/Multiple Sites N/A 250 NCT04903236

Imaging
Acquisition and

Analysis Methods
for Optimization
of MRI Radiation

Oncology
Simulation and

Response
Assessment

Memorial Sloan
Kettering Cancer

Center
All/Multiple Sites N/A 447 NCT02422550

Northern Alberta
Linac-MR

Image-Guided
Radiotherapy

(Northern
LIGHTs-2)

AHS Cancer
Control Alberta All/Multiple Sites N/A 112 NCT05413473

Magnetic
Resonance-

Guided Adaptive
Radiotherapy

(MRgART) Using
an Integrated

Magnetic
Resonance Linear
Accelerator (MRL)

University Health
Network, Toronto All/Multiple Sites N/A 500 NCT04135794

Stereotactic
Magnetic

Resonance Guided
Radiation Therapy

Dana-Farber
Cancer Institute All/Multiple sites N/A 1000 NCT04115254



Cancers 2023, 15, 5200 6 of 19

Table 1. Cont.

Study Title Sponsor Site Condition/Disease Estimated
Enrollment Identifier

The MR-Linac
Technical

Feasibility Protocol
(UMBRELLA-II)

The Netherlands
Cancer Institute All/Multiple sites N/A 140 NCT04351204

Solid Tumor
Imaging MR-Linac

(STIM Study)

Medical College of
Wisconsin All/Multiple sites N/A 295 NCT03500081

Feasibility of
Online MR-guided
Radiotherapy on a

1.5T MR-Linac

University
Hospital Tübingen All/Multiple sites N/A 472 NCT04172753

The MOMENTUM
Study: The

Multiple Outcome
Evaluation of

Radiation Therapy
Using the

MR-Linac Study
(MOMENTUM)

University Medical
Center Utrecht All/Multiple sites N/A 6000 NCT04075305

Abbreviations. CNS: central nervous system; N/A: not applicable.

2. Clinical Applications
2.1. Glioblastoma

In accordance with the guidelines established by the Radiation Therapy Oncology
Group (RTOG), the postoperative GBM target includes both the surgical cavity and the
adjacent edema [34]. This approach is supported by autopsy data [35] and stereotactic
biopsies [36], which reveal tumor cells infiltrating up to and beyond the edges of FLAIR
hyperintensity. As a result, target volumes are generated using preoperative and postoper-
ative MRI to delineate the tumor resection cavity, residual enhancement, and surrounding
edema [37]. However, these features continue to evolve postoperatively and during radia-
tion treatment, leading to discrepancies between the actual and pre-RT anatomy [37,38].

Although conducting MRI scans throughout RT to account for these changes would be
ideal, it is not feasible due to limited scanner availability and cost constraints. Unfortunately,
CT-guided radiotherapy (CTgRT) does not adequately account for parenchymal changes
because of its inadequate soft tissue contrast. MRLs may offer a solution, as they allow
for superior soft tissue contrast to detect subtle geometric changes and for online plan
adaptation to account for tumor and post-operative bed changes during therapy. The need
for geometric plan adaptation is highlighted in a prospective study involving 61 GBM
patients who underwent chemoradiotherapy (CRT) and received diagnostic brain MRIs at
planning, fraction 10, fraction 20, and one-month post-CRT. Significant anatomical changes
were observed throughout therapy [39]. The study demonstrated that targets experienced
both changes in volume and migration throughout treatment [39]. Furthermore, a case
series of three GBM patients who underwent standard CRT on an MRL demonstrated
significant changes in edema and cavity volume throughout treatment [40].

A recent study investigated the potential benefits of adaptive radiotherapy for GBM
patients using an MRL system [15]. The study evaluated the dosimetric differences between
non-adapted versus weekly plan-adapted RT of GBM patients treated with CRT of 60 Gy on
a 0.35 T MRL. Weekly plan adaptation demonstrated mean improvements in uninvolved
hippocampi and normal brain dose of 8.4 versus 12.5 Gy and 18.7 (p = 0.036) versus
20.6 Gy (p = 0.005), respectively [15]. Multiple additional studies summarized in Table 2
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demonstrate how MRLs can be leveraged to account for GBM target evolution throughout
therapy to improve target coverage and spare normal tissue.

In summary, treatment of GBMs with MRLs is associated with improvements in
dosimetry and treatment planning due to its ability to detect subtle soft tissue changes
and facilitate plan adaptation. Additionally, MRLs can account for changes in the tumor
and tumor bed throughout treatment to ensure better target coverage while minimizing
unnecessary dose to normal brain parenchyma. Future studies are needed to determine
if this translates into better disease control durability and if better normal tissue sparing
results in quality-of-life improvements for these patients.

Table 2. MRL GBM Studies.

Study Type of
Study n MRL Field

Strength Endpoints Results Conclusions

Guevara et al.
2023. [15] Retrospective 10 0.35 T

Dose to
hippocampi
and normal

brain
parenchyma

Doses to hippocampi for static
vs. weekly adaptive plans
were max 21 ± 13.7 Gy vs.

15.2 ± 8.2 Gy (p = 0.003), mean
12.5 ± 6.7 Gy vs. 8.4 ± 4.0 Gy

(p = 0.036), respectively.
The mean brain dose was

20.6 ± 6.0 Gy for static
planning vs. 18.7 ± 6.8 Gy for

weekly adaptive planning
(p = 0.005).

Weekly adaptive MRgRT
replanning of shrinking

resection cavity may
decrease risk of

RT-induced neurotoxicity
by potentially sparing

normal brain and
hippocampi from

high-dose radiation.

Jones et al.
2020.* [41] Retrospective 14 0.35 T

MRI
volumetric

changes
during RT

4 of 14 patients had ≥25%
increase in T2 hyperintense
volume that correlated with

both T2/FLAIR and
contrast-enhanced volume

expansion on post-RT
diagnostic MRIs. Patients with

growth during therapy
exhibited excellent survival

MRgRT may help to
identify early

pseudoprogression in
GBM based on

T2-weighted volume
increases.

Tseng et al.
2022. [42] Retrospective 10 1.5 T

MRL
treatment

characteristic
and feasibility

3 patients had re-planning due
to progression of disease
identified on daily MRL

imaging. The median ADC
within the FLAIR hyper
intense region and the

volumes of T2 FLAIR were
correlated (R = 0.68, p < 0.001).

MRgRT is feasible for
high-grade gliomas. The

adapt-to-position
workflow and treatment

times were clinically
acceptable, and daily
online MRL imaging
triggered adaptive

re-planning for selected
patients. Acquisition of
mpMRIs was feasible on
the MRL during routine

treatment workflow.

Wang et al.
2022. [43] Retrospective 37 1.5 T

Dosimetric
impact of

MRL
magnetic

fields

MRL plans had 1.52 Gy higher
mean dose to air cavities

(p < 0.0001) and 1.10 Gy higher
mean dose to skin (p < 0.0001).

MRL magnetic fields have
minimal dosimetric

impact for target volumes
and standard OARs;

higher doses to tissues at
skin surface and

surrounding air cavities in
comparison to

conventional Linac.
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Table 2. Cont.

Study Type of
Study n MRL Field

Strength Endpoints Results Conclusions

Mehta et al.
2018. [40] Retrospective 3 0.35 T

MRL imaging
dynamics

throughout
RT

A general trend of daily
decreases in cavity

measurements was observed
in all patients.

Daily MRL imaging is able
to detect volume changes

during RT.

Cullison et al.
2022. [44] Retrospective 34 0.35 T

MRL imaging
dynamics

throughout
RT

The margin required to avoid
the average lesion from

growing out of margins from
PL was 1.30 cm (max 4.1 cm).
Adapting to a shrinking RC

saved 26.92 mL
(9.66–58.63 mL) of normal
appearing brain from full

RT dose.

Clinically significant
anatomic changes were
seen in GBM patients

during CRT. Patients with
unresected lesions require

large RT margins or
volume expansions for

growth during RT. As RCs
shrink, margins can be
reduced to save normal

brain.

Stewart et al.
2021. [39] Prospective 61 1.5 T

MRL imaging
dynamics

throughout
RT

The GTV migration distances
were >5 mm in 46% (54%) of

patients at Fx10, 50% (58%) of
patients at Fx20, and 52%

(57%) of patients at 1 month
after therapy. Dynamic tumor

morphologic changes were
observed, with 40% of patients

exhibiting a decreased GTV
(i.e., volume relative to PL ≤ 1)

with a migration
distance > 5 mm during
chemoradiation therapy.

Daily MRL imaging can
identify interfraction

tumor dynamics,
including decrease in

gross tumor volume as
well as volume migration.

Abbreviations. ADC: apparent diffusion coefficient; CRT: chemoradiation therapy; FLAIR: fluid-attenuated
inversion recovery; Fx: fraction; GBM: glioblastoma; GTV: gross tumor volume; MRgRT: magnetic resonance-
guided radiation therapy; MRL: combination magnetic resonance imager and linear accelerator; OAR: organs at
risk; OS: overall survival; PFS: progression free survival; PL: planning scan; RC: resection cavity; RT: radiation
therapy; T: Tesla; * Not a peer-reviewed study.

2.2. Stereotactic Radiation Therapy for Intracranial Tumors

SRT is an important modality in the management of brain metastases and other
intracranial tumors [45]. An MRL offers several advantages over conventional linear
accelerators, including enhanced target delineation, real-time tumor tracking, and adaptive
treatment planning [10]. The superior soft-tissue contrast provided by MRI allows for
improved identification of tumor boundaries, while real-time imaging enables accurate
monitoring of tumor motion during treatment, potentially reducing unnecessary radiation
exposure to healthy brain tissue [46].

Several studies have explored the dosimetric feasibility of MRgRT for intracranial
SRT [16–20]. One early study investigated the dosimetric feasibility of MRL for brain
metastases and the impact of the magnetic field, concluding that MRL-generated stereotactic
radiation plans meeting clinical requirements were feasible, and that the dosimetric impact
of the magnetic field, including the electron return effect (ERE) at tissue–air boundaries,
was minor and did not negatively affect target conformity or dose gradient [16]. Another
study evaluated the systematic localization accuracy, treatment planning capability, and
delivery accuracy of an MRL platform for stereotactic radiosurgery (SRS), finding that
excellent plan quality and delivery accuracy was achievable for concurrent treatment of
multiple brain metastases with a single isocenter [17]. A comparative study assessed the
dosimetric feasibility of brain SRT, comparing a 0.35 T MRL and a conventional linear
accelerator. It was revealed that the MRL could generate clinically acceptable SRS plans
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for spherical intracranial lesions with a diameter ≤ 2.25 cm [18]. However, larger lesions
(>2.25 cm) did not meet normal tissue dosimetric constraints [18]. Additionally, caution
and extra thought should be given when treating patients who have undergone systemic
therapies that may exhibit pseudo-progression/treatment effect phenomena [47] between
simulation and treatment, as these can falsely increase the volumetric appearance and lead
to excess normal tissue doses.

Another study examined the dosimetric feasibility of direct post-operative MRL-based
SRT for resection cavities of brain metastases, concluding that direct post-operative MRL-
based SRT is dosimetrically acceptable, with benefits including increased patient comfort
and logistics [19]. Streamlining workflow in this way may prove beneficial in the setting
of postoperative SRT, given that delay in the delivery of radiotherapy following resection
of brain metastases has been associated with a decrement in local control [48]. The study
suggests that the clinical benefit of this workflow should be investigated given its dosimetric
plausibility. Lastly, a study investigated changes in the clinical target volume (CTV) and
associated clinical implications of an MRL during hypofractionated SRT to resected brain
metastases, finding statistically significant reductions in cavity CTV during SRT, which
supports the use of MRgRT and treatment adaptation to mitigate toxicity [20]. Another
potential application of MRgRT is in preoperative SRT, a modality which has recently
gained traction, particularly for larger tumors [49]. Particularly in patients who may have
symptomatic brain metastases, carefully planned use of MRgRT may expedite treatment
and facilitate a shorter interval from diagnosis through resection.

Collectively, the above studies indicate that MRgRT using an MRL has the potential
to offer dosimetric and logistical advantages over conventional linear accelerators for in-
tracranial SRT treatment. However, further clinical investigations are necessary to evaluate
the clinical benefit of this technology.

2.3. Stereotactic Radiation Therapy for Spine Tumors

Spine SRT plays a critical role in managing metastatic disease by alleviating pain,
preventing pathological fractures, and reducing neurological morbidity. Stereotactic body
radiotherapy (SBRT) has been shown to provide improved efficacy compared with conven-
tional radiotherapy methods [50]. For spine SBRT, fusion with either a planning MRI or
CT myelogram is necessary to accurately delineate the spinal cord and establish a 1–2 mm
planning organ-at-risk volume (PRV), potentially reducing disease coverage [51]. CTgRT
relies on bony structures for daily setup; however, it cannot visualize the spinal cord,
leading to the requirement of a cord PRV for daily motion management.

MRLs offer several advantages over CTgRT, including MR imaging in treatment
position to allow for easier fusion with the planning CT and superior spinal cord delineation
during setup compared with cone-beam CT (CBCT) [21,23]. Dosimetric feasibility studies
indicate that daily MRgRT can lower the dose to the spinal cord [22]. MRLs enable daily
direct registration to the spinal cord, eliminating the need for cord PRVs while also allowing
for improved tumor coverage with reduced margin size. In addition, low-field MRLs suffer
from less image distortion from implanted metallic devices [52]. MRI protocols outside of
the radiation oncology department can often create challenges to performing an accurate
fusion due to differences in slice thicknesses and patient positions [53]; simulation and
treatment planning using MRLs may address these issues [23]. These advantages increase
the therapeutic ratio and may allow for dose escalation.

Several clinical trials are currently investigating the use of MRL in spine SRS/SBRT.
These studies will provide valuable insights into the feasibility and effectiveness of this
technique for spine treatment. For example, a phase I/II trial is examining the use of
Stereotactic MR-guided Adaptive Radiotherapy (SMART) for treating various disease sites,
including the spine (NCT04115254). Additionally, the Pilot Study of Same-session MR-only
Simulation and Treatment with SMART for Oligometastases of the Spine (NCT03878485)
focuses specifically on spine treatment.
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As more clinical data emerge from these studies, the potential benefits of MRL in
spine SRT will become clearer. The integration of MRI with linear accelerators for spine
treatment may lead to improved tumor targeting, reduced normal tissue exposure, and
better patient outcomes. Ultimately, these advancements may help optimize radiotherapy
for patients with metastatic spine disease and contribute to the ongoing evolution of spine
SRT techniques.

2.4. Hippocampal Avoidance Whole Brain Radiotherapy

HA-WBRT is a promising technique that aims to achieve the local control benefits
of whole brain RT for both macro- and micro-metastatic lesions, while reducing neuro-
toxicity by specifically avoiding the hippocampus [54]. HA-WBRT requires fusion of a
planning MRI with CT simulation imaging to create a hippocampal avoidance structure,
while ensuring a homogenous treatment plan for the remaining brain parenchyma [55].
HA-WBRT using MRgRT could facilitate adaptive treatment based on the intra-therapeutic
tumor response, potentially improving the local control probability with sequential stereo-
tactic boosts to nonresponding lesions. A dosimetric feasibility study compared twelve
HA-WBRT volumetric modulated arc therapy (VMAT) plans versus intensity modulated
radiation therapy (IMRT) plans created using the 0.35 T MRL treatment planning system
(TPS) [27]. In all cases, the researchers were able to generate plans that met RTOG 0933
treatment plan standards. As anticipated, the VMAT plans exhibited superior homogeneity
and delivery times compared with the IMRT plans.

Particularly for patients with numerous brain metastases of radioresistant histology,
HA-WBRT with a simultaneous integrated boost to gross disease may be an effective
strategy [14,56], one that may be further facilitated using MRgRT. Additional investigation
through clinical trials is necessary to determine the clinical feasibility and safety of HA-
WBRT. This approach could optimize the balance between effective tumor control and
minimizing neurotoxicity for patients undergoing whole brain radiotherapy.

3. Future Directions

One of the fundamental goals of radiotherapy is maximizing the dose to target tissue
while minimizing the dose to surrounding OARs. In a significant first step towards this
aim, MRLs have facilitated treatment plan adaptation to observable anatomic changes
throughout therapy. MRLs, however, may be able to enable biological plan adaptation by
leveraging MRI’s capability to track biological and physiological changes through advanced
mpMRI techniques. These techniques may allow radiation oncologists further insight into
a tumor’s biology as it responds to RT over the course of treatment.

The treatment paradigm of radiotherapy has traditionally been based on empirical
large cohort data rather than individual biology, resulting in a one-size-fits-all approach.
However, recent advancements in genomics and radiomics have begun to pave the way
towards a more personalized approach based upon individual tumor biology. The synergy
between genomically informed radiotherapy, treatment of high-risk sub-volumes based
on extraction of radiographic data, and daily mpMRI-guided plan adaptation has the
potential to usher in a new treatment paradigm in radiation oncology. Pre-treatment
genomic and radiomic analyses of the tumor may improve patient selection for MRL-
based dose escalation [30,57,58]. Daily mpMRI delta radiomic analysis can then be used to
detect subtle biomarkers of treatment response in tumors, which hint at radiation-induced
genomic plasticity, thereby allowing for even greater personalized adaptive treatment
strategies [59–62].

The currently active phase II Habitat Escalated Adaptive Therapy (HEAT), With
Neoadjuvant Radiation for Soft Tissue Sarcoma (NCT05301283) is an example of a cutting-
edge study utilizing genomic and mpMRI radiomic biomarkers to guide the initial treat-
ment and adaptive treatment approach for high-grade soft tissue sarcomas. Utilizing a
similar approach for CNS tumors appears to be technically feasible currently. For example,
genomic-adjusted radiation therapy (GARD) could be similarly utilized to identify GBM pa-



Cancers 2023, 15, 5200 11 of 19

tients who could benefit from higher doses [63] with MRI perfusion [64] and FLAIR [65,66]
sequences, which could identify tumor subpopulations to target with simultaneous inte-
grated boosts.

MRL is poised to take a central role at the forefront of this paradigm shift to allow
for plan adaptation based not only upon geometric shifts but also on a tumor’s evolving
treatment response throughout therapy. An ultra-personalized treatment approach like
this allows for total dose, dose distribution (i.e., dose painting), and fractionation changes
throughout the course of therapy to improve clinical outcomes for patients.

Radiomic- and Genomic-Guided Adaptive Radiation Therapy for CNS Tumors

Historically, daily MRgRT plan adaptation has been utilized to manage interfractional
geometric changes. However, MRI is also capable of assessing biological and physiological
information using advanced mpMRI techniques [28,67–69]. These techniques have the
potential to be particularly beneficial for CNS tumors treated on an MRL.

One such technique is diffusion-weighted imaging (DWI), which enables the detection
of water mobility changes [70]. These alterations are associated with tumor growth [71]
or necrosis [72]. By mapping a parameter known as the apparent diffusion coefficient
(ADC), clinicians can monitor the response to radiation therapy [73]. ADC mapping is
especially appealing in adaptive radiotherapy, as changes in ADC can be observed before
morphological alterations in the tumor [74]. This feature could guide dose escalation
strategies or biologically driven radiation plan adaptation [58,75]. DWI has been applied
on a 1.5 T MRI-guided linear accelerator [76–78] and on a 0.35 T tri-cobalt system [79,80].
When the 0.35 T MRgRT system transitioned from a tri-cobalt system to an MRL, technical
challenges emerged [81]. However, recent applications of DWI on a 0.35 T MRL show
promise [10].

Dynamic contrast-enhanced (DCE) MRI is another functional imaging technique
that investigates perfusion by dynamically evaluating changes in the T1 relaxation time
following a bolus injection of gadolinium [82,83]. This process allows for the examination
of gadolinium transport across the capillary endothelium [68]. DCE has demonstrated
prognostic value in identifying patient subpopulations with hypoxia-related resistance
to chemoradiation in cervical cancer [84]. As a result, DCE has the potential to provide
information that may aid in personalizing radiation dose delivery for CNS tumors [77].
DCE has been implemented on the 1.5 T MRL, although its quantification was shown
to be less reproducible than that of T1, T2, and ADC [76]. While DCE has not yet been
implemented on a 0.35 T MRL, initial experiences have demonstrated the feasibility of
gadolinium injection on the tri-cobalt version of this system [85].

Additional MR-based techniques, such as magnetic resonance spectroscopic imaging
(MRSI) [86], chemical exchange saturation transfer (CEST) [87,88], and hyperpolarized
dynamic magnetic resonance spectroscopy [89], can interrogate metabolic processes in
tumors [90]. These techniques could potentially offer valuable information for the adaptive
radiotherapy of CNS tumors on an MRL. MRSI has been applied to create high-resolution
metabolite maps in gliomas [91] and to map lactate in GBM [92]. Furthermore, MRSI
has been employed to map intra- and extracellular pH in tumors using phosphorus [93].
However, integrating MRSI into online MRgRT still faces technical limitations, such as
relatively long scan times [94] and low sensitivity on conventional magnetic field strength
systems [95]. Hyperpolarizing the nucleus can counteract the low sensitivity, resulting
in a significant gain in sensitivity for a short period of time [96]. The primary applica-
tion of hyperpolarization has been to observe the dynamic conversion of pyruvate into
lactate in tumors [97]. CEST, on the other hand, enables the indirect detection of low-
concentration solutes via their effect on the water MR signal [98]. CEST has been shown to
predict chemoradiotherapeutic response in tumors [29,99]. Moreover, it has been shown
to be capable of noninvasively determining IDH mutation and MGMT methylation status
in vivo [100]. While these techniques show promise, further development and optimization
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are necessary to fully harness their potential in guiding adaptive radiotherapy for CNS
tumors on an MRL.

Although none of the CNS-specific trials within Table 1 have reported results yet, the
multi-disease site “MR-BIO: A Study to Evaluate Changes in MR Imaging and Biological
Parameters (MR-BIO)” (PMID: NCT04903236) have published results within their head and
neck patient cohort which demonstrated that a 1.5 T MRL can reliably be used to detect
tumor hypoxia via oxygen-enhanced MRI (OE-MRI) [101]. OE-MRI is another example of a
powerful MR technique that detects oxygenation in both normal tissues and tumors after
inhalation of 100% oxygen or carbogen, which allows for the quantification and mapping
of hypoxia over the course of radiotherapy [102–105].

Genomics provides another powerful avenue towards personalized radiation treat-
ment, which when combined with the advances in image guidance listed above, may
provide an even more sophisticated approach for challenging malignancies such as GBM.
Several such signatures have been introduced as a potential means for genomically guided
RT [57,63,106–110]. Genomics offers a biological framework for guiding RT, giving better
context to the radiomic changes observed during treatment, and fostering research into pre-
dictive biomarkers. This combination may allow for novel advanced and better-informed
approaches to dose escalation in high-grade glioma, a strategy which has been largely
unsuccessful in the past [111–114].

In summary, MRL can be leveraged by incorporating genomically guided RT and
mpMRI radiomics to enable a biologically adaptive RT paradigm. Various mpMRI tech-
niques, including DWI, DCE, MRSI, and CEST, have the potential to offer valuable insights
into tumor biology and physiology, ultimately leading to more personalized and effective
treatment strategies. Using these technologies to identify intratumoral heterogeneity and
tumoral sub-volumes at risk may allow for focal dose escalation or avoidance, respectively.
As research and development continues in this area, we expect significant advancements
in the application of these techniques, potentially revolutionizing the management of
CNS tumors.

4. Barriers and Limitations in CNS Radiation Therapy on MRL
4.1. General Limitations

MRgRT offers significant advancements for image-guided radiation therapy (IGRT)
and personalized oncology in CNS tumor treatment, but there are certain limitations to
be considered. These include substantial financial and time investments for training and
operation, development of MR-safety protocols, and unique physical challenges related
to the concurrent use of MR and external beam radiotherapy [115–117]. Additionally, the
daily online adaptive radiotherapy process can be time-consuming, and patient selection is
crucial, as some patients may have difficulty tolerating the treatment due to claustrophobia,
large body habitus, or MR-incompatible implanted devices [118].

4.2. Unique Challenges in Treating CNS Tumors on an MRL

Treating CNS tumors on an MRL presents several unique challenges. The complex
anatomy of the CNS, with its highly radiosensitive normal tissues, requires precise targeting
and dose delivery. The proximity of critical structures, such as the optic nerves, brainstem,
and spinal cord, demands meticulous treatment planning and delivery. Furthermore, CNS
tumors often exhibit infiltrative growth patterns, making it almost impossible to accurately
delineate tumor boundaries.

MRL systems suffer the same limitations as diagnostic MRIs. As such, they’re sensitive
to the magnetic susceptibility artifacts that arise from air–tissue [119] and bone–tissue [120]
interfaces in the skull base, sinuses, and mastoid air cells, which can affect image quality and
accuracy for CNS tumor localization. Moreover, the blood–brain barrier (BBB) influences
the performance of MRI techniques, such as DCE MRI. The BBB’s integrity may affect the
permeability of gadolinium-based contrast agents and, consequently, the accuracy of DCE-
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derived parameters [121]. These challenges require further research and the development
of advanced MRI techniques to address them.

Geometric distortion represents one of the most difficult challenges to account for
with any MRgRT. Geometric distortion occurs due to imperfections in the magnetic field,
gradient nonlinearities, and magnetic susceptibility differences at tissue interfaces [122].
This can lead to inaccuracies in the target delineation and treatment planning of CNS
tumors. Additionally, geometric distortion can make it difficult to accurately account
for small radiosensitive structures, such as the optic nerves, cochlea, pituitary gland,
and hippocampus. Both 1.5 T and low-field MR systems experience varying degrees of
geometric distortion. Typically, 1.5 T MR systems exhibit larger distortions than low-field
systems due to larger field inhomogeneities and increased susceptibility effects at higher
field strengths [120]. However, even low-field MR systems may present geometric distortion
challenges, particularly at air–tissue interfaces and near metal implants. Addressing the
issue of geometric distortion in MRgRT for CNS tumors requires further development of
advanced MRI techniques and correction algorithms.

5. Conclusion

Treatment of CNS tumors on MRLs represents a promising direction for the advance-
ment of personalized cancer care. MRLs provide excellent soft tissue visualization, real-time
monitoring of targets and normal tissues with gating capabilities, and the ability for daily
plan adaptation. These unique advantages hold the potential to improve radiation delivery
to patients with intracranial or spine tumors. Clinical trials are currently underway and
seek to clarify the role of MRLs in the treatment of CNS malignancies. Future clinical stud-
ies are needed to explore the integration of mpMRIs and genomics to develop a biologically
adapted radiation therapy paradigm for CNS tumors.
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