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Simple Summary: Osteosarcoma (OS) is the most common bone tumor in the pediatric population.
Currently, no effective molecularly targeted therapies are available for OS. The five-year survival
rate of OS has increased to about 70% since the 1970s but is only 20–30% for patients with metastasis.
The management of OS is challenging and requires a multidisciplinary approach. Surgical excision
and systematic multiagent therapy are standard clinical practices for OS treatment. However, there
is a pressing need to identify novel therapeutic approaches and biomarkers to manage the disease
better. Understanding osteosarcoma’s tumor microenvironment (TME) has recently gained much
interest towards providing valuable insights into tumor heterogeneity, progression, metastasis, and
the identification of novel therapeutic avenues. In this review, we discuss the current understanding
of the OS TME, including different cellular and noncellular components, their crosstalk with OS
tumor cells, and their involvement in tumor progression and metastasis. Discovering more specific
therapeutic targets, determining interactions among cellular and noncellular components of the OS
TME, and using rational combination therapies targeting tumor intrinsic and TME features will
inevitably improve OS patient outcomes.

Abstract: Osteosarcoma (OS) is a heterogeneous, highly metastatic bone malignancy in children and
adolescents. Despite advancements in multimodal treatment strategies, the prognosis for patients
with metastatic or recurrent disease has not improved significantly in the last four decades. OS is
a highly heterogeneous tumor; its genetic background and the mechanism of oncogenesis are not
well defined. Unfortunately, no effective molecular targeted therapy is currently available for this
disease. Understanding osteosarcoma’s tumor microenvironment (TME) has recently gained much
interest among scientists hoping to provide valuable insights into tumor heterogeneity, progres-
sion, metastasis, and the identification of novel therapeutic avenues. Here, we review the current
understanding of the TME of OS, including different cellular and noncellular components, their
crosstalk with OS tumor cells, and their involvement in tumor progression and metastasis. We also
highlight past/current clinical trials targeting the TME of OS for effective therapies and potential
future therapeutic strategies with negligible adverse effects.

Keywords: osteosarcoma; tumor microenvironment; therapeutic strategies; immune cells; nonimmune cells

1. Introduction

Osteosarcoma (OS) is a heterogeneous, highly metastatic bone malignancy with com-
plex genetic and chromosomal alterations, most frequently occurring in children and young
adults [1–3]. The genetic landscape of OS is characterized by a high degree of chromosomal
instability that leads to aneuploidy and recurrent somatic mutations. The copy number loss
at chromosomes 3q, 6q, 9, 10, 13, 17p, and 18q and the copy number gain at chromosomes
1p, 1q, 6p, 8q, and 17p have been reported in OS tumors [4]. Previous studies have shown
that the inactivation of tumor suppressor genes, such as TP53, RB1, and ATRX, and the
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amplification of oncogenes, including MYC and MDM2, are associated with OS pathogene-
sis [4–8]. These genetic alterations can influence the tumor microenvironment (TME) and
contribute to the aggressive behavior of OS.

Despite progress with multimodal treatment approaches, patient outcomes remain
poor for recurrent and metastatic patients, with a five-year survival rate of less than 30%.
The lung is the most common site of metastasis, followed by the bones [3]. Unfortunately,
no durable, effective molecularly targeted therapy for the disease is currently available.
Understanding OS’s TME has recently gained much attention among scientists, hoping
to provide valuable insights into tumor heterogeneity, progression, and metastasis to
target this aggressive tumor type. OS tumors grow in a complex and dynamic bone
microenvironment consisting of bone cells, stromal cells, vascular cells, immune cells,
and mineralized extracellular matrix (ECM). The complex interplay between OS cells and
their adjoining microenvironment plays a critical role in tumor progression, apoptosis,
invasion, metastasis, angiogenesis, creation of the pre-metastatic niche, and response to
therapy [9,10].

The immune landscape of OS is particularly intriguing. Emerging evidence suggests
that the immune system can promote or inhibit OS progression, depending on the context
and cell type [10–12]. For instance, specific immune cells, such as T cells, B cells, and natural
killer (NK) cells, can exert antitumor effects, while others, like myeloid-derived suppressor
cells (MDSCs), M2 macrophages, and regulatory T cells (Tregs), can promote tumor growth
and metastasis. Thus, understanding the intricate interactions between OS and immune
cells is crucial for developing effective immunotherapies [10,13].

In addition to the cellular components, noncellular elements of the TME, such as
the ECM and extracellular vesicles (EVs), also contribute to OS progression and metasta-
sis. The ECM, a three-dimensional network of proteins and polysaccharides, provides a
scaffold for tumor cells, influences their behavior through biomechanical and biochem-
ical cues, and is crucial for modeling and studying drug response [14,15]. By compari-
son, EVs, tiny membrane-bound particles released by cells into the extracellular matrix,
serve as vehicles for intercellular communication, carrying a cargo of proteins, lipids,
and nucleic acids that can alter the phenotype of recipient cells. Additionally, EVs are
involved in cell communication, migration, angiogenesis, and tumor growth [16]. EVs
have been shown to play an essential role in OS development, progression, and metastatic
processes [17–19]. The complexity and diversity of the OS TME exhibit both challenges and
prospects for therapeutic intervention. Emerging strategies aim to target the TME in isola-
tion or combined with conventional therapies in order to disrupt the supportive network
that tumor cells rely on for survival and spread. These include immunotherapies designed
to reactivate antitumor immune responses, antiangiogenic agents to normalize the aberrant
vasculature, and drugs that target the ECM or EVs to disrupt tumor–stroma crosstalk.

In this review, we aim to provide a comprehensive overview of the current under-
standing of the OS TME, focusing on its role in tumor progression and metastasis. We will
delve into the various cellular and noncellular components of the TME, discuss their roles
in OS, and explore potential therapeutic strategies that target the TME. By shedding light
on this complex landscape, we hope to pave the way to develop more effective treatment
strategies for OS.

2. The Tumor Microenvironment of OS

The OS tumor grows in a very complex and dynamic bone microenvironment consist-
ing of cellular and noncellular components, including bone cells (osteoblasts, osteoclasts,
and osteocytes), stromal cells (mesenchymal stem cells and fibroblasts), vascular cells (en-
dothelial cells and pericytes), immune cells (myeloid and lymphoid cells), and mineralized
extracellular matrix (ECM), as shown in Figure 1. Myeloid cells are the most abundant
cell type in the TME of OS. A single-cell analysis showed multiple ligand–receptor inter-
actions between OS tumor, myeloid, and osteoblast cells, including 21 ligand–receptor
gene pairs that are significantly associated with survival outcomes [20]. The TME not
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only provides favorable conditions for tumor cell growth but also releases a range of ele-
ments, including various cytokines, chemokines, and growth factors, that can promote the
metastasis of tumor cells to other tissues and organs [21]. Figure 2 shows the interaction
between tumor cells and various immune cells, including the myeloid and lymphoid cells
in the TME of OS.
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2.1. Bone Cells

Three different bone cells contribute to OS’s bone homeostasis: osteoblast cells, osteo-
clast cells, and osteocytes. Osteoblast cells are bone-forming, whereas osteoclast cells are
bone-resorbing, and osteocytes are mature bone cells.

2.1.1. Osteoblast Cells

Osteoblasts (OBs) are bone-forming cells originating from the pluripotent mesenchy-
mal stem cells. Specific cytokines promote osteoblastogenesis, including interferon-γ
(IFN-γ), interleukin-10 (IL-10), IL-11, IL-18, cardiotrophin-1, and oncostatin M. In contrast,
IL-4, IL-7, IL-12, IL-13, IL-23, tumor necrosis factor-α (TNF-α), TNF-β, IL-1α, IFN-α, and
IFN-β obstruct it [22]. The expression of Runt-related transcription factor 2 (Runx2) is
essential for OB differentiation and is upregulated in the committed mesenchymal stem
cells and the pro-osteoblasts. RUNX2 regulates FGFR2 and FGFR3, which are necessary for
the proliferation of osteoblast progenitors. In addition, RUNX2 governs Hedgehog, Wnt,
and Pthlh (Pthr1) signaling pathway genes, which induce pro-osteoblasts to commit to the
osteoblast lineage [23,24]. Recently, it has been found that Krüppel-like factor 2 (KLF2), a
zinc-finger DNA-binding transcription factor, regulates osteogenic differentiation and bone
mineralization mediated through RUNX2 [25,26].

OBs can affect the formation, differentiation, or apoptosis of osteoclasts (OCs) through
several pathways, including the OPG/RANKL/RANK, RANKL/LGR4/RANK, Ephrin2/
ephB4, and Fas/FasL pathways [27]. OBs communicate with OS through OB-derived
extracellular vesicles (OB-EVs) to regulate the TME of OS [28].
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2.1.2. Osteoclast Cells

The OCs are specialized cells responsible for bone resorption that originate from
myeloid precursor cells [20]. OCs communicate closely with osteoblasts and osteocytes
under normal physiological conditions and play a vital role in maintaining bone homeosta-
sis [29,30]. Under pathological conditions, OCs play an active role in OS tumorigenesis and
metastasis [31]. The cytokines colony-stimulating factor 1 (CSF1) and receptor activator of
nuclear factor kappa B ligand (RANKL) are essential and sufficient for the differentiation
and activation of OCs [32–34]. The cytokine CSF1 is involved in the proliferation and
survival of pre-osteoclast (POC) cells. RANKL drives the differentiation of OC precursor
cells into mature OCs by controlling gene expression through the activation of its recep-
tor, RANK [35]. OS cells regulate OC migration, resorption, and osteoclastogenesis by
secreting EVs, which is mediated through the regulation of the PTEN/PI3K/AKT pathway,
miR-19a-3p, and the cytokines CSF1 and RANKL [21,36].

The role of OCs in OS tumor progression and metastasis is still an active area of
investigation. Immunohistochemistry (IHC) staining and mRNA expression of TRACP5,
an OC cell surface marker, were relatively low in OS patient samples compared to healthy
controls, which suggests a negative correlation between OS development and a high OC
population. Additionally, higher OC-retained patients exhibit better chemotherapy efficacy
compared to patients with a low population of OCs in the TME of OS [37]. However, the
underlying mechanism of the inhibition of generation and maturation of OCs by chemore-
sistant malignant tumors remains to be explored. Compared to primary osteoblastic OS
lesions, lower OC infiltration is observed in chondroblastic, recurrent, and lung metastatic
samples of OS lesions [38]. Li et al. found that OCs can function like antigen-presenting
cells (APCs), similar to dendritic cells, to activate CD4+ and CD8+ T cells [39].

Interestingly, OCs can exhibit antitumor activity, while several reports have also
demonstrated their tumor-promoting functions. Li et al. revealed that cell–cell communica-
tion between OCs and CD4+ Tregs alters the TME of OS, which is associated with a poor
prognosis [40]. In one study, zoledronic acid (ZA) treatment enhanced the antitumor effect
of cisplatin on OS by targeting the ROS-PI3K/AKT signaling pathways, which suggests
a possibility for combining ZA with other chemotherapeutic reagents, such as cisplatin,
as a target against OS [41]. However, contrary results were reported in several clinical
studies where the loss of OCs using ZA showed more highly metastatic disease than in
the control group. In contrast, enhancing the OC population using fulvestrant treatment
reduces metastatic lesions [42,43]. It is hypothesized that the role of OCs varies depending
on the stage of OS progression. In the primary tumor, OCs may provide a niche within the
bone that nurtures the OS cells and suppresses metastasis. In the later stages, loss of OCs
may favor metastatic spread [44]. More extensive studies are needed to understand the
pathophysiological role of OCs in OS progression and metastasis before using OCs as a
therapeutic target for OS patients.

2.1.3. Osteocytes

Osteocytes are mature, mineralized bone cells that are derived from osteoblast cells.
They are the most abundant cell type in bone, with an estimated half-life of 25 years. Previ-
ously, osteocytes were believed to be passive cells. However, multifunctional roles have
recently been reported, including coordinating bone formation and reabsorption, sensing
the mechanical force in bone, etc. Osteocytes communicate with OS cells by secreting
several soluble factors, including GDF15, TGFβ, CXCL1/2, and VEGFA, as well as through
physical interactions (e.g., NOTCH3 signaling). Osteocytes also produce RANKL, CSF1,
HMGB1, and IL-11 to stimulate osteoclastogenesis and bone resorption [45]. Osteocytes
activate the CXCL12-CXCR4 signaling axis in OS by producing CXCL12, favoring tumor
metastasis. Although osteocytes can potentially establish bone metastasis and homing to
specific areas of the bone, further research is required to determine osteocytes’ particular
contribution to the relocation and homing of cancer cells to bone.
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2.2. Mesenchymal Stem Cells

Mesenchymal stem cells (MSCs) and osteoblast cells are considered potential precur-
sors of OS cells [46]. Studies have shown that MSCs act as sensors between OS tumor cells
and the TME by releasing several cytokines, chemokines, interleukins, and EVs. MSCs
actively participate in paracrine signaling with OS tumor cells, impacting diverse aspects
of tumor behavior, including angiogenesis, proliferation, invasion, metastasis, immune
modulation, and chemotherapeutic resistance [46]. MSCs promote OS growth, metas-
tasis, and angiogenesis by secreting various chemokines, including chemokine ligand 5
(CCL5), stromal-derived factor 1 (SDF-1), CXCL12, IL-6, and VEGF [46]. The EVs re-
leased by both OS cells and MSCs mediate intercellular communication by transporting
miRNAs/RNAs and proteins. Bone marrow mesenchymal stem cell-derived extracellu-
lar vesicles (BMSC-EVs) promote OS cell proliferation, invasion, and migration via the
MALAT1/miR-143/NRSN2/Wnt/β-catenin axis and miR-655-mediated β-catenin signal-
ing [47,48]. A cytokine-like hormone, leptin, highly expressed in MSCs, shapes the OS
TME by enhancing autophagy, promoting chemoresistance and OS cell survival, medi-
ated through TGF-β upregulation [49]. Additionally, BMSC-derived exosomes have been
implicated in promoting OS tumorigenesis and metastasis by inducing autophagy [50].
Although MSCs have the potential for therapeutic interventions, such as bone regenera-
tion and engineered protein delivery, there is continued debate about their precise role
in OS development, owing to complexities in differentiating MSCs from osteoblasts and
understanding their dual role [51]. Utilizing the potential of MSCs, engineered extracel-
lular microvesicles encapsulating chemotherapeutic drugs, including doxorubicin, have
emerged as a promising nanocarrier for targeted OS therapy, exhibiting superior specificity,
biocompatibility, and reduced toxicity [52]. Furthermore, exosomal microRNAs from bone
marrow-derived MSCs contribute to a dual role in OS, with miR-208a and miR-21-5p
promoting proliferation, migration, and invasion [53,54]. Concurrently, miR-206 inhibits
OS progression by targeting TRA2B, highlighting potential therapeutic avenues [55].

2.3. The Immune Landscape of OS
2.3.1. Lymphoid Cells

Lymphoid cells originate from hemopoietic stem cells. There are three major types
of lymphocytes: B lymphocytes or B cells, T lymphocytes or T cells, and natural killer
cells (NK cells). B cells develop in the bone marrow and are responsible for antibody
production. T cells mature in the thymus and have cell surface receptors to recognize
antigens bound to the major histocompatibility complex (MHC). NK cells arise from bone
marrow; are stimulated by specific cytokines, including interferon-gamma; and recognize
and attack “non-self” cells, including cancer cells. Lymphoid cells play an essential role
in OS tumorigenesis and metastasis. Here, we discuss the role of different lymphoid cell
types in OS tumor progression and metastasis.

T Cells

T cells are essential for both cellular and humoral immunity. Their infiltration of
the TME plays a critical role in antitumor immunity in several tumor types, including
OS [10,11,56]. Heterogeneous T cell subsets in the TME of OS have distinct functions:
cytotoxic T cells (CD8+) directly attack cancer cells, whereas helper T cells (CD4+) orches-
trate the immune response, and regulatory T cells (Tregs) suppress the immune response,
promoting tumor growth [57]. Recent studies have shown a complex interplay between
tumor cells and T cells in the TME of OS. Wu et al. conducted a comprehensive analysis,
revealing a complex immune landscape in OS with diverse immune cell infiltration and
checkpoint expression [58]. Liu et al. discovered an immune evasion mechanism where the
OS cells express PD-L1 and block T cell function, evading immune surveillance [11].

The TME of OS not only influences T cell function and immunosuppression but
can also impact T cell trafficking and infiltration. Factors such as chemokines, adhesion
molecules, and the extracellular matrix can regulate T cell migration into the TME [10,56].
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The chemokine CXCL12 and its receptor CXCR4 have been implicated in T cell trafficking
in OS [10]. Therefore, strategies to enhance T-cell infiltration could potentially improve the
efficacy of T cell-based therapies [59]. However, the effectiveness of T cell-based therapies
in OS is often limited by the immunosuppressive TME, especially by the infiltration of Tregs
and myeloid-derived suppressor cells (MDSCs) [56,58]. Therefore, strategies to modulate
the TME and enhance T cell function are crucial for improving the efficacy of T cell-based
therapies in OS.

B Cells

B cells are vital to adaptive immunity and significantly impact the OS TME by produc-
ing antibodies, presenting antigens, and secreting cytokines. Most of the literature suggests
that B cells promote tumor progression; however, recent investigations have demonstrated
the close association of B cells with the prognosis of OS patients and the response to im-
munotherapy [15,18]. Recently, Petitprez et al. reported that B cells were the most decisive
prognostic factor in improved survival and a high response rate to PD1 blockade in a
phase 2 clinical trial of soft-tissue sarcoma [60,61]. On the contrary, Kendal et al. explored
the dual role of B cells in cancer progression, highlighting their capacity to either promote
tumor growth by secreting immunosuppressive cytokines and promoting regulatory T
cell formation or to inhibit tumor growth through antigen presentation and antibody pro-
duction [62]. Moreover, the function of B cells in OS is closely related to the presence and
function of other immune cells. Circulating follicular helper T cell (Tfh) abnormality leads
to altered B cell maturation and differentiation that is displayed in OS patients. The Tfh cells
are crucial for B cell maturation and antibody production [63]. This study suggested that the
interaction between Tfh cells and B cells could be a potential therapeutic target in OS. Wang
et al. investigated the effect of miR-138 on the function of Tfh cells and the differentiation
of B cells in OS [64]. This study found that miR-138 could regulate the function of Tfh cells,
thereby affecting the differentiation of B cells. This finding further underscores the intricate
relationship between B cells and other immune cells in the context of OS [65]. Furthermore,
Bod et al. discussed the role of B cell-specific checkpoint molecules in regulating antitumor
immunity [66]. They found that certain checkpoint molecules expressed on B cells can
inhibit B cell function and promote tumor growth. Therefore, targeting these checkpoint
molecules could enhance the antitumor activity of B cells. Recent research underscores
B cells’ complex role in OS. Zhang et al. used single-cell RNA sequencing to investigate
the effect of B cells on the prognosis and immune cell infiltration of OS. Two of the B cell
marker genes in OS, RPL37A and MEF2C, were associated with a poor prognosis, while the
marker genes PLD3 and SNX2 were associated with a good prognosis [67].

B cells influence disease progression, interact with other immune cells, and hold
promise as prognostic markers. Further research is needed to understand the significance
of their role in OS progression and the development of novel therapeutic strategies.

NK Cells

Natural killer (NK) cells, critical components of the innate immune system, play a vital
role in the immune response against OS by recognizing and eliminating malignant cells
without prior sensitization [68–70]. NK cells are characterized by their cytotoxic activity
and the production of cytokines, such as interferon-gamma (IFN-γ), which can modulate
the TME and enhance antitumor responses. However, the TME of OS is complex and can
influence the function and efficacy of NK cells [71,72]. A study by Liu et al. revealed a
novel immune evasion mechanism in OS at the single-cell level, noting that the TME of OS
is characterized by a high degree of heterogeneity, with NK cells comprising a considerable
proportion of immune cells in the TME. Despite their high presence, NK cells in the TME
of OS often exhibit functional exhaustion, characterized by decreased cytotoxic activity
and cytokine production [11]. This exhaustion can be attributed to various factors, such as
dysregulated NK cell receptor signaling, the immunosuppressive effect of regulatory cells
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in the TME, the interaction with other immune cells, the expression of immune checkpoint
molecules, and soluble factors in the microenvironment [11,56,57,73].

Recent studies have highlighted the potential of NK cell-based immunotherapies in
OS. For instance, Rademacher et al. demonstrated that overexpression of interleukin-12
(IL-12) in sarcoma cells can enhance NK cell immunomodulation, leading to increased
cytotoxicity against tumor cells [74]. Similarly, Omer et al. emphasized the potential of
NK cell targeting in pediatric sarcoma, suggesting that enhancing NK cell function could
improve therapeutic outcomes [75]. Moreover, Chu et al. showed that the combination
of N-803 (an IL-15 superagonist) and dinutuximab (an anti-GD2 antibody) with ex vivo
expanded NK cells significantly enhances in vitro cytotoxicity against GD2+ pediatric
solid tumors and improves the survival of xenografted immunodeficient NSG mice [76].
This suggests that strategies aimed at improving the function and survival of NK cells
could be beneficial in OS treatment. Another promising approach is the inhibition of
TIGIT, an immune checkpoint molecule expressed in NK cells. Judge et al. showed
that the combination of IL-15 stimulation and TIGIT blockade significantly enhances the
antitumor activity of NK cells in soft-tissue sarcomas [77]. Furthermore, a study by Lu et al.
revealed that panobinostat, a histone deacetylase inhibitor, can enhance NK cell cytotoxicity
in soft-tissue sarcomas, suggesting its potential use in combination with NK cell-based
immunotherapies [78].

Although NK cells hold great promise for future OS treatment, several challenges,
including the heterogeneity of the OS TME, the immunosuppressive mechanisms employed
by the tumor, and the potential toxicity of NK cell-based therapies, need to be carefully
considered when designing future therapeutic strategies.

2.3.2. Myeloid Cells

Myeloid cells derive from hematopoietic stem cells in the bone marrow [79], which
include granulocytes, monocytes, macrophages, and dendritic cells (DCs) [80]. Myeloid
cells in OS have various roles for tumor development and metastasis, depending on the cell
type. Such roles include phagocytosis, inflammation, migration, or the adaptive immune
system’s activation of a T cell response [81].

Monocytes

Monocytes are antigen-presenting cells (APCs) that can communicate between the
innate and adaptive immune systems. This cell type can differentiate into macrophages
or dendritic cells [81]. Monocytes are one of the cell types that produce the chemokine
monocyte chemoattractant protein-1 (MCP-1), which is associated with tumor cell growth,
migration, invasion, and metastasis in several types of cancer. In vitro studies revealed a
strong correlation between MCP-1 production and cell migration in OS [82]. Monocytes
expressing the CCR2 receptor are recruited to sites of metastases by the chemoattractant
cytokine CCL2, suggesting that this interaction can provide a mechanism for the targeted
treatment of pulmonary metastasis. Losartan is an angiotensin II type I receptor (AT1R)
antagonist found to inhibit CCR2 signaling, resulting in reduced monocyte recruitment [83].
In canine models of lung metastatic OS, combined treatment with high-dose losartan and
the tumor-targeted multikinase inhibitor toceranib effectively reduced advanced lung
metastases in 50% of the dogs receiving treatment [84]. Furthermore, patrolling monocytes
(PMOs) are a monocyte subtype exhibiting antitumor activity in OS. PMOs are enriched in
the pulmonary microvasculature and have been shown to prevent cancer cell migration
and promote the recruitment and activation of natural killer cells [85].

Macrophages

Macrophages are some of the most abundant immune cells in the TME of OS and
play multifunctional roles in tissue homeostasis, host defense, tissue repair, and apoptosis
by releasing various growth factors, cytokines, chemokines, and enzymes [86,87]. The
role of macrophages in OS tumor progression shows contrasting results depending on
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their polarization. These highly plastic cells can be influenced by external stimuli and
their surrounding environment and polarize into M1- or M2-like macrophages. M1-like
macrophages participate in anticancer adaptive immunity, whereas M2-like macrophages
promote the immune-suppressive TME. Recently, we noted that hyperactivation of Myc re-
duces the macrophage population in the TME of OS in murine models [6,88,89]. The human
TARGET dataset also showed a reduction in the enrichment of the macrophage population
when MYC is highly expressed (https://ocg.cancer.gov/programs/target (accessed on
25 September 2023)). A high macrophage population was also associated with a good prog-
nosis for OS patients [90]. Macrophages play an essential role in inhibiting the initiation
and development of OS. Reorienting and polarizing tumor-associated macrophages toward
M1-like macrophages is the holy grail of macrophage-mediated cancer therapy [91,92]. Due
to their plasticity and heterogeneity, tumor-associated macrophages (TAMs) have shown
both pro- and antitumor activity according to the tumor type and the interactions between
TAMs and other cell types in the TME [93,94]. Emerging studies have found that TAMs can
mediate immunosuppression via interaction with various immune effector cells. It is re-
ported that TAMs express the ligand PD-1 and cytotoxic T lymphocyte-associated antigen-4
(CTLA-4), inhibiting T cell activation. Studies have found that TAMs can also be involved in
the recruitment of Treg cells into tumor tissues and in establishing pre-metastatic niches to
the distal organs [95,96]. TAMs are also involved in the secretion of various pro-angiogenic
factors, such as vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF),
and matrix metallopeptidase 9 (MMP-9), associated with tumor angiogenesis [97]. Before
using TAMs as a therapeutic target, further study on the roles of macrophages in OS pro-
gression and metastasis must be accomplished. Macrophages are grouped into two major
categories: the subtype that releases proinflammatory cytokines that lead to antimicrobial
or antitumor activity is called the M1-macrophage. The other macrophage subtype that
releases anti-inflammatory cytokines and supports tumor growth, invasion, and metastasis
is called the M2-macrophage [81].

• M1-Macrophages

M1 macrophages produce inducible nitric oxide synthase (iNOS) and express cytokines
that induce the development of type-1 helper T cells [98]. These proinflammatory cytokines
include interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) [99]. Once
activated, these macrophages secrete chemokines that target proliferating tumor cells [100].
M1 macrophage-related genes can be biomarkers to assess high- and low-risk groups
for individuals with OS. These genes are CD37, GABRD, and ARHGAP25, with roles in
tumorigenesis and disease progression [99].

• M2-Macrophages

M2 macrophages are involved in immune suppression, tissue remodeling, tumor
progression, and angiogenesis [98]. M2 macrophages facilitate OS metastasis by secreting
CCL18, MMP-12, cyclooxygenase 2 (COX-2), and IL-1β [101–103]. T cell immunoglobulin
and mucin domain (Tim) family of protein, Tim-3, was found to promote M2 macrophage
polarization, leading to invasion and metastasis of OS cells [104]. Han et al. identified
that IL-1β secreted by M2 macrophages contributes to OS metastasis, mediated through
the NF-κB/miR-181α-5p/RASSF1A/Wnt pathway [105]. Aberrant methylation at the
promoter of RASSF1A, or Ras association domain family 1A, contributes to the pathogenesis
of several types of pediatric tumors, including OS. A potential therapeutic method to
minimize M2 macrophage polarization is treatment with all-trans retinoic acid (ATRA).
ATRA can directly inhibit M2 macrophage polarization to delay OS initiation by inhibiting
colony and osteosphere formation [106]. Since the repolarization of M2-like macrophages
to M1-like macrophages could be achieved with various strategies, this is emerging as
an innovative anticancer approach [100]. When M2 macrophages are treated with the
terpenoid compound asiaticoside (ATS), the expression of M2 macrophage markers is
reduced, with no change in the expression of M1 markers, suggesting that treatment with
ATS can repolarize M2 macrophages to M1 macrophages [107]. Alternatively, graphene

https://ocg.cancer.gov/programs/target
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oxide (GO), used for photothermal therapy (PTT), and mifamurtide, a synthetic analog
of the cell wall in bacteria, have been shown to repolarize macrophages and suppress the
progression of OS [100].

Dendritic Cells

Dendritic cells (DCs) act as professional antigen-presenting cells (APCs) that con-
tribute to antigen-specific adaptive immunity with a role in T-cell priming, activation, and
differentiation [108]. Depending on their origin, four distinct subclusters of DCs have
been identified in OS lesions: monocyte-derived CD14+CD163+ DCs, the conventional
myeloid-derived CD1+ DCs (cDC2s), CD141+CLEC9A+ DCs (cDC1s), and the activated
CCR7+ DCs [38]. DCs produce interferon type 1α (IFN-1α) and IFN-1β, which are asso-
ciated with antitumor and antiviral response [109]. Kawano et al. revealed that a murine
OS model treated with doxorubicin and DCs exhibited increased levels of immunological
cell death and expression of calreticulin (CRT), heat shock promoter 70 (HSP70), and high
mobility group box 1 (HMGB1), which are involved in the systemic immune response. In
addition, combined treatment resulted in increased cytotoxic T cells within metastases,
inhibiting metastatic growth [110]. Single-cell RNA sequencing (scRNA-seq) data showed
that a cluster of regulatory DCs might shape the immunosuppressive microenvironment
in OS by recruiting regulatory T cells [11]. Similarly, murine models of metastatic OS
that were treated with DCs exposed to cryo-treated tumor lysates and injected with anti-
transforming growth factor-β (anti-TGF-β) antibody demonstrated reduced metastatic
tumor volume, decreased regulatory T cells, and an increase in cytotoxic T cells [111]. As
another potential therapeutic target, the transcription factor recombination signal binding
protein for immunoglobulin kappa J region (RBP-J) is crucial for regulating DC synthe-
sis and is involved in DC-dependent antitumor immune responses. Furthermore, when
photodynamic therapy (PDT) is used as a treatment for OS, this improves the function
of DCs for antigen processing and presentation to activate T cell-mediated immunity by
upregulating HSP70 [112]. These studies provide meaningful insights into the regulatory
pathways contributing to the antitumor response of DCs in OS. OS tumors treated with
DCs combined with anti-glucocorticoid-induced tumor necrosis factor receptor (GITR)
antibodies produce reduced levels of immunosuppressive cytokines and show antitumor
effects. Moreover, a single-cell RNAseq study showed that a high infiltration of resting
DCs in OS tumors was associated with poor prognosis [113].

Neutrophils

Tumor-associated neutrophils (TANs) are strongly correlated with tumor progression
and metastasis in OS. TANs have been found to infiltrate primary OS as well as metastatic
and recurrent OS [114]. Tokgöz et al. revealed that the neutrophil-to-lymphocyte ratio
(NLR) in the peripheral blood of OS patients provides diagnostic and prognostic value,
with a high NLR being associated with poor prognosis. Conversely, a low NLR indicates a
better response to neoadjuvant chemotherapy and a higher pathological complete response
rate [115]. Minimizing the presence of TANs in the TME of OS to reduce tumor progression
and metastatic potential offers a promising therapeutic strategy.

MDSCs

Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that are piv-
otal in tumor-associated immune suppression by differentiating into tumor-associated
DCs, TAMs, and TANs [116]. MDSCs can suppress the innate and acquired immune
system by suppressing T cells, NK cells, and dendritic cell functions while activating
FoxP3+ Treg cells [117]. The cytokine IL-17 could be involved in the immune-suppressive
function of MDSCs on T cells through the upregulation of ARG-1, MMP-9, indoleamine
2,3-dioxygenase (IDO), and COX-2 [118]. MDSCs interact closely with T lymphocytes and
prevent T cell-mediated immunity by producing reactive oxygen species (ROS), ablating
L-arginine, and suppressing T cell proliferation [117]. MDSCs can also generate ROS by
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upregulating nicotinamide adenine dinucleotide phosphate (NADP) oxidase and increasing
STAT-3 activation. In addition, MDSCs hinder the antigen presentation of DCs and induce
phagocytosis of NK cells, leading to immune suppression [119]. Furthermore, MDSCs
influence tumor progression and metastasis by forming a pre-metastatic niche, promoting
angiogenesis and tumor cell invasion by producing higher levels of FGF, VEGF, VEGF ana-
log Bv8, and MMP-9 [116,120,121]. A study of leukocyte populations, including myeloid
cell types, in canine models of OS revealed that percentages of polymorphonuclear myeloid-
derived suppressor cells (PMN-MDSCs) and monocytic (M-) MDSCs were increased in
dogs with OS [122]. Shi et al. identified the compound (S)-(−)-N-[2-(3-Hydroxy-1H-indol-
3-yl)-methyl]-acetamide (SNA) isolated from the plant Selaginella pulvinata as an inhibitor
of phosphatidylinositide 3-kinases (PI3Ks), which are known to activate MDSCs. SNA
treatment of in vivo murine models of OS demonstrated decreased functional activity
of MDSCs. Combination treatment with SNA and anti-programmed cell death-1 (PD-1)
antibody slowed OS tumor growth and improved survival by inhibiting MDSCs [123].
Thus, targeting MDSCs is an emerging therapeutic approach for OS.

2.4. Mast Cells

Mast cells in OS contribute to poor prognosis and tumor progression by promoting
angiogenesis, extracellular matrix degradation, and tissue remodeling by producing angio-
genic factors and proteases [124]. Lei et al. have identified a distinct nine-gene signature
(ZFP90, UHRF2, SELPLG, PLD3, PLCB4, IFNGR1, DLEU2, ATP6V1E1, and ANXA5) that
can accurately predict OS outcome and is strongly linked to activated mast cells [125].
Mast cells are primarily concentrated and sustained by cancer cells at the bone–tumor
interface in OS. Mast cells are involved in local inflammation, immune cell recruitment,
and osteoclastogenesis, indicating their role in OS progression and tissue repair. Mast cells
potentially contribute to osteolysis through RANKL secretion [61]. In OS patients, activated
mast cells display a complex phenomenon. Their presence is positively correlated with
activated NK cells; however, mast cells are negatively correlated with M2 macrophages
and memory B cells. Additionally, reduced infiltration of activated mast cells and DCs is
associated with improved prognosis in OS patients [126]. Therefore, it is evident that the
role of mast cells in shaping the OS microenvironment by regulating macrophage subtypes
(M0, M1, and M2) and their impact on disease prognosis highlights their relevance as a
potential therapeutic biomarker [126].

2.5. The Vasculature of the OS

Vascularization is driven by sprouting neoangiogenesis involving endothelial pro-
genitor cells (EPCs), which play a vital role in OS growth and dissemination. Amplified
VEGF pathway genes, particularly VEGF-A, are associated with advanced tumor stages
and metastasis [127]. Hypoxic and acidic bone microenvironments contribute to the ex-
pression of angiogenic factors, while aggressive OS cells may utilize vascular mimicry,
forming vasculogenic microchannels [128,129]. Tumor-derived EVs, through their cargo
containing angiocrines and angiogenesis-related miRNAs, facilitate intercellular commu-
nication and promote angiogenesis [130]. Therapeutically targeting neovascularization
in OS has been explored through clinical trials using antiangiogenic agents, especially to
inhibit VEGFRs, yielding promising results in increasing progression-free survival [131].
However, challenges remain in effectively targeting tumor cells and the vascular microen-
vironment, as demonstrated by the need for comprehensive strategies such as VEGFR-2
inhibition combined with other therapies. Park et al. targeted the tumor vasculature using
the VEGF blockade, which showed enhanced high endothelial venules in the TME and
substantially enhanced T cell infiltration, significantly improving the therapeutic efficacy
in preclinical models [132]. Novel biomimetic scaffolds designed for coupled angiogenesis
and osteogenesis hold potential for tissue engineering applications, expanding possible
options for treating bone malignancies and defects [133]. Exosomes, acting as regulators
of angiogenesis, downregulate exosomal lncRNA OIP5-AS1, potentially affecting angio-
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genesis through ATG5- and mir-153-mediated autophagy, suggesting new avenues for
understanding tumor development and prognosis [130]. The convergence of these insights
highlights the multifaceted impact of vasculature on OS behavior, indicating innovative
strategies for therapeutic intervention and prognosis prediction.

2.6. The ECM of the OS Tumor

OS is characterized by its hallmark production of a rich ECM that influences tumor
behavior and therapeutic responses [14,134,135]. The ECM includes components such as
collagens, fibronectin, and laminins that contribute to aberrant signaling and structural ab-
normalities that promote sarcoma growth and also contribute to metastasis through distinct
and interrelated mechanisms, including the interaction with cellular receptors associated
with signaling pathways [14]. The ECM also modulates the insulin-like growth factor (IGF)
axis, which regulates OS growth and resistance to conventional therapies [134]. Moreover,
emerging research explores the potential for targeting the ECM in OS treatment. Hydrogels,
resembling the ECM, can deliver therapeutic agents, offering a platform for OS therapy
and bone regeneration [136]. Furthermore, the disruption of ECM-related factors such
as neural EGF-like molecule 1 (NELL1) shows potential as a novel therapeutic approach
to hinder OS progression [135]. Meanwhile, the crucial role of matrix metalloproteinases
(MMPs) and their inhibition, exemplified by doxycycline treatment, reveals a promising
chemotherapeutic avenue to curb OS aggressiveness by preventing ECM degradation and
inhibiting angiogenesis [16].

The ECM interacts with the TME and cancer-associated fibroblasts (CAFs), contribut-
ing to OS development [135,137]. ECM components, such as EVs, are potential biomarkers
for OS diagnosis and prognosis [138]. Novel approaches, such as 3D bioprinting with
functionalized hydrogels, hold potential for targeted therapies by creating artificial microen-
vironments for improved treatment strategies [139]. Innovative approaches like attIL12-T
cells also show promise by targeting CAFs within the ECM, disrupting tumor stroma, and
favoring T-cell infiltration for enhanced therapy [137]. In conclusion, the significant role of
the extracellular matrix in OS makes it a viable focus for therapeutic strategies.

2.7. Extracellular Vesicles in OS (EVs)

Tumor cells produce EVs that contain cargo, such as microRNA, RNA, and proteins,
to communicate with surrounding cells. This can contribute to an immunosuppressive
TME [140]. A study by Luong et al. revealed that EVs secreted by OS cells and taken
up by monocytes decreased the expression of proinflammatory cytokines and increased
the expression of suppressive cytokines and other suppressive molecules. Research into
circulating nucleic acid sequences associated with EV preparations identified a greater rep-
resentation of repetitive element sequences in sera collected from OS patients at diagnosis
vs. controls [141]. A study into the contribution of EVs for pre-metastatic niche (PMN)
formation in OS demonstrated that tumor-derived EVs are insufficient to establish the
PMN. Therefore, EVs were proposed to function alongside soluble tumor-secreted factors
to regulate metastatic OS progression and PMN formation [142].

Furthermore, EVs and extracellular particles derived from tumor tissue and plasma of
OS patients and healthy controls identified six plasma proteins as biomarkers to distinguish
cancer-patient plasma from control-subject plasma. These proteins—actin, skeletal alpha
(α)-actin (ACTA1), gamma-enteric smooth muscle (ACTG2), a disintegrin and metallopro-
teinase with thrombospondin motifs 13 (ADAMTS13), hepatocyte growth factor activator
(HGFAC), neprilysin (MME), and tenascin C (TNC)—were found only in the plasma iso-
lated from OS patients [143]. Further research is necessary to strengthen our understanding
of the role of EVs in OS tumor progression and metastasis.

2.8. Hypoxia and the Tumor Microenvironment of Osteosarcoma

Hypoxia, characterized by reduced oxygen levels within the TME, arises when rapid
tumor expansion outpaces the vascular supply’s capacity to deliver oxygen [144]. This
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scenario activates various cellular mechanisms, primarily orchestrated by the transcrip-
tional regulator Hypoxia-inducible factor-1α (HIF-1α). HIF-1α, under hypoxic conditions,
governs cellular responses pivotal to tumorigenesis and metastasis. In a compelling study,
Zhang et al. elucidated the profound impact of a hypoxia-immune-related microenviron-
ment on OS prognosis. They delineated how hypoxic conditions actively modulate immune
cell infiltration, a phenomenon with significant ramifications for patient outcomes, and
identified seven hypoxia- and immune-related genes, including BNIP3, SLC38A5, SLC5A3,
CKMT2, S100A3, CXCL11, and PGM1, associated with the prognostic signature [145].
Fu et al. crafted a hypoxia-associated prognostic signature directly correlated with OS
metastasis and immune infiltration [146]. Their findings offer insights into hypoxia’s multi-
faceted role, demonstrating its capacity to drive metastasis while simultaneously reshaping
the immune landscape. Addressing hypoxia’s therapeutic potential, Chen et al. pro-
posed an innovative strategy. They introduced Polydopamine-coated UiO-66 nanoparticles
loaded with therapeutic agents designed explicitly for hypoxia-activated OS therapy [147].
Their approach capitalizes on the hypoxic environment, ensuring targeted drug activation
within the tumor region. Furthermore, the intricate interplay between hypoxia and cellular
signaling pathways has been spotlighted. For instance, He et al. showcased that zinc oxide
nanoparticles could be harnessed to inhibit OS metastasis. They achieved this by perturbing
the HIF-1α/BNIP3/LC3B-mediated mitophagy pathway, underscoring the therapeutic po-
tential of targeting hypoxia-driven molecular routes [148]. Integrating therapy modalities,
Zhao et al. elegantly demonstrated the enhanced efficacy achieved by coupling a hypoxia
inhibitor with conventional chemotherapeutic agents. Their approach bolstered both an-
titumor and antimetastatic responses against OS, emphasizing the potential of targeting
the hypoxic TME to improve therapeutic outcomes [149]. Deepening our understanding
of the molecular intricacies of hypoxia, Han et al. conducted an extensive analysis of
hypoxia-associated genes in OS [150]. Their results underscored the prognostic significance
while highlighting their influence on the immune status and potential therapeutic avenues.
Further illuminating hypoxia’s diverse impact, Shen et al. identified a feedback mechanism
involving circular RNA Hsa_circ_0000566 and HIF-1α. This interaction fosters OS progres-
sion and promotes a shift in cellular metabolism towards glycolysis [151]. Highlighting
the protective mechanisms tumors employ, Lu et al. discovered that in hypoxic OS cells,
FOXO3a-driven upregulation of HSP90 can shield cells from cisplatin-induced apoptosis.
This is achieved by stimulating FUNDC1-mediated mitophagy, emphasizing the challenges
posed by hypoxia in cancer therapy [152]. In a recent contribution by Zheng et al., hy-
poxia’s role in metabolic reprogramming was spotlighted. Their work demonstrated that
suppressing lncRNA DLGAP1-AS2 hinders OS progression by inhibiting aerobic glycolysis
through the miR-451a/HK2 axis [153]. Recently, Subasinghe mapped hypoxia in real time
in in vivo orthotopic syngeneic tumors to improve radiographic mapping, which is critical
to the study of cancer and a wide range of diseases [154]. In summation, the hypoxic TME
in OS emerges as a central player, orchestrating tumor progression, metastasis, immune
modulation, metabolic shifts, and therapeutic responses. Delving into its intricacies offers a
promising frontier for innovative therapeutic strategies in OS.

2.9. Epithelial-to-Mesenchymal Transformation and the Osteosarcoma Tumor Microenvironment

Epithelial-to-mesenchymal transition (EMT) is a highly complex and regulated path-
way where the phenotype of the epithelial cells transforms into mesenchymal characteris-
tics [155]. As OS cells originate from the mesenchymal cells, EMT pathways in OS are more
likely associated with maintaining and promoting the mesenchymal phenotype. Gong et al.
reported seven novel EMT-related genes for OS outcome prediction, including CDK3, MYC,
UHRF2, STC2, COL5A2, MMD, and EHMT2. A high expression of EMT-related genes was
associated with poor overall and recurrence-free survival compared to the low-expressing
group [156]. The GSVA and GSEA analysis showed a nine-gene set for EMT, including
LAMA3, LGALS1, SGCG, VEGFA, WNT5A, MATN3, ANPEP, FUCA1, and FLNA, as inde-
pendent prognostic markers for OS patient survival [157]. Peng et al. established a positive
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correlation between the expression of EMT-related genes and immunity using GESA and
microarray data analysis. Higher EMT gene expression was associated with poor overall
and recurrence-free survival [158]. The expression of EMT transcriptional factors, includ-
ing TWIST1, SLUG, ZEB1, ZEB2, and SNAIL, is associated with aggressive behavior and
metastasis of OS [155,159,160]. Several miRNAs, including miR-18a-5p, miR-22, miR-33A,
miR-221, miR-300, miR-580-3p, and miR-610, are associated with the regulation of the EMT
in OS cells via targeting TWIST1 [161–166]. Chen et al. demonstrated that HDAC5 promotes
OS tumor progression by upregulating TWIST 1 expression [167]. The overexpression of
ZEB1 is associated with OS tumorigenesis and metastasis, and ZEB1 blocking can suppress
metastasis and prevent OBs’ differentiation into OS cells [168,169]. ZEB1/2 suppression
by long non-coding (lnc)-RNA sprouty receptor tyrosine kinase signaling antagonist 4-
intronic transcript 1 (SPRY4-IT1), mediated through miR-101, showed antitumor activities
in OS [170]. Overexpression of SNAIL-1 was found to be associated with the OS progres-
sion, mediated through the suppression of E-cadherin expression [171]. SIRT2 knockdown
inhibited SNAIL expression and abrogated the migration-and-invasion-promoting pheno-
type in OS [172]. Glaucocalyxin A, a bioactive ent-kauranoid diterpenoid, inhibits OS lung
metastasis by suppressing the protein expression of SNAIL and SLUG [173]. At the same
time, GATA3 suppresses OS progression and metastasis through SLUG regulation [174].
Studies have shown that EMT signaling is vital for maintaining the mesenchymal status of
OS. It is also associated with tumor progression, metastasis, and therapeutic responses, so
targeting EMT pathways may provide new opportunities to identify potential molecular
targets for OS.

2.10. Ferroptosis and the Osteosarcoma Tumor Microenvironment

Ferroptosis is a type of nonapoptotic cell death that is dependent on intracellular iron,
responsible for the accumulation of lethal lipid reactive oxygen species (ROS) [175]. The
mechanism of ferroptosis involves iron-dependent phospholipid peroxidation of polyunsat-
urated fatty acid chains. The enzyme glutathione peroxidase 4 (GPX4) opposes ferroptosis
by inhibiting phospholipid peroxidation [176]. The induction of ferroptosis has been
shown to be effective against rhabdomyosarcoma tumor cells [177]. Similarly, therapeu-
tic approaches meant to initiate ferroptosis can be effective against OS tumors [178]. As
an example, the transcription activator signal transducer and activator of transcription 3
(STAT3) is known to be activated in many cancers, including OS, and contributes to cisplatin
resistance; treatment of OS cisplatin-resistant cell lines in vitro with cisplatin along with
a STAT3 inhibitor (BP-1-102) resulted in increased ferroptosis activity and decreased cell
viability. Furthermore, treatment with the ferroptosis agonists erastin and RSL3 decreased
the cell viability of cisplatin-resistant cell lines following exposure to cisplatin [179]. Thus,
activating ferroptosis can be a reasonable approach to minimize cisplatin resistance in OS.
Lei et al. developed a prognostic model using ferroptosis-related genes to predict the risk
and prognosis of OS patients. In addition, patients in the high-risk group displayed a
lower abundance of immune cells, such as dendritic cells, macrophages, B cells, and CD4+

T cells [180]. The strongest independent prognostic risk genes related to ferroptosis and
immune pathways were found to be WNT16, GLB1L2, CORT, and WAS [181]. Ferroptosis
presents a potential therapeutic target against OS and various other types of cancer.

3. Tumor Microenvironment Modulating and Targeting Therapies in Osteosarcoma

Historically, the treatment of OS was primarily surgical, with amputation as the
standard approach. However, neoadjuvant chemotherapy significantly improved patient
outcomes in the 1970s and 1980s, increasing the 5-year survival rate from less than 20% to
60–70% [182,183]. Despite these advances, the survival rate plateaued in the mid-1980s, and
further improvements have been elusive [184]. Improvements in patient outcomes, espe-
cially for high-risk patients with metastases, have been limited. This stagnation is primarily
due to the complex genetic heterogeneity of OS, which makes developing effective targeted
therapies difficult. In addition, OS is an aggressive disease often associated with metastases
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at diagnosis, further complicating the therapeutic landscape [182,185]. This led to a shift in
focus toward understanding the biology of OS and identifying novel therapeutic targets.

In recent years, immunotherapy has emerged as a promising approach to fight against
OS. Various immunotherapies are currently being explored in clinical trials, including
immune checkpoint inhibitors, cancer vaccines, and adoptive cell therapies (Table 1).
Several examples of immunotherapy clinical trials are presented below.

Table 1. Various therapies targeting tumor microenvironment of osteosarcoma.

Name of Compound Target Pathway Mechanism of Action Phase NCT Number

1. Cytokine-induced killer (CIK) Adoptive
immunotherapy Cytokine-induced killer I NCT03782363

2.
Multicomponent
immune-based therapy
(MKC1106-PP)

Immunotherapy T-cell I NCT00423254

3. Haploidentical transplant and
donor natural killer cells Immunotherapy NK cell activation II NCT02100891

4. GD2-targeted modified T-cells
(GD2 CAR-T) Immunotherapy CAR-T I NCT02107963

5. Activated T cells armed with
GD2 bispecific antibody Immunotherapy CAR-T I/II NCT02173093

6. Pembrolizumab Immunotherapy PD1 II NCT02301039

7. Nivolumab plus ipilimumab Immunotherapy PD1 and CTLA-4 I/II NCT02304458

8. Nivolumab plus ipilimumab Immunotherapy PD1 and CTLA-4 II NCT02500797

9. Durvalumab plus
tremelimumab Immunotherapy PD1 and CTLA-4 II NCT02815995

10. Nivolumab plus ipilimumab Immunotherapy PD1 and CTLA-4 II NCT02982486

11. Avelumab Immunotherapy PDL1 II NCT03006848

12. Avelumab Immunotherapy PDL1 II NCT03006848

13. Pembrolizumab Immunotherapy PD1 II NCT03013127

14. Haploidentical donor NK
cells and Hu14.18-IL2 Immunotherapy NK cell activation I NCT03209869

15. NKTR-214 and nivolumab Immunotherapy PD1 and IL2 agonist II NCT03282344

16. Sarcoma-specific CAR-T cells Immunotherapy CAR-T I/II NCT03356782

17. CAB-AXL-ADC plus PD-1
inhibitor Immunotherapy PD1 I/II NCT03425279

19. C7R-GD2 CAR-T cells Immunotherapy CAR-T I NCT03635632

20. Vigil
Engineered
autologous tumor cell
immunotherapy

GM-CSF, TGFβ-1, and
TGFβ-2 NCT03842865

21. Famitinib plus camrelizumab RTK and checkpoint
inhibition

VEGFR-2, -3 and
FGFR-1, -2, -3, -4 and
PD1/PDL1

II NCT04044378

22. Camrelizumab (PD1) with
neoadjuvant chemotherapy Checkpoint inhibition PD1 II NCT04294511

23. CAR-T plus chemotherapy Immunotherapy CAR-T cells and
sarcoma vaccines I/II NCT04433221

24. B7H3 CAR-T cells Immunotherapy CAR-T, B7H3-specific
receptor I NCT04483778
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Table 1. Cont.

Name of Compound Target Pathway Mechanism of Action Phase NCT Number

18. EGFR806 CAR-T cells Immunotherapy EGFR I NCT03618381

25. GD2-targeted modified T-cells
(GD2 CAR-T) Immunotherapy CAR-T I NCT04539366

26. Oleclumab plus durvalumab Immunotherapy Anti-CD73 monoclonal
antibody and PD-1 II NCT04668300

27. B7H3 CAR-T cells Immunotherapy CSRT, B7H3-specific
receptor I NCT04897321

28. Atezolizumab and
cabozantinib Immunotherapy Immune checkpoint

inhibitor II NCT05019703

29. Tislelizumab Immunotherapy PD1 II NCT05241132

30. Nivolumab plus ipilimumab Immunotherapy PD1 and CTLA-4 II NCT05302921

31. RNA-lipid particle vaccines Cancer vaccine Cancer vaccine I/II NCT05660408

Immune checkpoint inhibitors: In OS, the PD-1/PD-L1 pathway is often upregulated,
leading to immune evasion. Blocking this pathway with anti-PD-1 or anti-PD-L1 antibodies
can enhance the immune response against OS cells [186]. A study of pembrolizumab in
patients with relapsed or metastatic OS not eligible for curative surgery has been conducted
(NCT03013127). Another trial is investigating the use of avelumab in patients with recurrent
or progressive OS (NCT03006848).

Cancer vaccines aim to brace the immune system to attack specific cancer-associated
antigens. In OS, several tumor-associated antigens have been identified and are being
targeted in vaccine trials. A study recruited participants to evaluate RNA-lipid particle
(RNA-LP) vaccines for recurrent pulmonary OS (NCT05660408). Adoptive cell therapies use
genetically engineered immune cells to target cancer cells. CAR-T cell therapy, which uses
T cells engineered to express a chimeric antigen receptor (CAR) that recognizes and targets
a specific antigen in cancer cells, is one of the most promising forms of adoptive cell therapy.
A study evaluated the safety and efficacy of fourth-generation engineered CAR T cells
targeting sarcomas, including OS (NCT03356782). Despite the promising aspect of these
approaches, immunotherapy’s efficacy in OS has been variable, and many patients do not
respond to treatment. This has led to the exploration of combination therapies, which use
multiple treatments to target different aspects of the cancer TME. For example, a study
recruited participants to test the combination of atezolizumab and cabozantinib for treating
adolescents and young adults with recurrent or metastatic OS (NCT05019703).

In conclusion, while significant challenges remain in treating OS, immunotherapy
has opened new avenues for improving patient outcomes. Clinical trials and translational
research are crucial to refine these strategies further and bring us closer to a cure for high-
risk patients. T cell-based immunotherapies, including chimeric antigen receptor (CAR)
T cell therapy, have shown promise in preclinical models of OS [187,188]. For example,
Wang et al. developed an anti-CD166/4-1BB CAR-T cell therapy that showed potent
antitumor activity against OS [189]. Similarly, Lin et al. discussed the potential of CAR-T
cell therapy targeting GD2 or HER2 in OS [188]. Wang et al. showed that alternative
human γδ T cells induce CD8+ T cell antitumor responses via antigen presentation through
the HSP90-MyD88-JNK pathway [190]. B7-H3 targeted CAR-T cells had high antitumor
efficacy against OS in vitro and in vivo [191]. In another study, the human erythropoietin-
producing hepatocellular receptor tyrosine kinase class A2 (EphA2)-directed CAR-T cells
showed antitumor effects against human OS and Ewing sarcoma tumor cells both in vitro
and in vivo. Systemic infusion of EphA2 CAR-T cells traffic to and eradicate tumor deposits
in murine liver and lung metastases [192].
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4. Conclusions and Future Directions

OS patient survival dramatically decreases with therapeutic resistance and metastatic
disease, occurring most frequently in the lungs. OS is a heterogeneous and complex
disease that is still largely understudied. The TME of OS is a complex network of cellular
and acellular components designed by tumor cells to promote successful progression
and metastasis. OS is a highly heterogenous and metastatic bone tumor that remains
challenging to treat, particularly for metastatic patients. A deeper understanding of the
complex dynamics of the OS TME, particularly the diversity of immune cells, real-time
cell–cell communication, and TME components, will help to design better therapeutic
options that are currently lacking for OS patients. Recently, spatial multiomics technologies
have been used to understand the tumor immune cell communication in the TME of
OS. Mathematical models are also being implemented to understand the immune and
cancer cell interactions and the effect of colocalization on OS tumor growth [193,194]. The
challenges associated with OS therapy are limited T cell infiltration and an abundance of
immunosuppressive cells, particularly M2 macrophages, MDSCs, and Treg cells. There is a
high potential for reprogramming the TME components of OS to overcome the prevalent
issue of treatment and immunotherapeutic resistance.

In this review, various aspects of the OS TME, including cellular and acellular com-
ponents, their communication, and their therapeutic possibilities, have been described.
Finding novel immune and nonimmune cell markers, discovering more specific therapeutic
targets, determining interactions among cellular and noncellular components of the OS
TME, and using multidisciplinary knowledge and combination therapy will improve OS
patient outcomes.
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