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Simple Summary: Cancer stem cells (CSCs) retain their ability to self-renew and differentiate and
exhibit resistance to chemotherapy and radiotherapy. Therefore, the selective eradication of CSCs is
the most rational method of cancer treatment. However, the presence of CSCs in cancer tissues and
cell lines is extremely low, making it difficult to isolate and collect sufficient quantities of CSCs for
further studies. We used microfabrication technology to develop a device that can easily generate
uniform oral cancer cell spheroids in large quantities. The spheroids produced in the microwell
showed an increased expression of CSC markers and resistance to anticancer drugs, suggesting that
our device could be useful for high-throughput studies on oral CSCs.

Abstract: Cancer stem cells (CSCs) are considered to be responsible for recurrence, metastasis, and
resistance to treatment in many types of cancers; therefore, new treatment strategies targeting CSCs
are attracting attention. In this study, we fabricated a polyethylene glycol-tagged microwell device
that enabled spheroid formation from human oral squamous carcinoma cells. HSC-3 and Ca9-22
cells cultured in the microwell device aggregated and generated a single spheroid per well within
24–48 h. The circular shape and smooth surface of spheroids were maintained for up to five days,
and most cells comprising the spheroids were Calcein AM-positive viable cells. Interestingly, the
mRNA expression of CSC markers (Cd44, Oct4, Nanog, and Sox2) were significantly higher in the
spheroids than in the monolayer cultures. CSC marker-positive cells were observed throughout the
spheroids. Moreover, resistance to cisplatin was enhanced in spheroid-cultured cells compared to that
in the monolayer-cultured cells. Furthermore, some CSC marker genes were upregulated in HSC-3
and Ca9-22 cells that were outgrown from spheroids. In xenograft model, the tumor growth in the
spheroid implantation group was comparable to that in the monolayer culture group. These results
suggest that our spheroid culture system may be a high-throughput tool for producing uniform CSCs
in large numbers from oral cancer cells.
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1. Introduction

With the recent advances in treatment technologies, 5-year survival rates for breast and
thyroid cancers have exceeded 90% [1]. However, the 5-year survival rate for oral cancer
remains at 70% [2,3], and its high morbidity and mortality rates are problematic [4]. There-
fore, establishing effective treatment strategies for oral cancer is highly necessary. Cancer
stem cells (CSCs) with the capability of self-renewal contribute to tumor pathogenesis [5].
CSCs can form tumors in small numbers, are resistant to chemotherapy and radiation, and
have a high probability of persisting after treatment, suggesting that they may cause tumor
recurrence and metastasis [6,7]. Targeting CSCs is effective for establishing a treatment
strategy for oral cancer with low recurrence and metastases. Therefore, a culture format
capable of generating large numbers of CSCs is urgently needed.

Squamous cell carcinoma is the most frequent histological type of oral cancer [8,9].
CSCs in head and neck squamous cell carcinoma possess enhanced invasive and metastatic
potential and resistance to therapies, contributing to lethality [10]. However, in conven-
tional two-dimensional (2D) culture systems, the abundance of CSCs is 19.6% among all
oral squamous carcinoma cells [11]. In contrast, a small percentage of CSCs are present
in primary tumors, and this subpopulation possess strong CSC characteristics such as
differentiation and self-renewal potential [12]. We speculated that this discrepancy was due
to the deviation of the environment of 2D-cultured cells from that of in vivo cells. Three-
dimensional (3D) culture methods can more accurately mimic physiological responses,
genetic patterns, and other characteristics of tumors [13–16]. Among the 3D culture meth-
ods, spheroids are expected to be powerful tools for elucidating the mechanisms of tumor
pathogenesis and drug discovery under conditions similar to those of in vivo tumor mi-
croenvironments [17,18]. Several methods have been developed to generate spheroids,
including hanging drop cultures, culturing on non-adhesive surfaces or microfabricated
microstructures, and production in rotary bioreactors [19]. However, generating uniform
spheroids in large quantities is difficult, and few reports exist on spheroid cultures of oral
cancer cells.

Previously, we developed a device for spheroid formation in which the bottom surface
of a 500 µm diameter microwell chip was modified with polyethylene glycol (PEG) to
provide a non-adhesive surface for cells [20]. The device has efficiently generated uniform
spheroids in large quantities, and periodontal ligament cell spheroids generated using this
device have demonstrated enhanced stemness compared to that of 2D-cultured cells [21,22].
These results led us to hypothesize that oral cancer spheroids cultured on our device would
exhibit stem cell properties. Therefore, we aimed to establish a method for producing oral
cancer spheroids using the fabricated microwell device and compare the characteristics of
spheroid cells with those of 2D-cultured cells.

2. Materials and Methods

2.1. Cell Culture

Human tongue- (HSC-3 cells) and gingiva-derived (Ca9-22 cells) squamous carcinoma
cell lineages were obtained from the Japanese Collection of Research Bioresources (JCRB;
Osaka, Japan). The HSC-3 and Ca9-22 cells were maintained in Eagle’s Minimum Essential
Medium (EMEM; FUJIFILM Wako Pure Chemical Co., Osaka, Japan) and high-glucose
Dulbecco’s Modified Eagle Medium (DMEM; Nacalai Tesque, Kyoto, Japan), respectively, at
37 ◦C and in a humidified condition with 5% CO2. Both culture media were supplemented
with 10% fetal bovine serum (FBS; Sigma-Aldrich, St. Louis, MO, USA) and 1% penicillin–
streptomycin (FUJIFILM Wako Pure Chemical Co.).

2.2. Preparation of Microwell Device

The microwell device used for the generation of oral cancer cell spheroids was pre-
pared as previously described [21,22]. Briefly, the surfaces of wells (195 wells) with a
500 µm diameter and 500 µm depth were coated with platinum, and the entire microwell
was surrounded by a dimethylpolysiloxane (PDMS) frame. The device was treated with
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2 mM PEG (MW 20,000; Tokyo Chemical Industry Co., Tokyo, Japan) to obtain
nonadherent surfaces.

2.3. Generation of Oral Cancer Cell Spheroids

The fabricated microwell device was placed in a 35 mm dish (AGC Techno Glass Co.,
Shizuoka, Japan). HSC-3 and Ca9-22 cells were cultured at a concentration of
5 × 103 cells/well. Briefly, a cell suspension (9.75 × 105 cells/200 µL) was inoculated into
the well of the device. Since 195 wells were present in the microwell device,
195 uniform spheroids consisting of 5 × 103 cells were formed [21]. One hour after cell
seeding, the PDMS frame was removed, and the device was tilted and incubated at 37 ◦C
under 5% CO2 for up to five days. Culture medium was changed every two days. The
diameter of each spheroid was measured using a microscope (BZ-X800; Keyence, Osaka,
Japan). In some experiments, spheroids generated in the microwell device for three days
were seeded into 35 mm dish and cultured until cells outgrown from spheroids were
confluent. Culture medium was changed every two days.

2.4. Detection of Cell Viability in Spheroids

The viability of constituent cells in spheroids was evaluated on days 3 and 5 of culture
using a Live/Dead Viability/Cytotoxicity Kit for mammalian cells (Thermo Fisher Scientific,
Waltham, MA, USA) according to the manufacturer’s protocol. As the positive control for
dead cells, cells were treated with 100% methanol at 37 ◦C for 30 min. Images of spheroids
were captured using a BZ-X800 microscope and processed using BZ-II imaging software
(version 1.1.2; Keyence).

2.5. Quantitative Real-Time Reverse Transcription Polymerase Chain Reaction (Real-Time
RT-qPCR)

Total RNA was extracted from oral cancer cells cultured in monolayers or spheroids
using ISOGEN II (NIPPON GENE Co., Tokyo, Japan) according to the manufacturer’s pro-
tocol. mRNA expression was analyzed via real-time RT-qPCR as previously reported [23].
The primer sequences used for real-time RT-qPCR in the present study are listed in Table 1.

Table 1. Primer sequences for real-time RT-qPCR.

Gene Primer Sequence (5′-3′)

β-actin forward 5′-GCG CGG CTA CAG CTT CA-3′

reverse 5′-CTT AAT GTC ACG CAC GAT TTC C-3′

Cd44
forward 5′-TGT GCA GCA AAC AAC ACA GG-3′

reverse 5′-TGG AGC TGA AGC ATT GAA GC-3′

Oct4
forward 5′-ACT CGA GCA ATT TGC CAA GC-3
reverse 5′-TTG AAG CAA GCT GCA GAG C-3′

Nanog forward 5′-GCA GAT GCA AGA ACT CTC CAA C-3′

reverse 5′-TCG GCC AGT TGT TTT TCT GC-3′

Sox2
forward 5′-TGA ATG CCT TCA TGG TGT GG-3′

reverse 5′-AGT TGT GCA TCT TGG GGT TC-3′

2.6. Immunohistochemistry for CSC Markers

Oral cancer cell spheroids generated in the microwell device for three days were
collected via centrifugation and suspended in 50 µL culture medium. The suspended
spheroids were embedded in jellies (iPGell; GenoStaff, Tokyo, Japan) according to the
manufacturer’s instructions. The jellies were immersed in a 10% formalin neutral buffer
solution (FUJIFILM Wako Pure Chemical Co.) and fixed for 48 h via gentle shaking. After
washing in phosphate-buffered saline (PBS) for 30 min and replacing it with 70% ethanol
two times for 30 min each, the spheroids were embedded in paraffin. Paraffin blocks were
sliced (4-µm thick), and sections were stained with hematoxylin (Muto pure chemicals
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Co., Tokyo Japan) or via immunostaining. The sections were deparaffinized with xylene
and dehydrated with a series of alcohol concentrations (80%, 90%, and 100%), followed by
the inactivation of endogenous peroxidase with 3% hydrogen peroxide, antigen activation
with citrate buffer, and blocking with goat serum. Tissue sections were then incubated
at 4 ◦C overnight with anti-CD44 polyclonal (1/2000; Cat. no. 15757-1-AP; Proteintech,
Resemont, IL, USA), anti-Oct4 polyclonal (1/200; Cat. no. 11263-1-AP; Proteintech), anti-
Nanog polyclonal (1/100; Cat. no. 14295-1-AP; Proteintech), or anti-SOX2 polyclonal
(1/1000; Cat. no. 11064-1-AP; Proteintech) primary antibodies, followed by incubation
with a VECTASTAIN Elite ABC kit (peroxidase, Rabbit IgG; Vector Laboratories, Newark,
CA, USA) for 30 min at room temperature and staining with a Vector DAB kit (Vector
Laboratories). Images of the spheroids were captured using a BZ-X800 microscope.

2.7. Assessment of Sensitivity to Cisplatin

Cell counting kit-8 (CCK-8; Dojindo Laboratories Co., Kumamoto, Japan) was used to
evaluate the survival of the HSC-3 and Ca9-22 cells in response to cisplatin stimulation. For
monolayer culture, HSC-3 and Ca9-22 cells were seeded at 2.0 × 104 cells/well in a 96-well
plate (AGC Techno Glass Co.) and cultured at 37 ◦C under 5% CO2 for 24 h. Subsequently,
the supernatant was aspirated, and fresh medium containing cisplatin (0, 5, 20, 50, and
100 µg/mL; Tokyo Chemical Industry Co.) was added and cultured for 48 h under the
same conditions. Spheroids in the microwell device on day 3 of culture were incubated
for 48 h with cisplatin at the concentrations mentioned above. CCK-8 assay using WST-8
was performed according to the manufacturer’s protocol, and absorbance was measured at
450 nm using a microplate reader (Multiskan FD; Thermo Fisher Scientific). Cell viability
was calculated as the percentage of viable cells in the cisplatin-free control.

2.8. Assessment of Tumorigenicity in Mouse Xenograft Model

Six-week-old male KSN/slc nude mice weighing 20–25 g were purchased from Japan
SLC (Shizuoka, Japan). A xenograft squamous cell carcinoma model was established as de-
scribed previously [24]. Briefly, monolayer- and spheroid-cultured HSC-3 cells (equivalent
to 1.0 × 106 cells in 0.2 mL serum-free EMEM) were subcutaneously injected into the left
and right backs of the mice, respectively. Tumor size was measured daily using a digital
caliper, and tumor volume was calculated using the following formula:

volume (mm3) = long diameter (mm) × short diameter (mm) × short diameter (mm)/2.

After three weeks, the mice were sacrificed via cervical dislocation, and tumors were
resected. Tumors were fixed in 10% formalin for 48 h and embedded in paraffin. The
paraffin blocks were sliced in the vertical direction to the epithelium (4-µm thick sections)
and stained with hematoxylin for histopathological analysis. The protocols used for the
animal experiments were approved by the Kyushu Dental University Experimental Animal
Care and Use Committee (permit numbers: 22-13 and 23-03).

2.9. Statistical Analysis

All data are expressed as mean ± standard deviation (SD). Statistical analyses were
performed using Microsoft Excel. Student’s t-test was used to facilitate a comparison
between the two groups. For comparisons among three groups, we performed a one-way
analysis of variance (ANOVA) using the Tukey method. Statistical significance was set
at p < 0.05.

3. Results

3.1. Oral Cancer Cells Aggregated and Formed Spheroids in Fabricated Microwell Device

We assessed the spheroid formation of the oral cancer cells (5000 cells/well) using
the fabricated device. The HSC-3 and Ca9-22 cells cultured in our device aggregated and
formed a spheroid per well within two days (HSC-3) and one day (Ca9-22), respectively.
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The formed spheroids persistently aggregated and maintained their spherical shape with
smooth surfaces for up to five days of culture (Figure 1A,B). The mean diameter of the
spheroids gradually decreased with aggregation and was approximately 150 µm on the
5th day of incubation (Figure 1C). The viability of the cancer cells in the spheroids was
assessed. Calcein-AM-positive green fluorescent cells indicated live cells, while ethidium
homodimer-1 (EthD-1)-positive red fluorescent cells indicated dead cells. Most of the
HSC-3 and Ca9-22 cells in the spheroids were viable, and only a few dead cells were
observed (Figure 1D).
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Figure 1. The formation of oral cancer cell spheroids in the microwell device. (A,B) Representative
microscopic images with low ((A); scale bars: 500 µm) and high ((B); scale bars: 100 µm) magnifica-
tions. (C) The diameter of oral cancer cells spheroids (n = 3). (D) Representative microscopic images
of live and dead cells of spheroid. Methanol-treated cells (MeOH treated) were used as a positive
control for dead cells. Scale bars: 100 µm.

3.2. Oral Cancer Cells in Spheroids Enhanced the Expression of CSC Markers

To compare stemness among the different culture methods, the HSC-3 and Ca9-22
cells were cultured in monolayers or a microwell device for three or five days. The mRNA
expression of CSC markers, Cd44, Oct4, Nanog, and Sox2 in the spheroids was significantly
higher than that in monolayer cultures on day 3 (Figure 2A). An enhanced expression of
CSC marker genes, except for Cd44, in the Ca9-22 spheroid cells was maintained on day 5
of culture (Figure 2B). Immunostaining revealed the presence of CSC marker-positive cells
within the spheroids. These CSC marker-positive cells were uniformly distributed in the
spheroids, and no characteristic localization was observed (Figure 3).
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Figure 3. The expression and distribution of CSC marker proteins in the oral cancer cell spheroids.
Representative immunohistochemical image for CSC markers in oral cancer cells cultured in the
microwell device for three days. The cells were incubated without primary antibodies and used as
negative controls (secondary antibody only). Counterstaining was performed using hematoxylin.
Scale bars: 50 µm.

3.3. Oral Cancer Cells in Spheroids Showed Increased Resistance to Anticancer Drugs

To further compare the stemness between the oral cancer cells in the 2D and 3D
cultures, the HSC-3 and Ca9-22 cells cultured in the monolayer or microwell device were
treated with cisplatin for 48 h. Viable cells were evaluated using CCK-8 assay. The spheroid-
cultured HSC-3 cells had significantly higher percentages of viable cells after treatment
with 5 and 20 µM cisplatin compared to that of the 2D-cultured cells (Figure 4A). For
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the Ca9-22 cells, the spheroid culture group showed resistance to high concentrations
(20–100 µM) of cisplatin (Figure 4B).
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Figure 4. Sensitivity of oral cancer cell spheroids to anticancer drugs. The HSC-3 (A) and Ca9-22 (B)
cells were cultured in monolayer (2D) or microwell chips (3D) were treated with cisplatin (CDDP;
0–100 µM) for 48 h. The proliferation of oral cancer cells was assessed using CCK-8 assay. Data are
shown as the percentage of viable cells (n = 3). * p < 0.05, ** p < 0.01 (Student’s t-test).

3.4. Stemness of Oral Cancer Cells Enhanced by Spheroid Culture Was Maintained under
2D-Culture Conditions

To determine whether enhanced stemness was maintained in cells that extended
and proliferated from the spheroids, the spheroids were seeded in 35 mm dishes. The
oral cancer cells in the spheroids attached to the culture plate began to grow within 24 h
and showed a homogeneous and spindle-shaped morphology (Figure 5A). The expres-
sion of CSC marker genes decreased in outgrown cells compared to that in the cells of
the spheroids; however, the genes were highly expressed compared to those in parental
2D-cultured cells. Interestingly, Oct4 and Nanog expression in the outgrown Ca9-22 cells
was markedly enhanced compared to that in the spheroids (Figure 5B).
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(B) mRNA level of CSC marker genes in oral cancer cells cultured in monolayer (2D) or mi-
crowell device (3D) for three days or outgrown from spheroids (3D→2D) (n = 3). * p < 0.05,
** p < 0.01 (one-way ANOVA followed by Tukey’s test).

3.5. The Tumorigenic Potential of Oral Cancer Spheroids Generated in the Microwell Device Was
Comparable to That of Monolayer Cells

Finally, we compared the tumorigenicity of the HSC-3 cells between the 2D and 3D
cultures using an in vivo xenograft model. Both the monolayer- and spheroid-cultured
HSC-3 cells showed tumor-forming capabilities in the mice (Figure 6A). The tumor growth
rate in the spheroid implantation group was comparable to that in the 2D culture group
(Figure 6B). Furthermore, the results of our histological evaluation of tumor tissues showed
no changes induced by the differences in culture methods (Figure 6C).
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4. Discussion

For the present study, we established a culture system using a microwell device with a
PEG-modified non-adhesive surface for cells to overcome the problem of size uniformity in
spheroid fabrication. Oral cancer cells quickly formed uniform spherical aggregates in the
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wells of the device. The HSC-3 cells aggregated after 48 h, whereas the Ca9-22 cells formed
spheroids within 24 h. The rate of cell aggregation may depend on the type of cancer
cell line. In the present study, the number of oral cancer cells seeded per well was set at
5000 cells/well; however, periodontal ligament cells seeded in the same microwell device
formed spheroids at 500 cells/well [21]. Furthermore, in studies using the hanging drop
method, chondrocyte precursors [23] and glioblastoma multiforme cells [25] required a
minimum of 5000 cells to aggregate, whereas islet cells [26] and renal cancer cells [27]
aggregated with <500 cells. Optimizing the number of seeded cells is important for efficient
spheroid fabrication using our device. The fabricated device is also capable of producing
spheroids for liver cancer cells (Hep G2) [20], and it is expected to have potential applica-
tions as a tool for producing spheroids for various cancer cells in addition to oral cancer
cells. Although oral cancer cell spheroids maintained their spherical morphology, their size
gradually decreased as they aggregated over time. Spheroids consisting of 1600 ovarian
cancer cells produced by the hanging drop method have been shown to increase in size,
along with cell growth, over 17 days in culture [28]. Our device can be optimized for
spheroid formation using various cells by applying microfabrication and microcontact
printing technologies that allow for the setting of parameters such as well size and inter-
well width. In addition to modifying the number of seeded cells, adjusting the well size of
the device may induce the growth of oral cancer cell spheroids.

Oxygen supply is important for cell growth and survival. Therefore, necrosis asso-
ciated with insufficient oxygen supply to cells at the center of spheroids is a significant
issue. However, most oral cancer cells in spheroids generated in this study remained viable
even after five days of culture, and no dead cells were observed even in the center of the
spheroids. In studies with hepatocytes, central necrosis was induced within spheroids
>200 µm in diameter [29]. The spheroids generated in this study were approximately
150 µm in diameter, and a certain amount of oxygen supply was probably maintained to
the center of the spheroids. Furthermore, cancer tissue is prone to a hypoxic environment
due to the increased oxygen consumption associated with tissue growth [30,31]. Therefore,
the oral cancer cells used in this study may be able to adapt to a hypoxic microenvironment
and maintain their survival and metabolism.

The expression levels of various markers are increased in CSCs. CSCs in oral squa-
mous cell carcinomas show an increased expression of CD44, Oct4, Nanog, and Sox2,
which may be utilized as candidate therapeutic targets [32,33]. The expression of CSC
marker genes was higher than that in the 2D culture group, suggesting the induction of
stemness in oral cancer cells that constituted spheroids. Hypoxic environment is involved
in CSCs phenotypes of colon [34], renal [35], and breast [36] cancers. However, HSC-3 cells
cultured under hypoxic conditions (0.5–1% O2 for 24 h) do not show the expression of
CSC markers [37]; therefore, a hypoxic environment may not be a significant factor in the
acquisition of stemness in spheroid-cultured oral cancer cells. This was supported by the
immunostaining results showing that CSC marker-expressing cells were not localized in
the core of spheroids, where the oxygen supply is low; however, they were uniformly dis-
tributed. CSC activation is induced by intercellular interactions and changes in the tumor
microenvironment [10]. Because spheroids are 3D culture systems that do not use scaffolds
or other external biomaterials [38,39], studies on the induction of stemness should focus
on the microenvironment composed by the extracellular matrix, cytokines, chemokines
and growth factors produced by constituent cells, and the signal responses resulting from
intercellular interactions [40,41].

CSCs are characterized by an increased resistance to anticancer drugs [42]. The
expression of CSC markers increases in HSC-3 cells that are resistant to cisplatin [43]. As
expected, the oral cancer cells within the spheroids showed increased resistance to cisplatin.
Although a decreased penetration of anticancer drugs into aggregates cannot be ruled
out, the acquisition of stemness contributes to enhanced anticancer drug resistance in the
constituent cells of spheroids. In addition to CSCs, various biological processes, such
as autophagy, epithelial–mesenchymal transition (EMT), and metabolic reprogramming,
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contribute to chemotherapy resistance [44]. Our spheroid culture system will be useful for
elucidating the molecular mechanisms underlying these biological processes.

To obtain cells that maintain their characteristics similar to those in tissue, cells out-
grown from tissue fragments are used [45,46]. We examined whether the stemness of the
spheroids was maintained in cells outgrown from the spheroids. Several CSC markers in
the outgrown cells showed a lower expression than that in the spheroid cells, suggesting
that the establishment of a microenvironment by spheroids contributes to the acquisition of
stemness by oral cancer cells. However, the expression of some CSC markers in the out-
grown cells were higher than that in the parental cells, and some markers in the outgrown
cells were more upregulated than those in the spheroid cells. The kinetics of expression of
CSCs markers in cells that have undergone repeated passages after outgrowth should also
be validated in future studies.

A population of CSCs expressing high levels of CD44 and aldehyde dehydrogenase 1
(ALDH1) isolated from HSC-3 cells has been reported to form tumors at a higher rate (80%)
than that of parental cells when 50 cells are transplanted into the oral floor of nude mice [11].
Subpopulations of oral cancer cells that highly express CD44 and show enhanced epidermal
surface antigen (ESA) [47] or an elevated expression of stage-specific embryonic antigen-4
(SSEA-4) [48] have the characteristics of CSCs and show high tumorigenic potential upon
transplantation (CD44high/ESAhigh; 5 × 103 cells, CD44high/SSEA-4high; 1 × 104–2 × 105

cells) into the tongue of immunodeficient mice. Furthermore, the transplantation of oral
cancer cell spheroids (5 × 105 cells) into the buccal mucosa significantly increases tumor
volume compared to that by monolayer-cultured cells [49]. However, in the xenograft
model using HSC-3 cells in this study, no significant differences were observed between the
monolayer and spheroid culture groups in terms of tumor size or histopathological findings.
The missing characteristic of the oral cancer spheroids can be attributed to the higher
number of transplanted cells (1 × 106 cells) than that in previous reports and differences
in transplantation sites (back vs. oral mucosa). Tumors formed by the transplantation
of spheroid cells show increased resistance to cisplatin [45]. Experiments are currently
underway to determine the expression of CSC markers and sensitivity to chemotherapy in
tumors formed after spheroid transplantation.

The spheroids generated in this study were a monocellular system and did not have
the multicellular characteristics of in vivo tumor tissues. The generation of multicellular
spheroids aimed at reproducing the heterogeneous microenvironment of tumor tissue
and its robust desmoplasia in vitro has been reported in various cancer cells, such as
lung [50], ovarian [51], and pancreatic [52] cancers. We also found that the expression of
stem cell markers and tissue regeneration potential of periodontal ligament cell spheroids
are enhanced via coculturing with vascular endothelial cells [22]. Cocultured spheroids
containing endothelial cells and fibroblasts may be able to reproduce the behavior of oral
cancer cells in vitro in a microenvironment similar to that of living organisms. The prolifer-
ative potential and stemness of cells within spheroids change over time [53], suggesting
that they are less robust than organoid cultures. Therefore, reproducing genomic and
multicellular profiles of original tumor tissues is necessary by generating spheroids from
primary oral cancer cells. The generation of tumor spheroids from a patient’s own cells
may enable personalized approaches to screen and select appropriate drugs for patients.

5. Conclusions

The spheroid culture system using our fabricated microwell device can be applied
as a tool to elucidate the molecular mechanisms involved in the transformation of oral
cancer cells into stem cells and development of therapeutic resistance in CSCs. This device
could also be useful in high-throughput analyses (e.g., in the screening of CSC-targeting
drug candidates).
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