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Simple Summary: This manuscript focuses on improving the treatment of non-small cell lung cancer,
with actionable gene alterations. The aim is to understand how the treatment with Tyrosine Kinase
Inhibitors (TKIs) can be used and improved. Newer generations of TKIs have better results in
controlling the disease and extending patient survival. These drugs also work better in the brain,
which is crucial for patients with brain metastases. However, there are challenges. The use of newer
TKIs may limit the role of older ones, and resistance to the drugs can emerge. The considerations
from this manuscript suggest that understanding the biology of the tumor and the properties of the
drugs could help develop new treatment strategies and ultimately benefit patients with this type of
lung cancer.

Abstract: Tyrosine kinase inhibitors (TKIs) revolutionized the treatment of patients with advanced or
metastatic non-small cell lung cancer (NSCLC) harboring most driver gene alterations. Starting from
the first generation, research rapidly moved to the development of newer, more selective generations
of TKIs, obtaining improved results in terms of disease control and survival. However, the use of
novel generations of TKIs is not without limitations. We reviewed the main results obtained, as
well as the ongoing clinical trials with TKIs in oncogene-addicted NSCLC, together with the biology
underlying their potential strengths and limitations. Across driver gene alterations, novel generations
of TKIs allowed delayed resistance, prolonged survival, and improved brain penetration compared
to previous generations, although with different toxicity profiles, that generally moved their use from
further lines to the front-line treatment. However, the anticipated positioning of novel generation TKIs
leads to abolishing the possibility of TKI treatment sequencing and any role of previous generations.
In addition, under the selective pressure of such more potent drugs, resistant clones emerge harboring
more complex and hard-to-target resistance mechanisms. Deeper knowledge of tumor biology and
drug properties will help identify new strategies, including combinatorial treatments, to continue
improving results in patients with oncogene-addicted NSCLC.

Keywords: TKI; targeted treatments; lung cancer; resistance; selective pressure

1. Introduction

Lung cancer remains one of the most prevalent and deadly malignancies worldwide,
with non-small cell lung cancer (NSCLC) constituting the majority of cases diagnosed [1].
Over the past few decades, significant strides have been made in understanding the
molecular underpinnings of NSCLC, leading to the identification of driver gene alterations
that have, in turn, transformed the landscape of treatment for this disease. Among these
remarkable advancements, the advent of tyrosine kinase inhibitors (TKIs) has emerged as a
paradigm-shifting approach, offering newfound hope and extended survival to patients
with advanced or metastatic NSCLC harboring specific genetic alterations [2,3].

The landscape of medical oncology has witnessed a revolution triggered by these
targeted therapies, as they have the potential to halt the progression of the disease with
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greater efficacy and fewer adverse effects compared to conventional chemotherapy. Un-
derstanding the historical evolution and ongoing developments of TKIs is crucial for both
clinicians and researchers in the field of medical oncology.

The inception of TKIs in NSCLC therapy began with the first generation of these
agents. Initially designed to target the epidermal growth factor receptor (EGFR), this class
of drugs showed unprecedented promise in a subset of NSCLC patients harboring EGFR
mutations [4]. It was a watershed moment, offering personalized treatment options and
substantially improving outcomes for these individuals. However, the first-generation TKIs,
such as erlotinib and gefitinib, brought with them their own set of limitations, including
the emergence of resistance mechanisms like the p.T790M mutation [5].

Recognizing the need for more potent and selective therapies, researchers swiftly
moved forward in the development of subsequent generations of TKIs. These newer
iterations promised enhanced specificity for their respective targets and a greater ability to
circumvent resistance mechanisms [6].

Despite these remarkable advancements, the utilization of novel generations of TKIs
is not without its complexities and challenges. Resistance remains a persistent issue, neces-
sitating ongoing research into more effective treatment strategies [7–9]. Additionally, the
optimal sequencing of these agents and their integration into the treatment landscape of
NSCLC requires careful consideration (Figure 1). The identification of predictive biomark-
ers and the management of adverse effects associated with TKI therapy are also areas of
active investigation [10].
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Figure 1. Current treatment options in advanced NSCLC according to molecular gene test-
ing. Novel generations of TKIs, where available, were initially positioned in a therapeu-
tic sequence, but they are established as front-line treatments across driver mutations. Drug
classes: Tyrosine kinase inhibitors: Osimertinib, gefitinib, erlotinib, afatinib, dacomitinib, mobo-
certinib, alectinib, brigatinib, lorlatinib, ceritinib, crizotinib, entrectinib, selpercatinib, pralse-
tinib, capmatinib, tepotinib, larotrectinib|small molecule inhibitors: dabrafenib, trametinib, so-
torasib, adagrasib|bispecific antibodies: amivantamab|Antibody-drug conjugates: trastuzumab-
deruxtecan|Abbreviations: CT = chemotherapy; Atezo = atezolizumab; Pembro = pembrolizumab;
Nivo = nivolumab|Ipi = ipilimumab|beva = bevacizumab.
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This review manuscript will provide a thorough analysis of the strengths and lim-
itations associated with the use of TKIs in NSCLC with oncogene addiction. We will
explore the pivotal clinical trials that have shaped the current treatment paradigm and
shed light on the emerging therapies currently under investigation. Furthermore, we
will delve into the intricate biology underlying the potential strengths and limitations of
these agents, unraveling the complex interplay between oncogenic signaling pathways and
therapeutic interventions.

2. Novel Generations of TKIs for NSCLC in Clinical Practice
2.1. Efficacy

Since the advent of the first-generation TKIs, erlotinib and gefitinib, for the treatment
of patients with EGFR-sensitizing mutations, an enduring paradigm shift towards precision
oncology has guided the development of more potent and specific TKIs to overcome
intrinsic and acquired resistance mechanisms responsible to treatment failure (efficacy
results of novel generation TKIs in clinical practice are shown in Table 1).

Second-generation TKIs afatinib and dacomitinib improved clinical outcomes com-
pared to platinum-based chemotherapy (PBC) and first-generation TKIs in patients with
EGFR-sensitizing mutations [11–16]. Moreover, in a pooled analysis of the LUX-Lung
trials, afatinib was also active in tumors with uncommon EGFR mutations, although the
clinical benefit was lower in patients with de novo T790M and exon-20 insertion muta-
tions [17]. However, after these molecules entered clinical practice, the occurrence of severe
adverse events (AEs), mostly skin rash and diarrhea, due to the inhibition of wild-type
EGFR narrowed the therapeutic window that was needed to effectively overcome acquired
resistance mechanisms, especially the T790M mutation. To address this shortcoming,
the third-generation osimertinib was developed to specifically target the EGFR-T790M
mutation while retaining activity against initial activating mutations and selectivity over
wild-type EGFR. Osimertinib received its first approval from the Food and Drug Admin-
istration (FDA) for the treatment of EGFR-T790M-positive NSCLC based on a 6-month
improvement in progression-free survival (PFS) compared to PBC in the AURA3 trial and
a hazard ratio (HR) for overall survival (OS) of 0.54 after adjustment for the high crossover
rate in the study [18,19]. Subsequently, in the FLAURA trial, osimertinib outperformed
first-generation TKIs in PFS (18.9 vs. 10.2 months, HR 0.46) and OS (38.6 vs. 31.8 months,
HR 0.80), regardless of the T790M mutation, with better tolerability, establishing the role
of first-line osimertinib as the gold-standard [20,21]. Despite these results, the emergence
of resistance ultimately leads to treatment failure. Resistance mechanisms are highly com-
plex and multifaceted, including the emergence of the C797S mutation, the loss of T790M,
small cell lung cancer (SCLC) transformation, and MET amplification; thus, tumor biopsy
upon disease progression should be considered whenever feasible to optimize treatment
strategies [22,23].

Although relatively rare, accounting for 2–3% of cases, EGFR-exon 20 insertion muta-
tions confer resistance to TKIs, requiring treatment with PBC. The oral TKI Mobocertinib
was active and led to sustained responses in PBC-treated patients with EGFR-exon 20 inser-
tion mutations. Based on these results, despite gastrointestinal and dermatological AEs
hampering their clinical utility, mobocertinib was granted FDA accelerated approval [24,25].
However, the confirmatory trial EXCLAIM-2 ended prematurely in July 2023 as first-line
mobocertinib monotherapy failed to improve PFS compared to PBC [26]. Therefore, it is
still to be determined whether the approval will remain intact, particularly given the PFS
improvement observed with the combination of first-line amivantamab, an EGFR-MET
bispecific antibody, and PBC over PBC alone in the phase III PAPILLON trial [27].

In the realm of HER2-mutation-positive NSCLC, phase 2 trials have investigated
the role of small molecule TKIs, pyrotinib and poziotinib. These agents showed only
modest activity and severe gastrointestinal and cutaneous AEs, owing to EGFR inhibition,
that hindered further development [28–30]. Current research is focusing on novel HER2-
selective TKIs that lack activity against other HER/ERBB family members, aiming for
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enhanced activity and improved safety. Notably, in the phase 2 study DESTINY-Lung01 the
antibody drug-conjugate (ADC) trastuzumab-deruxtecan (TDXd) yielded durable activity
in previously treated patients and was generally well-tolerated, though interstitial lung
disease (ILD) required prompt diagnosis and management [31], and the ongoing DESTINY-
Lung-04 will determine its superiority over PBC as first-line (NCT05048797).

Following the approval of the first-in-class ALK-TKI, crizotinib [32], there was a
compelling need for more potent therapeutic alternatives to overcome resistance. Owing
to an inhibitory activity against several crizotinib or ceritinib-resistant ALK mutations,
alectinib first improved PFS and intracranial objective response rate (ORR) in crizotinib-
resistant patients compared to PBC, with an acceptable safety profile [33]. Subsequently, the
ALEX trial established the superiority of first-line alectinib compared to crizotinib, with a
24-month PFS improvement (HR 0.32) and higher CNS activity (59% vs. 26%) [34,35]. First-
line brigatinib also improved long-term outcomes over crizotinib in the ALTA 1L study
and stands as a viable treatment option in this setting [36]. The third-generation lorlatinib,
initially developed to overcome resistance mechanisms responsible for progression to
second-generation TKIs, significantly improved PFS (HR 0.28) compared to crizotinib in the
CROWN trial [37,38]. Treatment with lorlatinib was associated with an acceptable toxicity
profile, as grade 3–4 AEs were mostly represented by altered lipid levels [38]. Interestingly,
some compound mutations that confer resistance to lorlatinib might re-sensitize tumoral
cells to crizotinib, making molecularly guided treatment a potentially valuable therapeutic
strategy in some cases [39].

In the context of ROS1-fusion-positive NSCLC, crizotinib is associated with a median
PFS of approximately 19 months [40], yet treatment failure and CNS progression generally
occur within 2 years of treatment [41]. Lorlatinib demonstrated activity in crizotinib-
resistant, ROS1-positive NSCLC in a Phase I-II trial, achieving an ORR of 35% [42]. Recently,
in a pooled analysis of the phase I-II trials, ALKA-372-001, STARTRK-1, and STARTRK-2
entrectinib achieved an ORR of 67%, with a median duration of response (DoR) of almost
16 months, thereby supporting the choice of this agent for first-line treatment. Although
generally well tolerated, severe AEs occurring at a low frequency, including cardiac and
CNS AEs, need to be carefully monitored as they might require dose modifications in some
instances [43,44].

Persistent efforts in the structural analyses of KRAS, a protein that has been histori-
cally deemed “undraggable”, paved the way for the development of KRASG12C-selective
inhibitors sotorasib and adagrasib, that, although not in the class of TKIs, are worth men-
tioning as they have been both approved for clinical use following at least one prior line of
systemic therapy. Sotorasib demonstrated activity in the phase I/II CodeBreaK-100 trial,
with an ORR of 41%. The most common AEs included diarrhea and elevation in transam-
inases. However, in the phase III CodeBreaK-200 trial, the PFS improvement was small
compared with docetaxel (5.6 vs. 4.5 months, HR 0.66), and OS was similar in the two
arms (10.6 vs. 11.3 months) [45]. Similarly, adagrasib achieved an ORR of 43% in phase
I/II KRYSTAL-1 trial, with durable responses and grade ≥3 AEs in 45% of patients [46,47],
while its efficacy as second-line compared to docetaxel and as first-line is currently under
investigation (KRYSTAL-12, NCT04685135; KRYSTAL-7, NCT04613596).

Traditionally, MET gene alterations have been treated with crizotinib [48], and other
multikinase inhibitors, with limited efficacy and significant toxicity. Selective MET-TKIs
capmatinib and tepotinib have revolutionized the treatment landscape for patients with a
MET-exon-14-skipping mutation, leading to high and durable responses in both previously
treated (ORR 40–51%) and treatment-naïve patients (ORR 56–67%) in the GEOMETRY
mono-1 and VISION trials, respectively [49,50]. Noteworthy, common AEs associated with
these agents include peripheral edema, increased creatinine levels, and gastrointestinal
events. Another specific MET-TKI, Savolitinib, was only approved in the People’s Republic
of China in 2021 [51]. Notably, MET-TKIs have yet to receive approval for high-level
MET amplification, although preliminary data warrant further investigation, and the
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ideal methodology for determining the level of amplification and appropriate cutoffs for
treatment is still an active area of research.

In RET-fusion positive NSCLC, the RET-selective TKIs selpercatinib and pralse-
tinib earned approval in 2021, as strong clinical activity was observed in the phase I/II
LIBRETTO-001 and ARROW studies, both in treatment-naïve (ORR 84% and 72%, respec-
tively) and previously treated patients (ORR 61% and 59%, respectively) [52,53]. Common
AEs for selpercatinib include hypertension and increased liver enzymes, while it is crucial
to monitor the occurrence of ILD associated with pralsetinib [54,55].

For BRAF-V600E-mutant NSCLC, the combination of oral serine/threonine kinase
inhibitors dabrafenib and trametinib obtained significant responses in both the first (ORR
68%) and second (ORR 64%) line in the phase II BRF113928 study, and it is considered
standard of care [56]. Recently, encorafenib plus binimetinib showed comparable efficacy,
with an ORR of 75% in treatment-naïve and 46% in pretreated patients, and this combination
might emerge as a new therapeutic option [57].

Lastly, larotrectinib and entrectinib have received tumor-agnostic approval based on
their efficacy in basket trials enrolling patients with neurotrophic tyrosine receptor kinases
(NTRK) fusion-positive tumors. The phase I/II NAVIGATE trial and the pooled analysis of
the STARTRK-1, STARTRK-2, and ALKA-372-001 studies demonstrated ORRs of 73 and
63%, respectively, in patients with NTRK-fusion-positive NSCLC. The incidence of grade
3–4 AEs, dose reductions, and discontinuations was low [58–60].
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Table 1. Efficacy results in registrational trials for 2nd and 3rd generation TKIs and KRAS-inhibitors in clinical practice.

Oncogene TKI Registrational Trial N◦ of Patients Control Arm Primary EP Efficacy Results CNS Activity in Patients with
Evaluable Lesions

EGFR exon
19 deletions and exon

20 L858R

Afatinib Phase IIB LUX-Lung-7 [14,61] 319 Gefitinib PFS Median PFS 11.0 vs. 10.9 months
(HR 0.74; 95% CI, 0.57–0.95; p = 0.0178) NA

Dacomitinib Phase III ARCHER 1050 [15,16] 452 Gefitinib PFS Median PFS 14.7 vs. 9.2 months
(HR 0.59; 95% CI, 0.47–0.74; p < 0.0001) -

Osimertinib Phase III FLAURA [20,21,62] 556 Gefitinib or
Erlotinib PFS Median PFS 18.9 vs. 10.2 months

(HR 0.46; 95% CI, 0.37–0.57; p < 0.001)
icORR 91% vs. 68%

icDoR 15.2 vs. 18.8 months

ALK

Ceritinib Phase III ASCEND-4 [63] 376 PBC PFS Median PFS 16.6 vs. 8.1 months
(HR 0.55; 95% CI, 0.42–0.73; p < 0.00001)

icORR 72.7% vs. 27.3%
icDoR 16.6 months vs. NE

Alectinib Phase III ALEX [34,35] 303 Crizotinib PFS Median PFS 34.8 vs. 10.9 months
(HR 0.43; 95% CI 0.32–0.58, p = 0.0001)

icORR 81% vs. 50%
icDoR 17.3 vs. 5.5 months

Brigatinib Phase III ALTA 1L [36] 275 Crizotinib PFS Median PFS 24.0 vs. 11.1 months
(HR 0.48, 95% CI 0.35–0.66, log-rank p < 0.0001)

icORR 78% vs. 26%
icDoR 27.9 vs. 9.2 months

Lorlatinib Phase III CROWN [37,38,64] 296 Crizotinib PFS Median PFS NR vs. 9.3 months
(HR 0.28; 95% CI 0.19–0.41, p < 0.001)

icORR 83% vs. 23%
icDoR NR vs. 10.2 months

ROS1 Entrectinib Phase I-II ALKA-372-001,
STARTRK-1, and STARTRK-2 [43,44] 161 - ORR

DoR
ORR 67.1% (95% CI 59.3–74.3)

Median DoR 15.7 months (95% CI 13.9–28.6)
icORR 79.2%

icDoR 12.9 months

MET Exon 14 skipping

Tepotinib Phase II VISION trial [50,65]

111, 1L T+
(cohort C + A)

- ORR
ORR 56.8% (95% CI, 47.0–66.1)

icORR 55%
icDoR 9.5 months97, ≥2L

(cohort C + A) ORR 49.5% (95% CI, 39.2–59.8)

Capmatinib
Phase II

GEOMETRY-mono-1 trial [49,66–68]

28 Treatment-naïve
(cohort 5b)

- ORR

ORR 67.9% (95% CI, 47.6–84.1)

iORR 67.9%
32 Treatment-naïve

(expansion cohort 7) ORR 65.6% (95% CI, 46.8–81.4)

69 pretreated 2/3L
(cohort 4) ORR 40.6% (95% CI, 28.9–53.1)

iORR 40.6%
31 pretreated 2L

(expansion cohort 6) ORR 51.6% (95% CI, 33.1–69.8)

KRAS G12C

Sotorasib
Phase II CodeBreaK 100 [69] 174 - ORR ORR 40.7% (95% CI, 33.3–48.4) icORR NR

icDoR NR

Phase III CodeBreak 200 [45] 345 Docetaxel PFS Median PFS 5.6 vs. 4.5 months
(HR 0.66; 95% CI 0.51–0.86, p = 0.0017) icORR 33%

Adagrasib Phase I/II KRYSTAL-1 [47,70] 116 - ORR ORR 42.9% (95% CI, 34.5–52.6) icORR 42%
icDoR 12.7 months
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Table 1. Cont.

Oncogene TKI Registrational Trial N◦ of Patients Control Arm Primary EP Efficacy Results CNS Activity in Patients with
Evaluable Lesions

RET

Selpercatinib Phase I/II LIBRETTO-001 [54,71]
69 Treatment-naïve

- ORR
ORR 84% (95% CI, 73–92) icORR 82%

icDoR 9.4 months247 PPP ORR 61% (95% CI, 55–67)

Pralsetinib Phase I/II ARROW [55]
75 Treatment-naïve

- ORR
ORR 72% (95% CI, 60–82)

icORR 78%
136 PPP ORR 59% (95% CI, 50–67)

BRAF
V600E

Dabrafenib/
Trametinib

Phase II
BRF113928 [56]

36 Treatment-naïve
(Cohort C) -

ORR

ORR 63.9% (95% CI, 46.2–79.2)

NA
57 Pretreated

(Cohort B) - ORR 68.4% (95% CI, 54.8–80.1)

NTRK
Larotrectinib Phase I/II NAVIGATE [58] 20 NSCLC - ORR ORR 73% (95% CI, 45–92) icORR 63%

Entrectinib Phase I/II STARTRK-1; STARTRK-2;
ALKA-372–001 [59,60] 22 NSCLC - ORR ORR 63.6% (95% CI, 40.7–82.8) icORR 67%

CI: confidence interval; CNS: central nervous system; DoR: duration of response; EP: end point; HR: hazard ratio; icDCR: intracranial disease control rate; icDoR: intracranial duration of
response; icORR: intracranial ORR; NA: not available; NE: not estimable; NR: not reached; NSCLC: non-small cell lung cancer; OR: odds ratio; ORR: objective response rate; OS: overall
survival; PPP: platinum-pretreated patients; PFS: progression-free survival; T+: MET ex14 skipping positive in tissue biopsy; TKI: tyrosine kinase inhibitor; TTF: time-to-treatment failure.
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2.2. CNS Activity

As a result of the specific and potent oncogene inhibition with novel TKIs, leading to
improved extracranial disease control and prolonged survival, approximately 20–40% of
patients ultimately develop CNS metastases. Brain metastases are associated with poor long-
term outcomes, and few therapeutic options are available. Conventional local therapies
include whole-brain radiation therapy, rarely curative and burdened by neurocognitive
toxicity, and stereotactic radiosurgery, whereas poor performance status and disease burden
often preclude neurosurgery. Furthermore, few chemotherapy agents have the ability to
cross the blood–brain barrier (BBB), while, in contrast, novel generation TKIs have been
specifically engineered to improve their intracranial permeability and activity, eventually
leading to better intracranial outcomes.

While first- and second-generation EGFR-TKIs exhibit intracranial efficacy at some
level, their concentrations in the cerebrospinal fluid (CSF) only reach 1–5% of the serum
concentrations [72–76]. In contrast, osimertinib not only reaches higher intracranial concen-
trations but also demonstrates substantial intracranial efficacy at its standard daily dose
of 80 mg [77,78]. In the FLAURA trial, the median CNS-PFS was not achieved with os-
imertinib, compared to 13.9 months in patients treated with first-generation TKIs (HR 0.48;
95% CI 0.26–0.86). Additionally, the incidence of CNS progression was lower in the osimer-
tinib arm (6% vs. 15%), regardless of the presence of baseline CNS involvement [20]. Among
patients with evaluable brain metastases, the intracranial response rate was substantially
higher with osimertinib (91% vs. 68%) [62,79].

In the natural history of ALK-translocated NSCLC, most patients develop CNS metas-
tases. First-line alectinib or brigatinib have improved intracranial ORR compared to crizotinib,
with intracranial ORRs of approximately 80% and durable intracranial responses [34–36]. In
cross-study comparisons, ceritinib showed lower CNS penetration, with an intracranial
ORR of 72% observed in the ASCEND-4 trial [63]. The third-generation lorlatinib out-
performed the intracranial activity of crizotinib in the CROWN trial (83% vs. 23%), with
complete responses in 71% of patients treated with lorlatinib. Moreover, the 12-month rate
of CNS progression in patients with and without baseline brain metastases was improved
in the experimental arm (7% vs. 72% and 1% vs. 18%, respectively) [38,64].

For patients with ROS-rearranged NSCLC, the intracranial activity of entrectinib
further enforces its use in treatment-naïve patients, with this agent leading to intracranial
ORRs of approximately 80%, alongside a median intracranial PFS of 12.0 months and a
median intracranial DoR of 12.9 months [44].

Similarly, both tepotinib and capmatinib have shown intracranial activity in patients
with MET exon-14 skipping, and an intracranial ORR of 68% was observed in treatment-
naïve patients treated with capmatinib in the GEOMETRY-Mono-1 study [49,50].

In the LIBRETTO-001 trial, CNS responses with selpercatinib were documented in
85% of patients, regardless of previous systemic treatment and/or radiotherapy, with a
median DoR of 9.4 months [71]. Pralsetinib also led to an intracranial ORR of 78% in the
ARROW trial [55].

Notably, several targeted agents have shown efficacy in patients with leptomeningeal
disease, including lorlatinib and alectinib for ALK-positive cancers and selpercatinib in
RET-fusion NSCLC [80,81]. For those with an EGFR mutation and leptomeningeal disease,
osimertinib has demonstrated significant intracranial activity against brain metastases at a
dose of 80 to 160 mg daily [82].

3. Novel Generations of Small Molecule Inhibitors in Clinical Development
3.1. EGFR

Beyond osimertinib, several third-generation TKIs have been developed, and three of
them (lazertinib, almonertinib, furmonertinib) have already been approved with the same
indications of osimertinib in Korea and China [83–87]. Table 2 summarizes their principal
features, their main clinical results, and, where available, their approval indications.
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Similarly to osimertinib, they have proven to be active towards EGFR-T790M resistance
mutation and showed superiority to 1st or 2nd generation TKI. Moreover, they share the
same risk of developing rare and severe toxicity (ILD and QTc prolongation) and are
inactive toward EGFR p.C797S mutation. In the absence of any head-to-head comparison
results, the real advantage taken from more similar drugs available in the market will be
the potential improvement in the cost-effectiveness of these drugs [88–90].
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Table 2. 3rd generation EGFR TKIs beyond osimertinib.

Lazertinib a Almonertinib b Furmonertinib c TY-9591 SH-1028 Limertinib d Abivertinib e Befotertinib f Rezivertinib g

Structure
Respect
To Osi

pyrimidine and on
phenyl rings

cyclopropyl group on
the indole group

tphenyl ring and
methyl group Not released indole ring Indole and

pyrimidine ring
pyrimidine and on

phenyl rings Not released oxygen replacing
on phenyl ring

IC50 nM
(T790M+) 1.85 0.37 Not released Not

released 0.55 0.3 0.18 Not released GI50 22 nM

RP2D 240 mg 110 mg 80 mg 160 mg 200 mg 160 mg BID 300 mg BID 75–100 mg 180 mg

MTD Not reached Not reached Not reached unpublished unpublished unpublished Not reached Not reached Not reached

Approved
for

T790M+
Korea 18 January 2021 China 18 March 2020 China 3 March 2021 - - - - - -

Trial Phase I/II
Lee 2020 [84]

Apollo
Lu 2020 [91]

Phase I/II
Shi 2021 [92]

NCT04204473
Ongoing

Phase I/II
Xiong 22 [93]

Phase IIb
Li 2022 [94]

Phase I/II
Zhou 2022 [95]

Phase I/II
Lu 2022 [96]

Phase I
Shi 2022 [97]

ORR
(T790M+) 58% 69% 74% - 60.4% 68.8% 56.5% 67.6% 60.5%

mPFS
mos

(T790M+)
11 12.3 9.6 - 12.6 11 8.5 16.6 9.7

Approved
for

1st line
Korea 30 June 2023 China 4 December 2021 China 28 June 2022 - - - - - -

Vs 1st TKI LASER301
Cho 2023 [85]

AENEAS
Lu 2022 [98]

FURLONG
Shi 2022 [99] - NCT04239833

Ongoing
NCT04143607

Ongoing
AEGIS-1
Ongoing

NCT04206072
Lu 2023 [100]

REZOR
Ongoing

mPFS
(mos) 20.6 vs. 9.7 19.3 vs. 9.9 20.8 vs. 11.1 - - - - 21.1 vs. 13.8 -

ILD 3% 1% 1% NR 0 NR NR 2% NR

Ongoing
trials

MARIPOSA
Lazertinib

vs.
Osimertinib

vs.
Lazertinib/

amivantamab

- -

FLETEO
TY-9591

vs.
osimertinib

- - - - -

Abbreviations: IC50 = Half-maximal inhibitory concentration; RP2D = recommended phase 2 dose; ORR = overall response rate; mPFS = median progression-free survival. a. Lazertinib,
also known as (AKA) GNS-1480/YH25448/JNJ-73841937; b. almonertinib AKA aumolertinib or HS-10296; c. fulmonertinib AKA Alflutinib/AST2818; d. Limertinib, also known as
(AKA) = ASK120067; e. abivertinib AKA AC0010/Avitinib/STI-6565; f. befotertinib AKA D-0316; g. rezivertinib AKA BPI-7711.
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To overcome EGFR-C797X mediated resistance, several 4th generation TKIs have
been designed and are at difference stages of clinical research (Table S1) [101]. The first
developed drugs (EAI045, JBJ-04-125-02, BLU-701) were rapidly withdrawn since their
activity depends on combination with other drugs or lack of efficacy [102–104]. In the same
line, BLU-945 is also being investigated in combination with osimertinib to improve the
activity against EGFR-sensitizing mutations [105]. Further, fourth-generation EGFR-TKIs,
which have demonstrated proof of activity in cancer models harboring C797S with or
without T790M, are being experimented in phase I trials (Table S1) [106–114].

With concern on the EGFR and HER2 Exon 20 insertion mutations that are intrinsically
resistant to available EGFR-TKIs, different drugs with similar properties are currently eval-
uated in clinical research (Tables S2 and S3) [115–121]. The main issue in the development
of TKIs targeting EGFR or HER2 exon 20 insertions consists of achieving high selectivity
over wild-type receptors in order to increase their therapeutic window [114]. With regard
to uncommon EGFR mutations, few studies are investigating the efficacy of specific TKIs
or combinations: phase II trials of furmonertinib (NCT05548348), sutetinib (NCT05168566)
and the afatinib/bevacizumab combination (NCT05267288), phase III trial of almonertinib
over standard chemotherapy (NCT04951648).

3.2. KRAS

The efficacy of KRAS-G12C inhibitors is tempered by the RAS pathway complexity, the
concomitant presence of other gene mutations, such as KEAP1, and the acquired secondary
mutations on the switch pocket II of KRAS [122,123]. New KRAS inhibitors have been
designed to inhibit this target more potently and selectively (Table 3 and Table S4). Among
them, divarasib and JDQ433 are on more advanced clinical development. Divarasib (GDC-
6036) has been designed to inhibit covalently, selectively, and with more potency KRAS
G12C compared to sotorasib and adagrasib [124]. JDQ443 has been designed to overcome
resistance mechanisms observed with other KRAS G12C inhibitors since it acts through
a novel binding mechanism that forms novel interactions with KRAS under the switch II
pocket, irreversibly trapping KRAS in the inactive, GDP-bound state reaching the residue
C12 without interfering with residue H95 [125].

Table 3. Summary of the novel KRAS inhibitors most advanced in clinical research.

Drug IC50 Clinical Trial(s) Results Safety Profile Ongoing Clinical Trial(s)

Divarasib
(GDC-6036)
400 mg OD

0.0029
nM

Phase I/II
GO42144

Sacher 2023 [124]

ORR 53.4%
mPFS 13.1 months

AE rate 93%
G ≥ 3: 12%

Most common AEs
nausea (74%),

diarrhea (61%), and
vomiting (58%)

NAUTIKA1
NCT04302025

Biomarker-driven Neoadjuvant
platform

JDQ443
200 mg BID 0.012 nM

Phase I–II
KontRast-01

Tan 2022 [126]
Phase III KontRASt-02

NCT05132075
Ongoing

ORR 57%
mDoR 4 months

AE rate 71.8%
G ≥ 3: 12.8%

Most common AEs
fatigue (30.8%)
nausea (17.9%)
edema (15.4%)

diarrhea (12.8%)
vomiting (12.8%)

KontRASt-04
JDQ433C12301

1stline JDQ433 + TNO155 vs.
CT + ICI
STRIDER

NCT05999357 Ph II BM +
KontRASt-06

NCT05445843 1st line PD-L1
neg or PD-L1+/SKT11+

Abbreviations: IC50 = Half-maximal inhibitory concentration; OD = once daily; BID = two times a day;
nM = nanomolar; ORR = overall response rate; mPFS = median progression-free survival; mDoR = median dura-
tion of response; AE(s) = adverse event(s); G = grade; Ph = phase; CT = chemotherapy; ICI immune-checkpoint
inhibitor; Tx = treatment.

3.3. BRAF and MET

The novel encorafenib and binimetinib combination, already approved for BRAF-
mutated melanoma, has been investigated in two different phase II trials (ENCO-BRAF,
OCEANII) for NSCLC patients. Several trials are experimenting with novel (pan)-RAF
inhibitors alone or in combination with MEK, FAK, RAS, or SHP-2 inhibitors in patients
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with BRAF-V600E solid tumors, including NSCLC refractory to BRAK/MEK-inhibitors
or harboring other RAF alterations (BRAF class II and III mutations, RAF gene fusions or
amplification) [127] (Table S5).

Despite the development of acquired MET mutations seems to be related to the
type of MET-inhibitors, at present, no clinical trial has been designed to investigate the
re-sensitiveness of these patients to a novel class of MET TKIs, with the exception of a
small phase II trial of capmatinib in crizotinib-resistant NSCLC patients, which showed
discouraging results [128]. At the state-of-the-art, only the bifunctional anti-EGFR and
MET antibody amivantamab have shown modest activity (ORR 17%) in MET-TKI-resistant
patients in the Chrysalis trial [129]. Preliminary results were presented from the phase I
SHIELD trial of elzovantinib, a MET, SRC, and CSF1R inhibitor, in 52 patients with MET
dysregulated solid tumors, including 30 patients with MET-altered NSCLC (20 MET-ex14
skipping mutations, 8 MET amplified, 2 other MET mutations) [130]. Among the eleven
TKI naïve NSCLC patients, the ORR was 36% regardless of dose modifications (Table S6).

3.4. Fusion Genes

Novel 3rd and 4th ALK-TKIs are underway in clinical research. APG-2449 is a novel
FAK inhibitor and a third-generation ALK/ROS1-TKI that has shown potent activity to-
wards a range of ALK-resistant mutations and brain penetrant capacity in pre-clinical
NSCLC tumor models. An ongoing phase I trial is evaluating patients with second-
generation TKIs-resistant ALK/ROS1-positive NSCLC. Preliminary results have shown
an ORR of 28.5% among 14 patients with ALK-TKI refractory NSCLC [131]. TPX-0131 and
NVL-655 are the 4th generation ALK-Is. The clinical development of TPX-0131 has been
withdrawn due to safety issues; meanwhile, phase I/II of NVL-655 is ongoing [132,133]
(Table S7). Tables S8 and S9 show the ongoing clinical trials of new ROS1 and NTRK
inhibitors (taletrectinib, repotrectinib, NVL-520 among the others for ROS1 and repotrec-
tinib, VMD-928 and XZP-928 for NTRK) with high BBB penetrance and activity towards
secondary single or double mutations.

Novel RET inhibitors have been designed to cover acquired resistance mutations
while sparing the inhibition of other targets, such as VEGFR2, to augment their therapeutic
window (Table 4).

Table 4. Summary of clinical results of novel RET inhibitors.

Drug EC/IC50 CCDC6RET
Ratio IC50G810R Clinical Trial Results Ongoing Clinical

Trial

TPX-0046 [134] IC50 < 10 nM +
17 nM

Phase I/II
NCT04161391

Terminated (Adverse
change in the
risk/benefit)

Drug
withdrawn

Zeteletinib
(BOS172738)
150 mg OD

IC50 < 1 nM Not released Phase I/II
Schöffski 2021 [135]

ORR 33% mDoR not
reached

Phase I/II
Schöffski 2021

HA121-28
600 mg OD Data not released Data not

released
Phase I/II

Zhao 2021 [136]
Post-CT ORR 41%
mPFS not reached

NCT05117658
Ph II trial
Post-CT

TAS0953/HM06 [137] IC50 0.02–s0.1 µM +
MARGARET

Phase I/II
NCT04683250

Ongoing
MARGARET

Phase I/II
NCT04683250

SY-5007
160 or 200 mg BID IC50 < 1 nM Not released Phase I/II

Zhou 2023 [138]
ORR 75% mDoR not

reached

NCT06031558
Ph III trial
Single arm

TY-1091 [139] IC50 < 1 nM ++
9.5 nM

Phase I/II
NCT05675605 Ongoing Phase I/II

NCT05675605

Abbreviations: IC50 = Half-maximal inhibitory concentration; OD = once daily; BID = two times a day;
nM = nanomolar; ORR = overall response rate; mPFS = median progression-free survival; mDoR = median dura-
tion of response; AE(s) = adverse event(s); G = grade; Ph = phase; CT = chemotherapy; ICI immune-checkpoint
inhibitor; Tx = treatment.
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4. Combination Treatments with New Generation TKIs
4.1. EGFR

After the encouraging results of the Japanese phase III trial NEJ009 [140] and phase
II OPAL trial [141], the FLAURA-2 trial confirmed the benefit of combining PBC to the
third generation TKI osimertinib in 586 treatment naïve EGFR+ NSCLC patients, as the
combination led to a PFS improvement in 8 months (HR 0.62) [142]. Table 5 depicts trials of
the TKI-CT combination for a selected population of patients (p53 mutant or other tumor
suppressor genes, lack of circulating DNA clearance, brain metastases). In the post-TKI
setting, the COMPEL phase III trial is investigating the role of adding a TKI to standard
second-line chemotherapy in order to prevent CNS progression [143].

Table 5. Main TKI-based combinations either in tx naïve or previously TKI pretreated EGFR-
mutant NSCLC.

CT Antiangiogenics Bispecific Antibodies ADCs or TKIs

First line Tx

FLAURA-2
[NCT04035486]

Osimertinib +/− CT
(K-I common)

TRIAL HAS RESULT

[NCT05263947]
Icotinib + bevacizumab

(K-I L858R)

CHRYSALIS
[NCT02609776]

Lazertinib+
amivantamab

(cohort TKI naive)

[NCT05007938]
Befotertinib +

icotinib

TOP
[NCT04695925]

Osimertinib +/− CT
(K-I EGFR/p53+)

[NCT04181060]
Osimertinib +/−

bevacizumab
(K-I sensitizing

mutations)

OSTARA
[NCT05801029]

Lazertinib+
amivantamab
(K-I common)

METLUNG
[NCT05445791]
1st or 2nd TKI
+metformin

(KI sensitizing
mutations)

[NCT04552613]
Standard TKI+/−CT

(K-I EGFR/concomitant
genes+)

[NCT05507606]
Osimertinib +/−

bevacizumab
(K-I EGFR/p53+)

MARIPOSA
[NCT04487080]

Lazertinib+
amivantamab
(K-I common)

[NCT05880706]
Osimertinib+BL-B01D1
(KI common mutations)

[NCT04410796]
Osimertinib +/− CT
(K-I ctDNA+ at C2)

[NCT04988607]
Osimertinib +/−

bevacizumab
(K-I L858R)

PACE-Lung
[NCT05281406]

Osimertinib +CT
(K-I ctDNA+ at wk3)

AUTOMAN
[NCT04770688]

Osimertinib + anlotinib
(KI common mutations)

[NCT05209256]
Furmonertinib+/− CT

(K-I sensitizing
mutations)

[NCT03909334]
Osimertinib+/−

ramucirumab
(KI common mutations)

[NCT04923906]
Almonertinib+/− CT

(K-I sensitizing
mutations)

FOCUS-A
[NCT04895930]

furmonertinib+anlotinib
(KI common EGFR)

ACROSS1
[NCT04500704]

Almonertinib+/− CT
(K-I common mutations)

[NCT05271916]
Dacomitinib+anlotinib
(KI phI common; Ph II

L858R)
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Table 5. Cont.

CT Antiangiogenics Bispecific Antibodies ADCs or TKIs

ACROSS2
[NCT04500717]

Almonertinib+/− CT
(K-I common

mutations/Suppressor
Genes+)

BELLA
[NCT04575415]
Bevacizumab +

EGFRTKIs
(observational study)

[NCT03992885]
Icotinib + CT

(KI sensitizing
mutations)

[NCT03904823]
Almonertinib + famitinib

(K-I sensitizing
mutations)

[NCT05778149]
Almonertinib + anlotinib

(K-I common
mutations/p53)

ACTIVE/CTONG1706
[NCT02824458]

Gefitinib +/− apatinib
(KI common mutations)

MET-based

FLOWERS
(NCT05163249)
osimertinib+/−
savolitinib (K-I

sensitizing/MET+◦)

NCT04743505
Osimertinib +/−
savolitinib (K-I

sensitizing)

Post-3rd gen
EGFR TKI

CHRYSALIS
[NCT02609776]

Lazertinib+
amivantamab

(cohort post-TKIs)

Lung-MAP Sub-Study
[NCT05642572]

Osimertinib+capmatinib
+/− ramucirumab

(K-I sensitizing MET
AMP)

CHRYSALIS 2
NCT04077463

Lazertinib+
amivantamab+/− CT

(cohort post-osimertinib)

CHRYSALIS 2
NCT04077463

Lazertinib+
amivantamab+/− CT

(cohort post-osimertinib)

INSIGHT 2
[NCT03940703]

Tepotinib +osimertinib
(K-I common/MET+ç)

MARIPOSA-2
[NCT04988295]

CT+/+ amivantamab
+/− lazertinib

(KI common
postosimertinib)

MARIPOSA-2
[NCT04988295]

CT+/+amivantamab+/lazertinib
(KI common

postosimertinib)

SAVANNAH
(NCT03778229)
Savolitinib+/-

osimertinib
(K-I common/MET+§)

PALOMA
[NCT04606381]
Sc amivantamab
(KI solid tumors

Common EGFR NSCLC
post-TKIs)

SACHI
[NCT05015608]

CT vs. Osimertinib+
savolitinib

(K-I common/MET+@)
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Table 5. Cont.

CT Antiangiogenics Bispecific Antibodies ADCs or TKIs

SAFFRON
[NCT05261399]

CT vs.
osimertinib+savolitinib
(K-I common/MET+§)

PALOMA2
[NCT05498428]

Sc Amivantamab+several
regimens

(KI Solid Tumors
Including txnaive or
POSTTKIs common

EGFR EGFRex20ins tx
naïve)

SAFFRON
[NCT05261399]

CT vs.
osimertinib+savolitinib
(K-I common/MET+§)

PALOMA-3
[NCT05388669]

Lazertinib + sc vs. ev
amivantamab

(k-I common post CT and
osimertinib)

[NCT05821933]
Furmonertinib+RC108

+/- Toripalimab
(k-I sensitizing/MET OE

post-TKIs)

AMAZE-lung
[NCT05601973]

Lazertinib amivantamab
bevacizumab

(KI post osimertinib or
Lazertinib).

AMAZE-lung
[NCT05601973]

Lazertinib amivantamab
bevacizumab

(KI post osimertinib or
Lazertinib).

[NCT04965090]
Amivantamab/lazertinib
(KI common after3rdTKI

and BM+)

PolyDamas
[NCT05908734] amivan-

tamab+cetrilumab
(KI post osimertinib/CT)

NCT03797391
EMB-01

(KI EGFR or MET+)

[NCT05498389]
EMB-01+ osimertinib

(KI postTKIs)

[NCT04868877]
MCLA-129+osimertinib

(k-I NSCLC/solid
tumours)

Abbreviations: CT = chemotherapy; ADC(s) = Antibody(ies) drug conjugated; TKI(s) = Tyrosine kinase inhibitor(s);
Tx = treatment; KI = key inclusion criteria; Ph = phase; C = cycle; wk = week; ctDNA = circulating DNA;
NSCLC = Non-Small-Cell Lung Cancer; EGFR Epidermal Growth Factor Receptor; EGFREx20ins = EGFR eson
20 insertions; MET OE = MET overexpressed; ç MET+ = gene copy number ≥ 5 and/or MET/CEP7 ≥ 2;
§ MET+ = MET-Overexpressed (IHC90+) and/or Amplified (GCN≥ 10); @ MET+ = GCN not reported cutoff;
◦ MET+ = IHC 3+ in ≥75% of tumor cells; MET gene copy ≥ 5 or MET/CEP7 ratio ≥ 2; HER 2 AMP = Her2
amplified; EGFREx20ins = EGFR exon 20 insertions; BL-B01D1 is a bifunctional antibody anti-EGFR/HER3
conjugated to a topoisomerase-I; Famitinib is a multitargeted agent which inhibits stem cell factor receptor (c-Kit;
SCFR), vascular endothelial growth factor receptor (VEGFR) 2 and 3, platelet-derived growth factor receptor
(PDGFR) and FMS-like tyrosine kinases Flt1 and Flt3; RC108 = ADC anti MET; MCLA-129 is a Human Anti-EGFR
and Anti-c-MET Bispecific Antibody.

Histologic transformation into SCLC has been observed in 3–14% of EGFR+ NSCLC pa-
tients treated with first-generation EGFR-TKIs (gefitinib or erlotinib), frequently mediated
by p53/RB1 loss of function [144]. An ongoing phase II trial is evaluating the combination
of olaparib and durvalumab in this setting (NCT04538378).
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Another important line of research is represented by the development of bispecific an-
tibodies. In the CHRYSALIS study (NCT02609776), the combination of amivantamab plus
lazertinib was tested in 20 treatment-naïve Asian patients with EGFR-mutant NSCLC, at-
taining an ORR of 100%. Interestingly, after a median duration of treatment of 33.5 months,
median DOR, PFS, and OS have not yet been reached [145].

The phase 3 MARIPOSA study is further investigating the lazertinib/amivantamab
combination versus lazertinib or osimertinib alone in 1074 treatment-naïve NSCLC pa-
tients with EGFR-common mutations, and positive results have been preliminarily an-
nounced [146]. Indeed, in the MARIPOSA2 phase III trial, the combination of amivantamab
alone or plus lazertinib with standard PBC has led to a PFS improvement in NSCLC patients
harboring common EGFR-mutations after failure of treatment with osimertinib [147].

Among the different TKI-TKI combinations, the major interest is focused on MET
inhibition. Alongside the first-line combination of savolitinib plus osimertinib (FLOWERS,
NCT05163249; NCT04743505), major efforts are being oriented towards the post-3rd gener-
ation TKI setting. Based on the results of preliminary trials with gefitinib plus capmatinib
and osimertinib plus savolitinib [148], phase II and III trials have been designed to confirm
the efficacy of these combinations [149,150]. Moreover, the ORCHARD trial is a biomarker-
directed phase II platform study evaluating the optimal treatment for individual patients
with EGFR-mutant NSCLC [151] (Table 5, Table S10).

4.2. Other Driver Gene Mutations

Table S11 summarizes ongoing TKI-based combinations with chemotherapy, antian-
giogenics, multitargeted drugs, or immune-modulating agents for NSCLC patients with
EGFR or HER2 exon 20 insertion mutations.

Several combinations have been designed and are under development in clinical
trials to overcome resistance to KRAS inhibitors (Table S12). Indeed, trials have been
designed to investigate the MEK-inhibitors and ICI combinations in solid tumors, BRAF
or KRAS mutated NSCLC on the basis of preclinical data and case reports suggesting that
MEK inhibition can modulate CTLA-4 expression and potentially increase the efficacy of
ICI [152,153] (Table S13).

Few clinical trials are ongoing with TKI-based combinations of drugs (TKI plus MEK-I
or ICI plus amivantamab), aiming to overcome the occurrence of resistance to MET in-
hibitors (Table S14).

4.3. Fusion Genes

Several trials are experimenting with the feasibility of different ALK, ROS1, or RET TKI-
based combinations plus different classes of drug: chemotherapy, antiangiogenesis, multi-
targeted kinase inhibitors (lenvatinib, crizotinib, apatinib), or selective inhibitors towards
different targets (MEK, MET, or SHP-2), ICI, or immunomodulators (Tables S15 and S16).

5. The Issue of Sequencing Treatments with New Generation TKIs

In the dynamic landscape of targeted therapy for driver gene alterations in cancer,
the introduction of novel generations of TKIs has ushered in a new era of treatment
paradigms. These advancements have conferred delayed resistance, prolonged overall
survival, and enhanced CNS penetration compared to their predecessors [20,64,154,155].
This transformative impact has often led to the relocation of these novel agents from later
lines of therapy to the front-line treatment setting. While these innovations represent a
substantial leap forward in cancer care, they raise a significant and somewhat paradoxical
challenge: the potential obsolescence of TKI treatment sequencing and the diminished role
of previous TKI generations.

However, this progress comes with its own set of complexities, particularly in terms
of toxicity profiles. While the safety and tolerability of these novel agents are generally
manageable, they often differ from those of their predecessors, requiring new learning
curves for medical oncologists on the management of novel and peculiar adverse events in
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clinical practice (e.g., cognitive effects with lorlatinib and entrectinib, the management of
interstitial lung disease occurring at different rates with different drugs) [59,156].

This strategic shift towards the front-line adoption of novel TKIs raises a critical
question regarding the sequencing of TKI treatments. Historically, the sequencing of TKIs
was a vital aspect of managing drug resistance and optimizing patient outcomes. Patients
who developed resistance to an earlier generation of TKI often had the option to switch
to a subsequent generation with a different mechanism of action, thereby extending the
duration of disease control [18,33]. However, the ascendancy of novel TKIs as first-line
therapies has effectively closed this avenue. With the superior efficacy of these agents,
previous generations have become less relevant in the treatment algorithm, relegating
them to a historical perspective rather than a therapeutic option. As such, whereas TKI
sequencing from first- to novel generations relegated chemotherapy options at the end
of the treatment sequence, anticipating novel TKI generations in the front-line setting
made the role of the ‘old’ chemotherapy options being revived as a necessary second-line
treatment option, outside clinical trials [2].

Nonetheless, this paradigm shift underscores the imperative for continuous innovation
and adaptation in oncology as the field continues to evolve to meet the ever-changing
needs of patients with driver gene alterations.

6. The Issue of Resistance: Selective Pressure on Resistant Clones

Resistance to cancer therapies is a formidable challenge in the field of medical oncology,
and a crucial aspect of this challenge is the selective pressure imposed on resistant clones
within heterogeneous tumors [7,157]. Molecular heterogeneity, a pervasive feature of
most cancers, lies at the heart of acquired resistance development. Tumors, even when
sharing similar clinical characteristics, are composed of a mosaic of molecular clones, each
characterized by unique genetic and phenotypic traits [158]. This inherent diversity within
tumors provides fertile ground for the emergence of drug-resistant clones, each endowed
with specific survival advantages and resistance mechanisms [7]. Particular subgroups
referred to as Drug-Tolerant Persister (DTP) cells, have the capacity to endure high-dose
treatments [159]. Intriguingly, these sub-clones possess distinctive stem cell markers and
can adapt their characteristics in response to therapy-induced selective pressure [159].
DTPs, along with de novo mutations and preexisting resistance mechanisms, are among
the potential strategies employed by cancers to evade the pressures exerted by anticancer
drugs [157,158].

The consequence of this molecular diversity is that therapeutic interventions, while
initially effective against a subset of tumor cells, inadvertently create an environment
conducive to the survival and proliferation of drug-resistant clones. The selective pressure
imposed by treatments favors the outgrowth of these resistant populations over time,
ultimately leading to therapeutic failure [158]. This selective pressure is a dynamic process
in which sensitive tumor cells are progressively eliminated, allowing resistant clones to
dominate [160].

The role of druggable driver mutations further underscores the complexity of acquired
resistance development. In cases where tumors harbor well-defined driver mutations,
resistance mechanisms are often intricately linked to these drivers. However, the potency
of the therapeutic agent employed can significantly influence the nature of resistance.
High-potency drugs, as novel generations of TKIs are, can exert more substantial selective
pressure, potentially driving the development of resistance mechanisms that are indepen-
dent of the drug’s primary target [157,161].

A notable example is observed in the treatment of EGFR-mutant lung cancers, where
the use of different generations of tyrosine kinase inhibitors (TKIs) leads to distinct resis-
tance patterns [161]. First-generation TKIs like gefitinib and erlotinib are associated with a
high incidence of the p.T790M resistance mutation. In contrast, second-generation TKIs
such as afatinib have a reduced incidence of p.T790M mutations, while third-generation
TKIs like osimertinib exhibit even lower rates of EGFR-dependent resistance mecha-
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nisms [23,162]. Instead, under the selective pressure of more potent drugs like osimertinib,
alternative resistance mechanisms such as MET amplification can become prevalent [163].
Similarly, the different structure and potency among first-, second-, and third-generation
ALK TKIs lead to a different selection of resistance mutations [164,165]. In addition, the
sequential use of subsequent generations of TKIs may lead to the emergence of compound
resistance patterns [166].

Indeed, under the selective pressure of more potent compounds, as novel generations
of TKIs, resistant clones emerge, harboring more complex and hard-to-target resistance
mechanisms [7,167]. Understanding the interplay between selective pressure, molecular
heterogeneity drug potency, binding affinity, and structure is critical for devising effective
strategies to overcome drug resistance and improve treatment outcomes in cancer patients.

7. Conclusions and Future Directions

From the humble beginnings of the first-generation TKIs, exemplified by erlotinib
and gefitinib in EGFR-mutant disease, to the cutting-edge third-generation agents such
as osimertinib and extending the application of TKI treatment to other oncogene-driven
diseases, we have witnessed a remarkable transformation in the therapeutic landscape
of NSCLC [168]. These targeted therapies have not only prolonged the lives of countless
patients but have also provided a blueprint for precision medicine in oncology.

As we conclude our exploration of the strengths and limitations of novel generations
of TKIs in NSCLC, it is evident that these agents have significantly improved disease
control and survival rates among patients harboring specific genetic alterations. However,
it is equally clear that challenges persist, and there is much work yet to be done to opti-
mize their use and expand treatment options. One notable limitation is the development
of resistance mechanisms, which underscores the need for ongoing research into novel
therapeutic strategies.

One promising avenue lies in the realm of Antibody-Drug Conjugates (ADCs). These
innovative biopharmaceuticals combine the specificity of monoclonal antibodies with the
cytotoxic potency of chemotherapy drugs (payload), offering a new approach to target
oncogenic pathways in NSCLC [169]. ADCs have the potential to overcome some of the
limitations of TKI therapy, particularly in cases of resistance and heterogeneous tumor
populations. To date, different ADCs are being investigated in driver-mutant NSCLCs
after the failure of standard TKI treatment [170]. In a future perspective, these agents can
be designed to target specific driver mutations, either by direct antibodies or even using
TKIs as pharmaceutical components (as payload or instead of monoclonal antibody) of the
ADCs, providing a level of precision therapy that was previously unthinkable [169].

In addition, combination treatments represent another potential strategy. The intricate
biology of NSCLC, characterized by the crosstalk between multiple signaling pathways,
necessitates a multifaceted approach to therapy. Combinations of TKIs with chemotherapy
agents as recently demonstrated in the FLAURA-2 trial with osimertinib plus platinum-
doublet, have shown promise in enhancing antitumor responses and delaying the emer-
gence of resistance [142]. Furthermore, rational combinations of TKIs with other targeted
therapies, such as MET inhibitors [171], are being actively investigated to address resistance
mechanisms and broaden the scope of effective treatment options.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers15205079/s1, Table S1. 4th generation EGFR TKIs properties
compared to those of Osimertinib; Table S2. Summary of EGFR Ex20ins TKi inhibitors; Table S3.
Summary of HER2ex20 ins TKIs; Table S4. Ongoing clinical trials of RAS inhibitors; Table S5.
Ongoing clinical trials of RAF inhibitors; Table S6. Ongoing clinical trials of novel MET inhibitors
in MET dysregulated NSCLC or solid tumors; Table S7. Ongoing clinical trials of novel ALK TKIs;
Table S8. Ongoing clinical trials of novel ROS1 TKIs; Table S9. Ongoing clinical trials of novel
NTRK inhibitors; Table S10. Ongoing clinical trials of novel RET TKIs; Table S11. Ongoing trials
of TKI-based combinations in EGFR or HER2 Exon 20 insertions; Table S12. Ongoing clinical trials
of KRAS inhibitor-based combinations; Table S13. ICI-TKI based combinations in BRAF mutated
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NSCLC patients; Table S14. Ongoing clinical trials of TKI-based combination in MET dysregulated
NSCLC patients; Table S15. Ongoing clinical trials of TKI-based in ALK+ or ROS1+ NSCLC patients;
Table S16. Ongoing combinations in RET+ NSCLC.
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